1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
|
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import functools
from typing import (
Any,
Callable,
cast,
Dict,
Iterable,
List,
NoReturn,
Optional,
Type,
Union,
)
import torch
import torch.nn as nn
from torch.distributed._composable import contract
from torch.distributed.tensor import DeviceMesh, Shard
from torch.distributed.utils import _get_root_modules
from ._fsdp_api import MixedPrecisionPolicy, OffloadPolicy
from ._fsdp_common import FSDPMeshInfo, HSDPMeshInfo
from ._fsdp_init import (
_get_device_from_mesh,
_get_managed_modules,
_get_managed_states,
_get_post_forward_mesh_info,
_init_default_fully_shard_mesh,
_move_states_to_device,
)
from ._fsdp_param_group import FSDPParamGroup
from ._fsdp_state import _get_module_fsdp_state, FSDPState
__all__ = [
"fully_shard",
"FSDPModule",
"UnshardHandle",
"register_fsdp_forward_method",
]
cls_to_fsdp_cls: Dict[Type, Type] = {}
# The decorator adds a state object to `module` that can be accessed via
# `fully_shard.state(module)`. The state object and module are 1:1.
@contract(state_cls=FSDPState) # type: ignore[operator]
def fully_shard(
module: Union[nn.Module, List[nn.Module]],
*,
mesh: Optional[DeviceMesh] = None,
reshard_after_forward: Union[bool, int] = True,
shard_placement_fn: Optional[Callable[[nn.Parameter], Optional[Shard]]] = None,
mp_policy: MixedPrecisionPolicy = MixedPrecisionPolicy(),
offload_policy: OffloadPolicy = OffloadPolicy(),
):
"""
Apply fully sharded data parallelism (FSDP) to ``module``, where FSDP
shards module parameters, gradients, and optimizer states across data
parallel workers to save memory at the cost of communication.
At initialization, FSDP shards the module's parameters across the data
parallel workers given by ``mesh``. Before forward, FSDP all-gathers the
sharded parameters across the data-parallel workers to get the unsharded
parameters for forward computation. If ``reshard_after_forward`` is
``True``, then FSDP frees the unsharded parameters after forward and
re-all-gathers them in backward before gradient computation. After gradient
computation, FSDP frees the unsharded parameters and reduce-scatters the
unsharded gradients across data-parallel workers.
This implementation represents the sharded parameters as :class:`DTensor` s
sharded on dim-0, while the unsharded parameters will be like the original
parameters on ``module`` (e.g. :class:`torch.Tensor` if originally
:class:`torch.Tensor`). A module
`forward pre-hook <https://pytorch.org/docs/main/generated/torch.nn.Module.html#torch.nn.Module.register_forward_pre_hook>`_
on ``module`` all-gathers the parameters, and a module
`forward hook <https://pytorch.org/docs/main/generated/torch.nn.Module.html#torch.nn.Module.register_forward_hook>`_
on ``module`` frees them (if needed). Similar backward hooks all-gather
parameters and later free parameters and reduce-scatter gradients.
Since grouping multiple tensors together for one collective is critical for
communication efficiency, this implementation makes this grouping first
class. Calling :meth:`fully_shard` on ``module`` constructs one group that
includes the parameters in ``module.parameters()`` except those already
assigned to a group from an earlier call on a submodule. This means that
:meth:`fully_shard` should be called bottom-up on your model. Each group's
parameters are all-gathered in one collective, and its gradients are
reduce-scattered in one collective. Partitioning the model into multiple
groups ("layer by layer") allows for peak memory savings and communication/computation
overlap. Users generally should *not* call :meth:`fully_shard` only on the
topmost root module.
