File: _runtime_utils.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1639 lines) | stat: -rw-r--r-- 66,196 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
# mypy: allow-untyped-defs
import functools
import logging
from enum import auto, Enum
from typing import Any, Callable, Dict, List, no_type_check, Optional, Set, Tuple

import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.autograd.graph import register_multi_grad_hook
from torch.distributed.algorithms._comm_hooks import LOW_PRECISION_HOOKS
from torch.distributed.fsdp._common_utils import (
    _assert_in_training_states,
    _FSDPState,
    _get_module_fsdp_state,
    _is_composable,
    _log_post_backward_hook,
    _no_dispatch_record_stream,
    clean_tensor_name,
    TrainingState,
)
from torch.distributed.fsdp._flat_param import (
    FlatParameter,
    FlatParamHandle,
    HandleShardingStrategy,
    HandleTrainingState,
    RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES,
)
from torch.distributed.fsdp._init_utils import HYBRID_SHARDING_STRATEGIES
from torch.distributed.fsdp.api import BackwardPrefetch
from torch.distributed.utils import (
    _apply_to_tensors,
    _cast_forward_inputs,
    _p_assert,
    _to_kwargs,
)
from torch.utils import _pytree as pytree


logger = logging.getLogger(__name__)

# Do not include "process_group" to enable hybrid shard and MoE cases
HOMOGENEOUS_ATTR_NAMES = (
    "_use_orig_params",
    "limit_all_gathers",
    "_use_full_prec_in_eval",
)


class _PrefetchMode(Enum):
    BACKWARD = auto()
    FORWARD = auto()


def _get_fsdp_root_states_with_modules(
    module: nn.Module,
) -> Tuple[List[_FSDPState], List[nn.Module]]:
    """
    Returns a tuple containing:
    1. A list of the root ``_FSDPState`` instances in the module tree rooted at
    ``module`` without any duplicates and following the ``module.modules()``
    traversal order (which is assumed to be depth-first).
    2. A corresponding list of the root modules owning the states in the first
    list.

    This is similar to :func:`_get_fsdp_states_with_modules` except that we
    must call :func:`_is_fsdp_root` to force a lazy initialization to determine
    the FSDP root in case lazy initialization has not yet happened.
    """
    fsdp_root_states: List[_FSDPState] = []
    fsdp_root_modules: List[nn.Module] = []
    visited_fsdp_states: Set[_FSDPState] = set()
    # NOTE: This function assumes that `module.modules()` proceeds top-down.
    for submodule in module.modules():
        optional_state = _get_module_fsdp_state(submodule)
        if (
            optional_state is not None
            and optional_state not in visited_fsdp_states
            and _is_fsdp_root(optional_state, submodule)
        ):
            visited_fsdp_states.add(optional_state)
            fsdp_root_states.append(optional_state)
            fsdp_root_modules.append(submodule)
    return fsdp_root_states, fsdp_root_modules


def _get_fsdp_root_states(module: nn.Module) -> List[_FSDPState]:
    """See :func:`_get_fsdp_root_states_with_modules`."""
    fsdp_root_states, _ = _get_fsdp_root_states_with_modules(module)
    return fsdp_root_states


def _is_fsdp_root(state: _FSDPState, module: nn.Module) -> bool:
    """
    Returns if ``state`` corresponds to that of an FSDP root.

    For the wrapper code path, ``state`` and ``module`` should be the same. For
    the non-wrapper code path, ``state`` should be ``module`` 's state.
    """
    # Force a lazy initialization to determine the FSDP root
    _lazy_init(state, module)
    assert state._is_root is not None  # mypy
    return state._is_root


@no_type_check
def _lazy_init(
    state: _FSDPState,
    root_module: nn.Module,
) -> _FSDPState:
    """
    Performs initialization lazily, typically right before the first forward
    pass. The laziness is needed to ensure that the parameter device/dtype and
    the FSDP hierarchy have finalized. This method's actual logic only runs on
    the root FSDP instance, which performs initialization for all non-root FSDP
    instances to avoid partial initialization.

    For the non-composable code path, ``state`` and ``root_module`` should be
    the same, namely the FSDP instance itself.
    """
    if state._is_root is not None:
        return  # no-op: already lazily initialized
    if not state._device_handle.is_available():
        # Allow the FSDP constructor to run even without CUDA but check this
        # once we start real execution
        raise RuntimeError("FSDP does not support CPU only execution")
    # The following logic is only run on the root FSDP instance since it will
    # set `_is_root=False` for the non-root instances
    state._is_root = True
    _assert_in_training_states(state, [TrainingState.IDLE])
    _check_flat_params_on_expected_device(state, root_module)
    state._all_fsdp_states = traversal_utils._get_fsdp_states(root_module)
    _init_streams(state)
    buffers, buffer_dtypes = _get_buffers_and_dtypes_for_computation(state, root_module)
    _cast_buffers_to_dtype_and_device(buffers, buffer_dtypes, state.compute_device)
    state._exec_order_data.init(state, root_module, state.process_group)
    _share_state_and_init_handle_attrs(state, root_module)
    return state


def _check_flat_params_on_expected_device(state: _FSDPState, module: nn.Module):
    """
    Checks that all ``FlatParameter``s in ``module`` 's tree managed by
    ``state`` are on the expected device for *lazy initialization*.
    """
    cpu_device = torch.device("cpu")
    for handle in traversal_utils._get_fsdp_handles(module):
        if (
            not handle._offload_params
            and handle.flat_param.device != state.compute_device
        ):
            raise RuntimeError(
                "An FSDP-managed module unexpectedly has parameters on "
                f"{handle.flat_param.device}. Make sure to move the module to "
                f"{state.compute_device} before training."
            )
        elif handle._offload_params and handle.flat_param.device != cpu_device:
            raise RuntimeError(
                "An FSDP-managed module with parameter CPU offloading enabled "
                f"has parameters on {handle.flat_param.device}. Make sure to "
                f"not move the module from CPU when offloading parameters."
            )


