File: memory_tracker_example.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (33 lines) | stat: -rw-r--r-- 885 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# mypy: allow-untyped-defs
import torchvision

import torch
from torch.distributed._tools import MemoryTracker


def run_one_model(net: torch.nn.Module, input: torch.Tensor):
    net.cuda()
    input = input.cuda()

    # Create the memory Tracker
    mem_tracker = MemoryTracker()
    # start_monitor before the training iteration starts
    mem_tracker.start_monitor(net)

    # run one training iteration
    net.zero_grad(True)
    loss = net(input)
    if isinstance(loss, dict):
        loss = loss["out"]
    loss.sum().backward()
    net.zero_grad(set_to_none=True)

    # stop monitoring after the training iteration ends
    mem_tracker.stop()
    # print the memory stats summary
    mem_tracker.summary()
    # plot the memory traces at operator level
    mem_tracker.show_traces()


run_one_model(torchvision.models.resnet34(), torch.rand(32, 3, 224, 224, device="cuda"))