Args:
module (Union[nn.Module, List[nn.Module]): The module or modules to
shard with FSDP and group together for communication.
mesh (Optional[DeviceMesh]): This data parallel mesh defines the
sharding and device. If 1D, then parameters are fully sharded
across the 1D mesh (FSDP) with ``(Shard(0),)`` placement. If 2D,
then parameters are sharded across the 1st dim and replicated
across the 0th dim (HSDP) with ``(Replicate(), Shard(0))``
placement. The mesh's device type gives the device type used for
communication; if a CUDA or CUDA-like device type, then we use the
current device.
reshard_after_forward (Union[bool, int]): This controls the parameter
behavior after forward and can trade off memory and communication:
- If ``True``, then this reshards parameters after forward and
re-all-gathers in backward.
- If ``False``, then this keeps the unsharded parameters in memory
after forward and avoids the all-gather in backward.
- If an ``int``, then this represents the world size to reshard to
after forward. It should be a non-trivial divisor of the ``mesh``
shard dim size (i.e. excluding 1 and the dim size itself). A
choice may be the intra-node size (e.g. ``torch.cuda.device_count()``).
This allows the all-gather in backward to be over a smaller world
size at the cost of higher memory usage than setting to ``True``.
- The root FSDP state has its value specially set to ``False`` as a
heuristic since its parameters would typically be immediately
all-gathered for backward.
- After forward, the parameters registered to the module depend on
to this: The registered parameters are the sharded parameters if
``True``; unsharded parameters if ``False``; and the paramters
resharded to the smaller mesh otherwise. To modify the parameters
between forward and backward, the registered parameters must be
the sharded parameters. For ``False`` or an ``int``, this can be
done by manually resharding via :meth:`reshard`.
shard_placement_fn (Optional[Callable[[nn.Parameter], Optional[Shard]]]):
This callable can be used to override the sharding placement for a
parameter to shard a parameter on a dimension other than dim-0. If
this callable returns a :class:`Shard` placement (not ``None``),
then FSDP will shard according to that placement (e.g. ``Shard(1)``).
If sharding on a nonzero dim, we currently require even sharding,
i.e. the tensor dim size on that dim must be divisible by the FSDP
shard mesh size.
mp_policy (MixedPrecisionPolicy): This controls the mixed precision
policy, which offers parameter/reduction mixed precision for this
module. See :class:`MixedPrecisionPolicy` for details.
offload_policy (OffloadPolicy): This controls the offloading policy,
which offers parameter/gradient/optimizer state offloading. See
:class:`OffloadPolicy` and its subclasses for details.
"""
if isinstance(module, (nn.ModuleList, nn.ModuleDict)):
raise ValueError(
f"fully_shard does not support containers that do not implement forward: {module}"
)
mesh = mesh or _init_default_fully_shard_mesh()
if mesh.ndim not in (1, 2):
raise ValueError(f"fully_shard expects a 1D or 2D DeviceMesh but got {mesh}")
elif mesh.ndim == 1:
mesh_info = FSDPMeshInfo(mesh, shard_mesh_dim=0)
else:
if mesh.mesh_dim_names is None:
raise AssertionError(
"Please init the 2D mesh for HSDP with mesh_dim_names specified"
)
mesh_info = HSDPMeshInfo(mesh, shard_mesh_dim=1, replicate_mesh_dim=0)
device = _get_device_from_mesh(mesh)
post_forward_mesh_info = _get_post_forward_mesh_info(
reshard_after_forward, mesh_info
)
arg_module = module
modules = (
(module,) if isinstance(module, nn.Module) else tuple(_get_root_modules(module))
)
state = fully_shard.state(modules[0])
state.init(modules, device, mp_policy)
managed_modules = _get_managed_modules(modules)
params, buffers = _get_managed_states(managed_modules)
_move_states_to_device(params, buffers, device)
if params:
state._fsdp_param_group = FSDPParamGroup(
params,
modules,
mesh_info,
post_forward_mesh_info,
device,
shard_placement_fn,
mp_policy,
offload_policy,
)
# For Dynamo
for managed_module in managed_modules:
managed_module._is_fsdp_managed_module = True # type: ignore[assignment]
managed_module._fsdp_use_orig_params = True # type: ignore[assignment]
# Place FSDP leftmost for highest priority in the method resolution order
for module in modules:
cls = module.__class__
new_cls = cls_to_fsdp_cls.get(cls, None)
if not new_cls:
dct = {"__deepcopy__": _unimplemented_deepcopy}
new_cls = type(f"FSDP{cls.__name__}", (FSDPModule, cls), dct)
cls_to_fsdp_cls[cls] = new_cls
module.__class__ = new_cls
return arg_module
def _unimplemented_deepcopy(*args: Any, **kwargs: Any) -> NoReturn:
raise AssertionError(
"FSDP does not support deepcopy. Please use state dict for serialization."