@no_type_check
def _share_state_and_init_handle_attrs(
    root_state: _FSDPState,
    root_module: nn.Module,
) -> None:
    """
    Shares data structure state from the ``root_state`` to all FSDP states in
    ``root_module`` 's module tree, and initializes handle attributes. These
    are done together to require a single loop over the states.
    """
    handle = root_state._handle
    if handle:
        handle.init_flat_param_attributes()
    attr_name_to_values: Dict[str, Set[Any]] = {}
    for attr_name in HOMOGENEOUS_ATTR_NAMES:
        attr_name_to_values[attr_name] = set()
    root_state._all_handles = root_state._exec_order_data.all_handles  # share reference
    # Update _has_optim_in_backward for each handle.
    for handle in root_state._all_handles:
        flat_param = handle.flat_param
        if hasattr(flat_param, "_in_backward_optimizers"):
            raise RuntimeError(
                "FSDP optimizer in backward only supported with use_orig_params=True!"
            )
        handle._has_optim_in_backward = flat_param._params is not None and any(
            hasattr(param, "_in_backward_optimizers") for param in flat_param._params
        )
        if handle._has_optim_in_backward:
            torch._C._log_api_usage_once("fsdp.optimizer_in_backward")
    for fsdp_state in root_state._all_fsdp_states:
        for attr_name in HOMOGENEOUS_ATTR_NAMES:
            _p_assert(
                hasattr(fsdp_state, attr_name),
                f"FSDP state missing attribute {attr_name}",
            )
            attr_name_to_values[attr_name].add(getattr(fsdp_state, attr_name))
        if fsdp_state is root_state:
            continue
        # Relax the assert for non-root FSDP instances in case the nested
        # initialized module is wrapped again in FSDP later (e.g. after
        # training to run inference)
        _p_assert(
            fsdp_state._is_root is None or not fsdp_state._is_root,
            "Non-root FSDP instance's `_is_root` should not have been "
            "set yet or should have been set to `False`",
        )
        fsdp_state._is_root = False
        fsdp_state._unshard_stream = root_state._unshard_stream
        fsdp_state._post_backward_stream = root_state._post_backward_stream
        fsdp_state._pre_unshard_stream = root_state._pre_unshard_stream
        fsdp_state._all_reduce_stream = root_state._all_reduce_stream
        fsdp_state._default_stream = root_state._default_stream
        fsdp_state._exec_order_data = root_state._exec_order_data
        fsdp_state._free_event_queue = root_state._free_event_queue
        if fsdp_state._fsdp_extension is not None:
            fsdp_state._fsdp_extension.compute_stream = root_state._default_stream
        handle = fsdp_state._handle
        if handle:
            handle.init_flat_param_attributes()
    for attr_name, attr_values in attr_name_to_values.items():
        if len(attr_values) != 1:
            raise ValueError(
                f"Expects one homogeneous value for {attr_name} but got {attr_values}"
            )


@no_type_check
def _init_streams(
    state: _FSDPState,
) -> None:
    """
    Initializes CUDA streams for overlapping communication, computation, and
    data transfers. The streams should be shared across FSDP instances.
    """
    assert state._is_root
    assert state._device_handle.is_available()
    uses_hybrid_sharding = any(
        fsdp_state.sharding_strategy in HYBRID_SHARDING_STRATEGIES
        for fsdp_state in state._all_fsdp_states
    )
    # Prioritize all-gathers/reduce-scatters over async all-reduce for HSDP and
    # preserve the default priority of 0 otherwise
    high_priority = -1 if state.limit_all_gathers and uses_hybrid_sharding else 0
    # Default stream for computation
    state._default_stream = state._device_handle.current_stream()
    if state._fsdp_extension is not None:
        # set the compute stream to the FSDP extension
        state._fsdp_extension.compute_stream = state._default_stream

    # Stream for unshard logic, including allocating the all-gather destination
    # tensors and the all-gathers themselves
    state._unshard_stream = state._device_handle.Stream(priority=high_priority)
    # Stream for overlapping gradient reduction with the backward pass gradient
    # computation
    state._post_backward_stream = state._device_handle.Stream(priority=high_priority)
    # Stream for pre-unshard logic, namely allocations and writes for CPU
    # offloading (H2D copy) and mixed precision (low precision cast)
    state._pre_unshard_stream = state._device_handle.Stream(priority=high_priority)
    # Stream to run HSDP's all-reduce as async (if using HSDP)
    state._all_reduce_stream = (
        state._device_handle.Stream() if uses_hybrid_sharding else state._default_stream
    )


@no_type_check
def _unshard(
    state: _FSDPState,
    handle: FlatParamHandle,
    unshard_stream: torch.Stream,
    pre_unshard_stream: torch.Stream,
) -> None:
    """
    Unshards the handles in ``handles``. If the handles are in
    :meth:`summon_full_params` and are using mixed precision, then they are
    forced to full precision.

    Postcondition: handle's ``FlatParameter`` 's data is the padded
    unsharded flat parameter on the compute device.
    """
    if not handle:
        return
    with state._device_handle.stream(pre_unshard_stream):
        ran_pre_unshard = handle.pre_unshard()
    if ran_pre_unshard:
        unshard_stream.wait_stream(pre_unshard_stream)
    if state.limit_all_gathers:
        event = state._free_event_queue.dequeue_if_needed()
        if event:
            with torch.profiler.record_function(
                "FullyShardedDataParallel.rate_limiter"
            ):
                event.synchronize()
    with state._device_handle.stream(unshard_stream):
        handle.unshard()
        handle.post_unshard()


@no_type_check
def _reshard(
    state: _FSDPState,
    handle: FlatParamHandle,
    free_unsharded_flat_param: bool,
):
    """
    Reshards the handle. ``free_unsharded_flat_param`` indicates whether to
    free the handle's padded unsharded flat parameter.
    """
    handle.reshard(free_unsharded_flat_param)
    if state.limit_all_gathers and free_unsharded_flat_param:
        if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
            # We don't run a even queue for freeing under torch compile atm
            # But maybe we need to? TODO(voz): Look into this
            free_event = state._device_handle.Event()
            free_event.record()
            state._free_event_queue.enqueue(free_event)
    handle.post_reshard()
    # Flat parameter freed or not, we always have to "unshard" the parameter
    # upon next access to get its shape correct.
    handle._prefetched = False


def _unshard_grads(
    handle: Optional[FlatParamHandle],
) -> None:
    if handle:
        handle.unshard_grad()


def _reshard_grads(
    handle: Optional[FlatParamHandle],
) -> None:
    if handle:
        handle.reshard_grad()


@no_type_check
def _pre_forward(
    state: _FSDPState,
    handle: Optional[FlatParamHandle],
    unshard_fn: Callable,
    module: nn.Module,
    args: Tuple[Any, ...],
    kwargs: Dict[str, Any],
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
    """
    Runs the pre-forward logic. This includes an opportunity to unshard
    currently sharded parameters such as those for the current forward and
    registering post-backward hooks for these current parameters. This function
    also converts forward ``args`` and ``kwargs`` to the given precision.

    Args:
        handles (List[FlatParamHandle]): Handles giving the parameters used in
            the current forward.
        unshard_fn (Optional[Callable]): A callable to unshard any currently
            sharded parameters or ``None`` to not do any unsharding.
        module (nn.Module): Module whose forward this method runs right before;
            expected by the hook signature.
        args (Tuple[Any, ...]): Module forward ``args``.
        kwargs (Dict[str, Any]): Module forward ``kwargs``.
    """
    with torch.profiler.record_function("FullyShardedDataParallel._pre_forward"):
        # For `fully_shard` + `checkpoint`, skip pre-forward logic in the
        # recomputed forward
        if handle and handle._training_state == HandleTrainingState.BACKWARD_PRE:
            # For both checkpoint implementations, we do not need to re-cast
            # inputs here since they will be checkpointed in the low precision
            # either by AC or normally by autograd as long as the AC region is
            # nested within FSDP
            return args, kwargs
        state.training_state = TrainingState.FORWARD_BACKWARD
        state._exec_order_data.record_pre_forward(handle, module.training)
        if handle:
            handle._training_state = HandleTrainingState.FORWARD
        if unshard_fn is not None:
            unshard_fn(state, handle)
        # Register post-backward hooks to reshard the parameters and reduce-scatter
        # their gradients. They must be re-registered every forward pass in case
        # the `grad_fn` is mutated.
        _register_post_backward_hook(state, handle)
        # We have to reallocate the _cpu_grad if optimizer overlap
        # set the grad to None in the backward pass.
        if handle and handle._offload_params and handle.flat_param._cpu_grad is None:
            handle.flat_param._cpu_grad = torch.zeros_like(
                handle.flat_param._local_shard, device=torch.device("cpu")
            ).pin_memory(device=state.compute_device)

        should_cast_forward_inputs = (
            state._handle and not state._handle._force_full_precision
        )

        if should_cast_forward_inputs and state.mixed_precision.cast_forward_inputs:
            # Recursively convert args and kwargs to specified precision.
            input_dtype: Optional[torch.dtype] = state.mixed_precision.param_dtype
            args, kwargs = _cast_forward_inputs(input_dtype, *args, **kwargs)
        _register_post_backward_reshard_only_hook(state, handle, args, kwargs)
        return args, kwargs


@no_type_check
def _pre_forward_unshard(
    state: _FSDPState,
    handle: Optional[FlatParamHandle],
) -> None:
    """Unshards parameters in the pre-forward."""
    if not handle:
        return
    # If the handles have been prefetched, then there is no need to call
    # `_unshard()` again
    if not handle._prefetched:
        _unshard(state, handle, state._unshard_stream, state._pre_unshard_stream)
    handle._needs_pre_forward_unshard = False
    # Don't wait during trace
    if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
        current_stream = state._device_handle.current_stream()
        if state._unshard_event is not None:
            current_stream.wait_event(state._unshard_event)
            state._unshard_event = None
        else:
            current_stream.wait_stream(state._unshard_stream)
    with torch.profiler.record_function(
        "FullyShardedDataParallel._pre_forward_prefetch"
    ):
        _prefetch_handle(state, handle, _PrefetchMode.FORWARD)


@no_type_check
def _post_forward(
    state: _FSDPState,
    handle: Optional[FlatParamHandle],
    reshard_fn: Callable,
    module: nn.Module,
    input: Any,
    output: Any,
) -> Any:
    """
    Runs the post-forward logic. This includes an opportunity to reshard
    currently unsharded parameters such as those used in the current forward
    and registering pre-backward hooks on the forward outputs.

    Args:
        handles (List[FlatParamHandle]): Handles giving the parameters used in
            the current forward.
        reshard_fn (Optional[Callable]): A callable to reshard any currently
            unsharded parameters (e.g. from the current forward) or ``None`` to
            not do any resharding.
        module (nn.Module): Module whose forward just ran, which should be a
            fully sharded module (see [Note: Fully Sharded Module]); expected
            by the hook signature.
        input (Any): Unused; expected by the hook signature.
        output (Any): Forward pass output; pre-backward hooks are registered on
            the tensors that require gradients in this output.

    Postcondition: Each ``FlatParameter`` 's data points to the sharded flat
    parameter.
    """
    with torch.profiler.record_function("FullyShardedDataParallel._post_forward"):
        # For `fully_shard` + `checkpoint`, skip post-forward logic in the
        # recomputed forward
        if handle and handle._training_state == HandleTrainingState.BACKWARD_PRE:
            return output

        state._exec_order_data.record_post_forward(handle)
        if reshard_fn is not None:
            reshard_fn(state, handle)
        # Register pre-backward hooks to unshard the flat parameters for the
        # gradient computation (if needed)
        output = _register_pre_backward_hooks(state, module, output, handle)
        state.training_state = TrainingState.IDLE
        if handle:
            handle._training_state = HandleTrainingState.IDLE
        return output


@no_type_check
def _post_forward_reshard(
    state: _FSDPState,
    handle: FlatParamHandle,
) -> None:
    """Reshards parameters in the post-forward."""
    if not handle:
        return
    # Do not free the root's parameters in the post-forward for `FULL_SHARD`
    # with the intention that they are immediately used for backward
    # computation (though this may not be true)
    free_unsharded_flat_param = (
        not state._is_root
        and handle._sharding_strategy in RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES
    )
    _reshard(state, handle, free_unsharded_flat_param)


@no_type_check
def _root_pre_forward(
    state: _FSDPState,
    module: nn.Module,
    args,
    kwargs,
) -> None:
    """
    Runs pre-forward logic specific to the root FSDP instance, which should run
    before any individual module's pre-forward. This starts with an attempt at
    lazy initialization (which only runs non-vacuously once). Otherwise, if
    this is called on a non-root FSDP instance, then it returns directly.

    Args:
        module (nn.Module): Module for which this logic tries to run. It may or
            may not be the root. If not, then this method does not do anything.
    """
    with torch.profiler.record_function("FullyShardedDataParallel._root_pre_forward"):
        _lazy_init(state, module)
        _p_assert(state._is_root is not None, "Expects a root FSDP to have been set")
        if not state._is_root:
            # Always cast forward inputs in the root of this local FSDP unit for mixed
            # precision, as this is where mixed precision could be configed.
            # This is more useful for auto wrapping that is recommended in composable path.
            # For manual wrapping, cast forward inputs on each local FSDP unit root will
            # increase some overhead, so not turned on for model wrapper path right now where
            # manual wrapping is more broadly used.
            if _is_composable(state):
                return _root_cast_forward_input(state, module, args, kwargs)
            return args, kwargs