)
class FSDPModule:
def __new__(cls, *args, **kwargs):
"""
Override ``__new__`` to remove the FSDP class and directly construct
the original class for cases like indexing into a container module.
"""
# Use index 2 since 0 is the dynamically constructed `FSDP<...>` class
# and index 1 is the `FSDPModule` class itself
orig_cls = cls.__mro__[2]
self = orig_cls.__new__(orig_cls, *args, **kwargs)
self.__init__(*args, **kwargs)
return self
def reshard(self) -> None:
"""
Reshards the module's parameters, freeing the unsharded parameters if
they are allocated and registering the sharded parameters to the
module. This method is *not* recursive.
"""
state = self._get_fsdp_state()
if fsdp_param_group := state._fsdp_param_group:
fsdp_param_group.reshard()
def unshard(self, async_op: bool = False) -> Optional["UnshardHandle"]:
"""
Unshards the module's parameters by allocating memory and all-gathering
the parameters. This method is *not* recursive. The unshard follows the
:class:`MixedPrecisionPolicy`, so it will all-gather following
``param_dtype`` if set.
Args:
async_op (bool): If ``True``, then returns a :class:`UnshardHandle`
that has a :meth:`wait` method to wait on the unshard op. If
``False``, then returns ``None`` and waits on the handle inside
this function.
.. note:: If ``async_op=True``, then FSDP will wait on the pending
unshard in the module's pre-forward for the user. The user only
needs to call :meth:`wait` explicitly if the wait should happen
before pre-forward.
"""
state = self._get_fsdp_state()
fsdp_param_group = state._fsdp_param_group
if fsdp_param_group is not None:
fsdp_param_group.lazy_init()
fsdp_param_group.unshard(async_op=async_op)
handle = _UnshardHandleImpl(fsdp_param_group)
if async_op:
return handle
handle.wait()
return None
def set_is_last_backward(self, is_last_backward: bool) -> None:
"""
Sets whether the next backward is the last one. On the last backward,
FSDP waits on pending gradient reduction and clears internal data
data structures for backward prefetching. This can be useful for
microbatching.
"""
state = self._get_fsdp_state()
state._state_ctx.is_last_backward = is_last_backward
def set_requires_gradient_sync(
self, requires_gradient_sync: bool, *, recurse: bool = True
) -> None:
"""
Sets if the module should sync gradients. This can be used to implement
gradient accumulation *without communication*. For HSDP, this controls
both reduce-scatter and all-reduce together.
Args:
requires_gradient_sync (bool): Whether to reduce gradients for the
module's parameters.
recurse (bool): Whether to set for all FSDP submodules or just the
passed-in module.
"""
self_module = cast(nn.Module, self)
modules = list(self_module.modules()) if recurse else [self_module]
for module in modules:
if isinstance(module, FSDPModule):
state = module._get_fsdp_state()
if fsdp_param_group := state._fsdp_param_group:
fsdp_param_group.reduce_grads = requires_gradient_sync
fsdp_param_group.all_reduce_grads = requires_gradient_sync
def set_requires_all_reduce(
self, requires_all_reduce: bool, *, recurse: bool = True
) -> None:
"""
Sets if the module should all-reduce gradients. This can be used to
implement gradient accumulation with only reduce-scatter but not
all-reduce for HSDP.