        # We cast buffers back to full precision if we're forcing full precision. Disjointly, we check if buffers
        # are in full precision and if we should cast them back to lower precision, which happens when
        # exiting eval() mode.
        handle = state._handle
        if handle:
            should_cast_buffers_to_full_prec = handle._force_full_precision
        else:
            should_cast_buffers_to_full_prec = True

        if should_cast_buffers_to_full_prec:
            _cast_buffers_to_dtype_and_device(
                buffers=dict(module.named_buffers()).values(),
                buffer_dtypes=list(state._buffer_name_to_orig_dtype.values()),
                device=state.compute_device,
            )
            # This flag is only set when we cast buffers to full precision, to avoid the
            # CPU overhead that can stem from retrieving all buffers and their types in the
            # following else branch.
            state._needs_buffer_dtype_restore_check = True
        elif getattr(state, "_needs_buffer_dtype_restore_check", False):
            # Check if buffers are in full precision and we need to cast them
            # back down.
            (
                buffers,
                buffer_dtypes_for_computation,
            ) = _get_buffers_and_dtypes_for_computation(state, module)
            if len(buffers) > 0 and len(buffer_dtypes_for_computation) > 0:
                if any(
                    buffer.dtype != buffer_dtype_for_computation
                    for buffer, buffer_dtype_for_computation in zip(
                        buffers, buffer_dtypes_for_computation
                    )
                ):
                    # Assume we have to cast everything if there is one mismatch
                    _cast_buffers_to_dtype_and_device(
                        buffers, buffer_dtypes_for_computation, state.compute_device
                    )
            # We don't have to check this again until we cast buffers to full precision again.
            state._needs_buffer_dtype_restore_check = False

        if state.forward_prefetch:
            handles = [
                fsdp_state._handle
                for fsdp_state in state._all_fsdp_states
                if fsdp_state._handle
            ]
            for handle in handles:
                handle._needs_pre_forward_unshard = True
                handle._prefetched = False
        _wait_for_computation_stream(
            state._device_handle.current_stream(),
            state._unshard_stream,
            state._pre_unshard_stream,
        )
        _reset_flat_param_grad_info_if_needed(state._all_handles)

        # Prepares the forward inputs by moving them to ``compute_device``
        # TODO: Do not use the side stream for tensor copies for now; investigate
        # the perf with/without it.
        with torch.profiler.record_function("FullyShardedDataParallel._to_kwargs"):
            args_tuple, kwargs_tuple = _to_kwargs(
                args, kwargs, state.compute_device, False
            )
        args = args_tuple[0]
        kwargs = kwargs_tuple[0]

        return _root_cast_forward_input(state, module, args, kwargs)


@no_type_check
def _root_cast_forward_input(
    state: _FSDPState, module: torch.nn.Module, args, kwargs
) -> Tuple[Any, Any]:
    if state._handle:
        force_full_precision = not state._handle._force_full_precision
    else:
        force_full_precision = True

    should_cast_forward_inputs = (
        (module.training or not state._use_full_prec_in_eval) and force_full_precision
    ) and state.mixed_precision.cast_root_forward_inputs

    if should_cast_forward_inputs:
        input_dtype: Optional[torch.dtype] = state.mixed_precision.param_dtype
        args, kwargs = _cast_forward_inputs(input_dtype, *args, **kwargs)

    return args, kwargs


@no_type_check
def _pre_backward_hook(
    state: _FSDPState,
    module: nn.Module,
    handle: FlatParamHandle,
    grad,
    *unused: Any,
) -> Any:
    """
    Prepares ``_handle`` 's ``FlatParameter`` s for gradient computation.

    Args:
        module (nn.Module): Fully sharded module (see [Note: Fully Sharded
            Module]).
    """
    # Only run the pre-backward hook once per group of handles involved in the
    # same module forward computation
    if (
        handle
        and hasattr(handle, "_ran_pre_backward_hook")
        and handle._ran_pre_backward_hook
    ):
        return grad

    with torch.profiler.record_function("FullyShardedDataParallel._pre_backward_hook"):
        # Queue the post-backward callback once for the root FSDP instance to
        # attach it to the outermost backward graph task so that it is called
        # after all backward calls complete
        if state._is_root and not state._post_backward_callback_queued:
            _register_post_backward_final_callback(state, module)
            _reset_flat_param_grad_info_if_needed(state._all_handles)
        elif handle:
            allowed_states = [TrainingState.IDLE]
            if _is_composable(state):
                allowed_states.append(TrainingState.FORWARD_BACKWARD)
            _assert_in_training_states(state, allowed_states)
        state.training_state = TrainingState.FORWARD_BACKWARD
        # Queueing the post-backward callback is the only logic that is not
        # per-handle in the pre-backward hook, so we can return early here if
        # there are no handles.
        if not handle:
            return grad
        handle._training_state = HandleTrainingState.BACKWARD_PRE

        if handle._needs_pre_backward_unshard:
            # If the handles have been prefetched, then there is no need to
            # call `_unshard()` again
            if not handle._prefetched:
                _unshard(
                    state,
                    handle,
                    state._unshard_stream,
                    state._pre_unshard_stream,
                )
            # Don't wait during trace
            if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
                state._device_handle.current_stream().wait_stream(state._unshard_stream)

        # Set this to `False` to ensure that a mistargeted prefetch does not
        # actually unshard these handles
        handle._needs_pre_backward_unshard = False
        with torch.profiler.record_function(
            "FullyShardedDataParallel._pre_backward_prefetch"
        ):
            _prefetch_handle(state, handle, _PrefetchMode.BACKWARD)
        handle.prepare_gradient_for_backward()
        handle._ran_pre_backward_hook = True
        return grad


@no_type_check
@torch.no_grad()
def _post_backward_hook(
    state: _FSDPState,
    handle: FlatParamHandle,
    flat_param,
    *unused: Any,
):
    """
    Reduce-scatters the gradient of ``handle`` 's ``FlatParameter``.

    Precondition: The ``FlatParameter`` 's ``.grad`` attribute contains the
    unsharded gradient for the local batch.

    Postcondition:
    - If using ``NO_SHARD``, then the ``.grad`` attribute is the reduced
    unsharded gradient.
    - Otherwise, the ``_saved_grad_shard`` attribute is the reduced sharded
    gradient (accumulating with any existing gradient).
    """
    _log_post_backward_hook(state, handle, logger)
    flat_param = handle.flat_param
    flat_param._post_backward_called = True
    with torch.autograd.profiler.record_function(
        "FullyShardedDataParallel._post_backward_hook"
    ):
        _assert_in_training_states(state, [TrainingState.FORWARD_BACKWARD])
        # For multiple applications of reentrant AC across submodules sharing
        # the same `FlatParameter`, the post-backward hook may run multiple
        # times in one backward, in which case we permit the state to already
        # be in `BACKWARD_POST`.
        _p_assert(
            handle._training_state
            in (HandleTrainingState.BACKWARD_PRE, HandleTrainingState.BACKWARD_POST),
            f"Expects `BACKWARD_PRE` or `BACKWARD_POST` state but got {handle._training_state}",
        )
        handle._training_state = HandleTrainingState.BACKWARD_POST

        if flat_param.grad is None:
            return
        if flat_param.grad.requires_grad:
            raise RuntimeError("FSDP does not support gradients of gradients")

        _post_backward_reshard(state, handle)
        if not state._sync_gradients:
            if handle._use_orig_params:
                handle._use_unsharded_grad_views()
            return

        # Wait for all ops in the current stream (e.g. gradient computation) to
        # finish before reduce-scattering the gradient
        if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
            state._post_backward_stream.wait_stream(
                state._device_handle.current_stream()
            )

        with state._device_handle.stream(state._post_backward_stream):
            autograd_computed_grad = flat_param.grad.data
            if (
                not _low_precision_hook_enabled(state)
                and flat_param.grad.dtype != handle._reduce_dtype
                # If we are forcing full precision but communicating grads
                # (i.e. model.eval() + full precision in eval was configured), don't downcast gradient.
                and not handle._force_full_precision
            ):
                flat_param.grad.data = flat_param.grad.to(handle._reduce_dtype)
            if handle.uses_sharded_strategy:
                _reduce_grad(state, handle)
            else:
                _reduce_grad_no_shard(state, handle)
            # Since the unsharded gradient is produced in the computation
            # stream and consumed in the post-backward stream, inform the
            # caching allocator (before it goes out of scope)
            _no_dispatch_record_stream(
                autograd_computed_grad, state._post_backward_stream
            )


def _post_backward_reshard_only_hook(
    state: _FSDPState,
    handle: FlatParamHandle,
    *unused: Any,
) -> None:
    with torch.profiler.record_function(
        "FullyShardedDataParallel._post_backward_hook_reshard_only"
    ):
        # `_pre_backward_hook` may not get executed
        # if forward output does not require grad
        # overwrite IDLE state for post-backward prefetching
        state.training_state = TrainingState.FORWARD_BACKWARD
        handle._training_state = HandleTrainingState.BACKWARD_POST
        _post_backward_reshard(state, handle)


def _post_backward_reshard(
    state: _FSDPState,
    handle: FlatParamHandle,
    *unused: Any,
) -> None:
    free_unsharded_flat_param = _should_free_in_backward(state, handle)
    _reshard(state, handle, free_unsharded_flat_param)

    # TODO: Post-backward prefetching does not support the multiple handles
    # per module case since the post-backward hook runs per handle, not per
    # group of handles.
    with torch.profiler.record_function(
        "FullyShardedDataParallel._post_backward_prefetch"
    ):
        _prefetch_handle(state, handle, _PrefetchMode.BACKWARD)


@no_type_check
def _should_free_in_backward(
    state: _FSDPState,
    handle: FlatParamHandle,
) -> bool:
    """
    Returns whether FSDP should free the unsharded flat parameter in the
    post-backward or not.
    """
    if not handle.uses_sharded_strategy:
        return False
    # If not syncing gradients, then we do not free for strategies that do not
    # reshard after forward as a *heuristic* to tradeoff higher memory for
    # higher throughput.
    return (
        state._sync_gradients
        or handle._sharding_strategy in RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES
    )


@no_type_check
def _reduce_grad(state: _FSDPState, handle: FlatParamHandle) -> None:
    """
    For sharded strategies, this runs gradient reduction, sharded gradient
    accumulation if needed, and the post-reduction callback.
    """
    flat_param = handle.flat_param
    uses_hybrid_sharded_strategy = handle._sharding_strategy in (
        HandleShardingStrategy.HYBRID_SHARD,
        HandleShardingStrategy._HYBRID_SHARD_ZERO2,
    )
    # We clear `.grad` to permit multiple backwards. This avoids a race where
    # the second backward pass computation precedes ahead of the first backward
    # pass reduction, which is possible since the reduction is issued in a
    # separate stream and is async and would result in reducing the wrong
    # gradient.
    unsharded_grad = flat_param.grad.data
    flat_param.grad = None
    padded_unsharded_grad, new_sharded_grad = _get_reduce_scatter_tensors(
        state, unsharded_grad
    )
    if state._comm_hook is None:  # default path
        _div_if_needed(padded_unsharded_grad, state._gradient_predivide_factor)
        pg = (
            handle._fake_process_group
            if handle._use_fake_reduce
            else state.process_group
        )
        dist.reduce_scatter_tensor(
            new_sharded_grad,
            padded_unsharded_grad,
            group=pg,
        )
        if uses_hybrid_sharded_strategy:
            # Don't wait during trace
            if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
                state._all_reduce_stream.wait_stream(state._post_backward_stream)
            with state._device_handle.stream(state._all_reduce_stream):
                # Since the new sharded gradient is produced in the post-
                # backward stream and consumed in the all-reduce stream,
                # inform the caching allocator
                _no_dispatch_record_stream(new_sharded_grad, state._all_reduce_stream)
                dist.all_reduce(new_sharded_grad, group=state._inter_node_pg)
                _div_if_needed(new_sharded_grad, state._gradient_postdivide_factor)
                grad_to_offload = _accumulate_sharded_grad(
                    state, handle, new_sharded_grad
                )
                _post_reduce_grad_callback(state, handle, grad_to_offload)
                return
        _div_if_needed(new_sharded_grad, state._gradient_postdivide_factor)
    else:
        state._comm_hook(
            state._comm_hook_state, padded_unsharded_grad, new_sharded_grad
        )
        # NOTE: HSDP variants do not support communication hook.
    grad_to_offload = _accumulate_sharded_grad(state, handle, new_sharded_grad)
    _post_reduce_grad_callback(state, handle, grad_to_offload)


@no_type_check
def _get_reduce_scatter_tensors(
    state: _FSDPState, unsharded_grad: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Returns the input and output tensors to reduce-scatter, respectively.
    """
    chunks = list(unsharded_grad.chunk(state.world_size))
    numel_to_pad = state.world_size * chunks[0].numel() - unsharded_grad.numel()
    padded_unsharded_grad = (
        F.pad(unsharded_grad, [0, numel_to_pad]) if numel_to_pad > 0 else unsharded_grad
    )
    new_sharded_grad = torch.empty_like(chunks[0])  # padded
    return padded_unsharded_grad, new_sharded_grad


@no_type_check
def _accumulate_sharded_grad(
    state: _FSDPState,
    handle: FlatParamHandle,
    sharded_grad: torch.Tensor,
) -> torch.Tensor:
    """
    Accumulates the reduce-scattered sharded gradient with any existing sharded
    gradient if needed, returning the gradient to offload (if CPU offloading is
    enabled).
    """
    flat_param = handle.flat_param
    _cast_grad_to_param_dtype(state, sharded_grad, flat_param)
    # Save the sharded gradient in `_saved_grad_shard` to support gradient
    # accumulation -- for multiple backwards, the gradient reductions may
    # happen in arbitrary order
    accumulate_grad = hasattr(flat_param, "_saved_grad_shard")
    if accumulate_grad:
        _check_grad_to_accumulate(sharded_grad, flat_param._saved_grad_shard)
        flat_param._saved_grad_shard += sharded_grad
    else:
        flat_param._saved_grad_shard = sharded_grad
    grad_to_offload = flat_param._saved_grad_shard
    return grad_to_offload