"""
self_module = cast(nn.Module, self)
modules = list(self_module.modules()) if recurse else [self_module]
for module in modules:
if isinstance(module, FSDPModule):
state = module._get_fsdp_state()
if fsdp_param_group := state._fsdp_param_group:
fsdp_param_group.all_reduce_grads = requires_all_reduce
def set_reshard_after_backward(
self, reshard_after_backward: bool, *, recurse: bool = True
) -> None:
"""
Sets if the module should reshard parameters after backward. This can
be used during gradient accumulation to trade off higher memory for
reduced communication since the unsharded parameters do not need to be
re-all-gathered before the next forward.
Args:
reshard_after_backward (bool): Whether to reshard parameters after
backward.
recurse (bool): Whether to set for all FSDP submodules or just the
passed-in module.
"""
self_module = cast(nn.Module, self)
modules = list(self_module.modules()) if recurse else [self_module]
for module in modules:
if isinstance(module, FSDPModule):
state = module._get_fsdp_state()
if fsdp_param_group := state._fsdp_param_group:
fsdp_param_group.reshard_after_backward = reshard_after_backward
def set_modules_to_forward_prefetch(self, modules: List["FSDPModule"]) -> None:
"""
Sets the FSDP modules for which this FSDP module should explicitly
prefetch all-gathers in forward. The prefetching runs after this
module's all-gather copy-out.
Passing a singleton list containing the next FSDP module gives the same
all-gather overlap behavior as the default overlap behavior, except the
prefetched all-gather is issued earlier from the CPU. Passing a list
with at least length two is required for more aggressive overlap and
will use more reserved memory.
Args:
modules (List[FSDPModule]): FSDP modules to prefetch.
"""
_assert_all_fsdp_modules(modules)
self._get_fsdp_state()._states_to_forward_prefetch = [
module._get_fsdp_state() for module in modules
]
def set_modules_to_backward_prefetch(self, modules: List["FSDPModule"]) -> None:
"""
Sets the FSDP modules for which this FSDP module should explicitly
prefetch all-gathers in backward. This overrides the default backward
pretching implementation that prefetches the next FSDP module based on
the reverse post-forward order.
Passing a singleton list containing the previous FSDP module gives the
same all-gather overlap behavior as the default overlap behavior.
Passing a list with at least length two is required for more aggressive
overlap and will use more reserved memory.
Args:
modules (List[FSDPModule]): FSDP modules to prefetch.
"""
_assert_all_fsdp_modules(modules)
self._get_fsdp_state()._states_to_backward_prefetch = [
module._get_fsdp_state() for module in modules
]
def set_post_optim_event(self, event: torch.Event) -> None:
"""
Sets a post-optimizer-step event for the root FSDP module to wait the
all-gather streams on.
By default, the root FSDP module waits the all-gather streams on the
current stream to ensure that the optimizer step has finished before
all-gathering. However, this may introduce false dependencies if
there is unrelated computation after the optimizer step. This API
allows the user to provide their own event to wait on. After the root
waits on the event, the event is discarded, so this API should be
called with a new event each iteration.
Args:
event (torch.Event): Event recorded after the optimizer step
to wait all-gather streams on.
"""
self._get_fsdp_state()._state_ctx.post_optim_event = event
def set_reduce_scatter_divide_factor(self, factor: float) -> None:
"""
Sets a custom divide factor for the reduce-scatter. This becomes a
custom reduce op using NCCL's PreMulSum, which allows multiplying by
the factor before reduction.
Args:
factor (float): Custom divide factor.
"""
state = self._get_fsdp_state()
if (fsdp_param_group := state._fsdp_param_group) is not None:
mul_factor = 1.0 / float(factor)
reduce_op = torch.distributed._make_nccl_premul_sum(mul_factor)
fsdp_param_group.reduce_scatter_reduce_op = reduce_op
def set_unshard_in_backward(self, unshard_in_backward: bool) -> None:
"""
Sets whether the FSDP module's parameters need to be unsharded in
backward. This can be used in expert cases when the user knows that all
parameters in this FSDP module's parameter group are not needed for
backward computation (e.g. embedding).