@no_type_check
def _reduce_grad_no_shard(state: _FSDPState, handle: FlatParamHandle) -> None:
    """
    For no-shard, this runs gradient reduction (which directly covers any
    gradient accumulation implicitly) and the post-reduction callback.
    """
    flat_param = handle.flat_param
    if state._comm_hook is None:  # default path
        _div_if_needed(flat_param.grad, state._gradient_predivide_factor)
        dist.all_reduce(flat_param.grad, group=state.process_group)
        _div_if_needed(flat_param.grad, state._gradient_postdivide_factor)
    else:
        state._comm_hook(state._comm_hook_state, flat_param.grad)
    # For `NO_SHARD`, we can keep the low precision gradients by simply
    # omitting the cast altogether
    if not handle._keep_low_precision_grads:
        _cast_grad_to_param_dtype(state, flat_param.grad, flat_param)
    grad_to_offload = flat_param.grad.data
    _post_reduce_grad_callback(state, handle, grad_to_offload)


@no_type_check
def _post_reduce_grad_callback(
    state: _FSDPState,
    handle: FlatParamHandle,
    # Additional arguments needed for the callback logic
    grad_to_offload: torch.Tensor,
):
    """
    This callback captures any logic to run after the gradient reduction
    finishes. Currently, this offloads the gradient to CPU if CPU offloading is
    enabled and uses sharded gradient views if ``use_orig_params=True``.
    """
    _offload_grad(state, handle, grad_to_offload)
    _post_backward_use_sharded_grad_views(handle)


@no_type_check
def _offload_grad(
    state: _FSDPState,
    handle: FlatParamHandle,
    grad_to_offload: torch.Tensor,
):
    if not handle._offload_params:
        return
    # Offload the gradient to CPU to ensure parameters and gradients are on the
    # same device as required by the optimizer
    # TODO: Investigate why `NO_SHARD` breaks correctness when using
    # `non_blocking=True` here.
    # TODO (rohan-varma): When CPU offload and optimizer overlap,
    # non_blocking=True won't work since the copy may have not finished before
    # the optimizer step executes on CPU. If we want to use non-blocking=True
    # here, we'll have to synchronize before using result on CPU.
    non_blocking = handle.uses_sharded_strategy and not handle._has_optim_in_backward
    handle.flat_param._cpu_grad.copy_(
        grad_to_offload.detach(), non_blocking=non_blocking
    )  # synchronized in the post-backward callback
    # Since the gradient being offloaded may have been produced in the
    # computation stream and is being consumed here in the post-backward
    # stream, inform the caching allocator
    _no_dispatch_record_stream(grad_to_offload.data, state._post_backward_stream)


@no_type_check
def _post_backward_use_sharded_grad_views(handle: FlatParamHandle):
    if not handle._use_orig_params:
        return
    # Since the handle's `FlatParameter` completed its gradient computation, we
    # should reset the gradient noneness mask
    handle._reset_is_grad_none()
    # Delay using sharded gradient views until after the reduce-scatter instead
    # of immediately after resharding
    handle._use_sharded_grad_views()
    if handle._has_optim_in_backward:
        handle.prepare_gradient_for_optim()
        for orig_param in handle.flat_param._params:
            # Check for `None` gradient to filter parameters not in the rank
            if orig_param.grad is not None and hasattr(
                orig_param, "_in_backward_optimizers"
            ):
                # TODO (rohan-varma): For CPU offload, this unfortunately
                # operates on CPU because the parameters and gradients have
                # already been offloaded. We should run this on GPU after
                # refactoring.
                for optim in orig_param._in_backward_optimizers:
                    optim.step()

                optim.zero_grad(set_to_none=True)
        handle._reset_flat_param_grad_info_if_needed()
        if handle._offload_params:
            handle.flat_param._cpu_grad = None


def _div_if_needed(tensor: torch.Tensor, div_factor: float) -> None:
    if div_factor > 1:
        tensor.div_(div_factor)


@no_type_check
def _cast_grad_to_param_dtype(
    state: _FSDPState,
    sharded_grad: torch.Tensor,
    param: FlatParameter,
):
    """
    Casts ``sharded_grad`` back to the full parameter dtype so that the
    optimizer step runs with that dtype. This performs an actual cast if
    1. parameters were in reduced precision during the forward since then
    gradients would be in that reduced precision, or
    2. parameters were not in reduced precision but gradients were in
    reduced precision for communication.
    However, if a low precision communication hook is registered, then this
    dtype cast happens in the hook instead.
    """
    _assert_in_training_states(state, [TrainingState.FORWARD_BACKWARD])
    if not _low_precision_hook_enabled(state) and sharded_grad.dtype != param.dtype:
        low_prec_grad_data = sharded_grad.data
        sharded_grad.data = sharded_grad.data.to(dtype=param.dtype)
        # Since for `NO_SHARD`, the gradient is produced in the computation
        # stream and consumed here in the post-backward stream, inform the
        # caching allocator; for the sharded strategies, the gradient is
        # produced in the post-backward stream, so this `record_stream()`
        # should be a no-op
        _no_dispatch_record_stream(
            low_prec_grad_data, state._device_handle.current_stream()
        )


def _check_grad_to_accumulate(
    new_sharded_grad: torch.Tensor,
    accumulated_grad: torch.Tensor,
) -> None:
    _p_assert(
        accumulated_grad.shape == new_sharded_grad.shape,
        "Shape mismatch when accumulating gradients: "
        f"existing gradient shape={accumulated_grad.shape} "
        f"new gradient shape={new_sharded_grad.shape}",
    )
    _p_assert(
        accumulated_grad.device == new_sharded_grad.device,
        "Device mismatch when accumulating gradients: "
        f"existing gradient device={accumulated_grad.device} "
        f"new gradient device={new_sharded_grad.device}",
    )


@no_type_check
def _low_precision_hook_enabled(state: _FSDPState) -> bool:
    return state._comm_hook in LOW_PRECISION_HOOKS


@no_type_check
@torch.no_grad()
def _post_backward_final_callback(
    state: _FSDPState,
    module: nn.Module,
):
    """
    This waits for the post-backward to finish and performs some final cleanup.
    This runs at the end of the entire backward pass and should only be called
    on the root FSDP instance.
    """
    _p_assert(
        state._is_root,
        "The post-backward callback should only be called on the root FSDP instance",
    )
    root_state = state

    if root_state._sync_gradients:
        current_stream = state._device_handle.current_stream()
        # TODO (rohan-varma): this also waits for the overlapped optimizer step to finish
        # since it currently runs in the post-backward stream. That can be
        # pushed to the next forward if run in a different stream
        current_stream.wait_stream(root_state._post_backward_stream)
        if root_state._all_reduce_stream is not current_stream:  # uses HSDP
            current_stream.wait_stream(root_state._all_reduce_stream)
        if root_state.cpu_offload.offload_params:
            # Wait for non-blocking GPU -> CPU sharded gradient copies from the
            # post-backward hooks to finish explicitly since CPU gradients do
            # not automatically synchronize with the GPU
            state._device_handle.current_stream().synchronize()
    root_state._exec_order_data.next_iter()

    for fsdp_state in state._all_fsdp_states:
        _catch_all_reshard(fsdp_state)
        _finalize_params(fsdp_state)
        fsdp_state.training_state = TrainingState.IDLE
        handle = fsdp_state._handle
        if handle:
            handle._ran_pre_backward_hook = False
            handle._needs_pre_backward_unshard = False
            handle._post_forward_index = None
            handle._training_state = HandleTrainingState.IDLE
            handle._prefetched = False
    # Reset for cases like one forward and multiple backwards
    root_state._post_backward_callback_queued = False


@no_type_check
def _catch_all_reshard(
    state: _FSDPState,
) -> None:
    """
    Reshards the parameters that may not have been resharded in the
    post-backward hook. This can happen when a module's output is used in the
    forward pass, meaning that its pre-backward hook runs (unsharding the
    parameter), but the post-backward hook does not run because the output was
    not jused in the loss computation corresponding to this backward pass.
    """
    # Wrap with a try-except to provide a more informative traceback if an
    # error is raised
    try:
        if state._handle:
            # TODO: This already-resharded check is brittle:
            # https://github.com/pytorch/pytorch/issues/83956
            already_resharded = (
                state._handle.flat_param.data_ptr()
                == state._handle.flat_param._local_shard.data_ptr()
                # If FSDP skipped using sharded views, then the flat parameter
                # still points to the sharded data, so we need to reshard to
                # use sharded views
                and not state._handle._skipped_use_sharded_views
            )
            if already_resharded:
                return
            free_unsharded_flat_param = _should_free_in_backward(state, state._handle)
            _reshard(state, state._handle, free_unsharded_flat_param)
    except Exception as e:
        _p_assert(
            False,
            f"Got exception in the catch-all reshard for {state}: {str(e)}",
            raise_assertion_error=False,
        )
        raise e


@no_type_check
def _finalize_params(
    state: _FSDPState,
) -> None:
    """Finalizes the parameters before the next iteration."""
    handle = state._handle
    if not handle:
        return
    flat_param = handle.flat_param
    if torch.distributed._functional_collectives.is_torchdynamo_compiling():
        if hasattr(flat_param, "_post_backward_hook_handle"):
            pbhs_handle = flat_param._post_backward_hook_handle
            pbhs_handle.remove()
            del flat_param._post_backward_hook_handle
    else:
        if hasattr(flat_param, "_post_backward_hook_state"):
            post_backward_hook_state_len = len(flat_param._post_backward_hook_state)
            expected_post_backward_hook_state_len = int(flat_param.requires_grad) + 1
            _p_assert(
                post_backward_hook_state_len == expected_post_backward_hook_state_len,
                f"Invalid: ``_post_backward_hook_state``: {flat_param._post_backward_hook_state}",
            )
            flat_param._post_backward_hook_state[-1].remove()
            delattr(flat_param, "_post_backward_hook_state")
    if flat_param.requires_grad:
        if not state._sync_gradients:
            # Preserve the gradient accumulation state if not synchronizing
            # gradients: `.grad` remains the unsharded gradient  from prior
            # `no_sync()` iterations, and `_saved_grad_shard` remains the
            # sharded gradient from the last synchronized iteration
            return
        if not handle._has_optim_in_backward:
            handle.prepare_gradient_for_optim()
        _p_assert(
            hasattr(flat_param, "_post_backward_called"),
            "Expects `_post_backward_called` to be set on the `FlatParameter`",
        )
        flat_param._post_backward_called = False


@no_type_check
def _prefetch_handle(
    state: _FSDPState,
    current_handle: Optional[FlatParamHandle],
    prefetch_mode: _PrefetchMode,
) -> None:
    """
    Prefetches the next handles if needed (without synchronization). An empty
    handles key cannot prefetch.
    """
    if not current_handle:
        return
    handle = _get_handle_to_prefetch(state, current_handle)
    if not handle:
        return
    # Temporarily emulate the training state while calling `_unshard` to
    # ensure the correct `as_params` for `_use_unsharded_views()`
    prev_training_state = handle._training_state
    if prefetch_mode == _PrefetchMode.BACKWARD:
        handle._training_state = HandleTrainingState.BACKWARD_PRE
    elif prefetch_mode == _PrefetchMode.FORWARD:
        handle._training_state = HandleTrainingState.FORWARD
    else:
        raise ValueError(f"Invalid prefetch mode on rank {state.rank}: {prefetch_mode}")
    # Prefetch the next set of handles without synchronizing to allow
    # the sync to happen as late as possible to maximize overlap
    _unshard(state, handle, state._unshard_stream, state._pre_unshard_stream)
    handle._training_state = prev_training_state
    handle._prefetched = True


@no_type_check
def _get_handle_to_prefetch(
    state: _FSDPState,
    current_handle: FlatParamHandle,
) -> FlatParamHandle:
    """
    Returns a :class:`list` of the handles keys to prefetch for the next
    module(s), where ``current_handle`` represents the current module.

    "Prefetching" refers to running the unshard logic early (without
    synchronization), and the "next" modules depend on the recorded execution
    order and the current training state.
    """
    training_state = _get_training_state(current_handle)
    valid_training_states = (
        HandleTrainingState.BACKWARD_PRE,
        HandleTrainingState.BACKWARD_POST,
        HandleTrainingState.FORWARD,
    )
    _p_assert(
        training_state in valid_training_states,
        f"Prefetching is only supported in {valid_training_states} but "
        f"currently in {training_state}",
    )
    eod = state._exec_order_data
    target_handle: Optional[FlatParamHandle] = None
    if (
        training_state == HandleTrainingState.BACKWARD_PRE
        and state.backward_prefetch == BackwardPrefetch.BACKWARD_PRE
    ) or (
        training_state == HandleTrainingState.BACKWARD_POST
        and state.backward_prefetch == BackwardPrefetch.BACKWARD_POST
    ):
        target_handle_candidate = eod.get_handle_to_backward_prefetch(current_handle)
        if (
            target_handle_candidate
            and target_handle_candidate._needs_pre_backward_unshard
            and not target_handle_candidate._prefetched
        ):
            target_handle = target_handle_candidate
        else:
            target_handle = None
    elif training_state == HandleTrainingState.FORWARD and state.forward_prefetch:
        target_handle_candidate = eod.get_handle_to_forward_prefetch(current_handle)
        if (
            target_handle_candidate
            and target_handle_candidate._needs_pre_forward_unshard
            and not target_handle_candidate._prefetched
        ):
            target_handle = target_handle_candidate
        else:
            target_handle = None

    return target_handle


def _get_training_state(
    handle: FlatParamHandle,
) -> HandleTrainingState:
    """Returns the training state of the handles in ``handle``."""
    _p_assert(handle, "Expects a non-empty handle")
    return handle._training_state


@no_type_check
def _register_pre_forward_hook(
    state: _FSDPState,
    module: nn.Module,
) -> None:
    """
    Registers a pre-forward hook on ``module``.
    """
    for forward_handle in state._pre_forward_handles:
        forward_handle.remove()
    state._pre_forward_handles.clear()
    module_param_handle = state._fully_sharded_module_to_handle.get(module, None)
    hook = functools.partial(
        _pre_forward, state, module_param_handle, _pre_forward_unshard
    )
    state._pre_forward_handles.append(
        module.register_forward_pre_hook(hook, prepend=True, with_kwargs=True)
    )