"""
state = self._get_fsdp_state()
if (fsdp_param_group := state._fsdp_param_group) is not None:
fsdp_param_group.unshard_in_backward = unshard_in_backward
def _set_unshard_async_op(self, async_op: bool):
"""
Sets whether to use ``async_op=True`` or ``False`` for the pre-forward
and pre-backward unshard op. This defaults to ``False`` but can be set
to ``True`` with this method.
Setting this to ``True`` allows the all-gather allocations to happen in
the default stream, avoiding inter-stream memory fragmentation.
However, you must use explicit prefetching (e.g. via :meth:`unshard`)
in forward to still get overlap, and the pre-all-gather ops like dtype
casting and copy-in will not overlap with compute.
"""
self_module = cast(nn.Module, self)
for module in self_module.modules():
if isinstance(module, FSDPModule):
state = module._get_fsdp_state()
if fsdp_param_group := state._fsdp_param_group:
fsdp_param_group.unshard_async_op = async_op
def _get_fsdp_state(self) -> FSDPState:
if (state := _get_module_fsdp_state(cast(nn.Module, self))) is None:
raise AssertionError(f"No FSDP state found on {self}")
return state
def _apply(self, *args: Any, **kwargs: Any) -> Any:
# Reshard to ensure that sharded parameters are registered
self.reshard()
ret = super()._apply(*args, **kwargs) # type: ignore[misc]
state = self._get_fsdp_state()
if not (fsdp_param_group := state._fsdp_param_group):
return ret
# TODO: Remove this padding logic once DTensor pads the local tensor:
# https://github.com/pytorch/pytorch/issues/113045
with torch.no_grad():
for fsdp_param in fsdp_param_group.fsdp_params:
fsdp_param.reset_sharded_param()
return ret
class UnshardHandle:
"""
A handle to wait on a :meth:`FSDPModule.unshard` op.
"""
def wait(self) -> None:
"""
Waits on the unshard op. This ensures that the current stream can use
the unsharded parameters, which are now registered to the module.
"""
return
class _UnshardHandleImpl(UnshardHandle):
def __init__(self, fsdp_param_group: Optional[FSDPParamGroup]):
self._fsdp_param_group = fsdp_param_group
def wait(self):
if self._fsdp_param_group is not None:
self._fsdp_param_group.wait_for_unshard()
# Avoid keeping a reference
self._fsdp_param_group = None
def register_fsdp_forward_method(module: nn.Module, method_name: str) -> None:
"""
Registers a method on ``module`` to be considered a forward method for
FSDP.
FSDP all-gathers parameters pre-forward and optionally frees parameters
post-forward (depending on ``reshard_after_forward``). FSDP only knows to
do this for :meth:`nn.Module.forward` by default. This function patches a
user-specified method to run the pre/post-forward hooks before/after the
method, respectively. If ``module`` is not an :class:`FSDPModule`, then
this is a no-op.
Args:
module (nn.Module): Module to register the forward method on.
method_name (str): Name of the forward method.
"""
if not isinstance(module, FSDPModule):
# Make no-op to allow including both when using/not using FSDP
return
if not hasattr(module, method_name):
raise ValueError(f"{type(module)} does not have a method {method_name}")
orig_method = getattr(module, method_name)
@functools.wraps(orig_method)
def wrapped_method(self, *args, **kwargs):
fsdp_state = self._get_fsdp_state()
args, kwargs = fsdp_state._pre_forward(self, args, kwargs)
out = orig_method(*args, **kwargs)
return fsdp_state._post_forward(self, args, out)
# Use `__get__` to make `wrapped_method` an instance method
setattr(
module,
method_name,
wrapped_method.__get__(module, type(module)), # type:ignore[attr-defined]
)
def _assert_all_fsdp_modules(modules: Iterable[Any]) -> None:
for module in modules:
if not isinstance(module, FSDPModule):
raise ValueError(f"Expects FSDPModule but got {type(module)}: {module}")
|