@no_type_check
def _register_post_forward_hook(
    state: _FSDPState,
    module: nn.Module,
) -> None:
    """
    Registers a post-forward hook on ``module``. Even if the module has no
    handles, we should register the hook since it will register the module's
    pre-backward hook.
    """
    for forward_handle in state._post_forward_handles:
        forward_handle.remove()
    state._post_forward_handles.clear()
    module_param_handle = state._fully_sharded_module_to_handle.get(module, None)
    hook = functools.partial(
        _post_forward,
        state,
        module_param_handle,
        _post_forward_reshard,
    )
    state._post_forward_handles.append(module.register_forward_hook(hook))


@no_type_check
def _register_root_pre_forward_hook(
    state: _FSDPState,
    module: nn.Module,
):
    """
    Registers root pre-forward hook on ``module``, which should be the local
    FSDP root.

    NOTE: For the current composable FSDP design, we have each application of
    ``fully_shard()`` to a module to indicate that that module is the local
    FSDP root. We may remove this assumption in the future, in which case we
    will need to register this root pre-forward hook on any candidate module
    that may be the local FSDP root.
    """
    for forward_handle in state._root_pre_forward_handles:
        forward_handle.remove()
    state._root_pre_forward_handles.clear()
    hook = functools.partial(_root_pre_forward, state)
    state._root_pre_forward_handles.append(
        module.register_forward_pre_hook(hook, prepend=True, with_kwargs=True)
    )


@no_type_check
def _register_pre_backward_hooks(
    state: _FSDPState,
    module: nn.Module,
    outputs: Any,
    handle: FlatParamHandle,
) -> None:
    """
    Registers pre-backward hooks on the tensors that require gradients in the
    forward pass outputs ``outputs``, which were computed using the
    ``FlatParameter`` s of ``handles``.

    Args:
        module (nn.Module): Fully sharded module (see [Note: Fully Sharded
            Module]).

    Returns:
        Forward pass outputs with pre-backward hooks registered to tensors that
        require gradients.
    """
    # If there is no gradient computation, then there is no need for
    # pre-backward logic
    if not torch.is_grad_enabled():
        return outputs
    if state._is_root:
        state._post_backward_callback_queued = False  # only defined on the root

    if handle:
        handle._needs_pre_backward_unshard = False
        # Since these handles' `FlatParameter`s participated in a forward, we
        # conservatively assume that they will be used in the backward
        handle._ran_pre_backward_hook = False

    def _register_hook(t: torch.Tensor) -> torch.Tensor:
        if t.requires_grad:
            t.register_hook(
                torch.utils.hooks.unserializable_hook(
                    functools.partial(_pre_backward_hook, state, module, handle)
                )
            )
            if handle:
                handle._needs_pre_backward_unshard = True
        return t

    return _apply_to_tensors(_register_hook, outputs)


def _register_post_backward_hook(
    state: _FSDPState,
    handle: Optional[FlatParamHandle],
) -> None:
    """
    Registers post-backward hooks on the ``FlatParameter`` s'
    ``AccumulateGrad`` objects to reshard and to reduce-scatter gradients.

    The ``AccumulateGrad`` object represents the last function that finalizes
    the ``FlatParameter`` 's gradient, so it only runs after its entire
    gradient computation has finished.

    We register the post-backward hook only once in the *first* forward that a
    ``FlatParameter`` participates in. This relies on the ``AccumulateGrad``
    object being preserved through multiple forwards.

    NOTE: We follow this heuristic to prefer the *first* forward to target the
    parameter mixed precision case, where there are *separate*
    ``AccumulateGrad`` objects across the different forwards. (Without
    parameter mixed precision, the ``AccumulateGrad`` objects are the same.) If
    we instead prefer the *last* forward, then the hook runs early.
    """
    # If there is no gradient computation, then there is no need for
    # post-backward logic
    if not torch.is_grad_enabled():
        return
    if not handle:
        return
    flat_param = handle.flat_param

    if torch.distributed._functional_collectives.is_torchdynamo_compiling():
        already_registered = hasattr(flat_param, "_post_backward_hook_handle")
        if already_registered or not flat_param.requires_grad:
            return
        hook = functools.partial(_post_backward_hook, state, handle)
        hook_handle = flat_param.register_post_accumulate_grad_hook(hook)
        flat_param._post_backward_hook_handle = hook_handle  # type: ignore[attr-defined]
    else:
        already_registered = hasattr(flat_param, "_post_backward_hook_state")
        if already_registered or not flat_param.requires_grad:
            return
        # Get the `AccumulateGrad` object
        temp_flat_param = flat_param.expand_as(flat_param)
        _p_assert(
            temp_flat_param.grad_fn is not None,
            "The `grad_fn` is needed to access the `AccumulateGrad` and "
            "register the post-backward hook",
        )
        acc_grad = temp_flat_param.grad_fn.next_functions[0][0]  # type: ignore[union-attr]
        assert acc_grad is not None
        hook_handle = acc_grad.register_hook(
            functools.partial(_post_backward_hook, state, handle)
        )
        flat_param._post_backward_hook_state = (acc_grad, hook_handle)  # type: ignore[attr-defined]


def _register_post_backward_reshard_only_hook(
    state: _FSDPState,
    handle: Optional[FlatParamHandle],
    args: Tuple[Any, ...],
    kwargs: Dict[str, Any],
) -> None:
    """
    Registers post-backward hooks to reshard flat parameters that do not
    require gradient. We register these using multi-post-grad hooks on the
    input activations to ensure that all gradients that may depend on the
    parameters have been computed before resharding.
    """
    # If there is no gradient computation, then there is no need for
    # post-backward logic
    if not torch.is_grad_enabled():
        return
    # Construct `inp_tensors` lazily to avoid CPU overhead in typical case
    # where each flat parameter requires gradient
    inp_tensors: Optional[List[torch.Tensor]] = None
    if not handle:
        return
    flat_param = handle.flat_param

    if torch.distributed._functional_collectives.is_torchdynamo_compiling():
        already_registered = hasattr(flat_param, "_post_backward_hook_handle")
    else:
        already_registered = hasattr(flat_param, "_post_backward_hook_state")

    if already_registered or flat_param.requires_grad:
        return
    if inp_tensors is None:
        args_flat = pytree.arg_tree_leaves(*args, **kwargs)
        inp_tensors = [
            obj for obj in args_flat if torch.is_tensor(obj) and obj.requires_grad
        ]
    assert inp_tensors is not None  # mypy
    hook_handle = register_multi_grad_hook(
        inp_tensors, functools.partial(_post_backward_reshard_only_hook, state, handle)
    )
    if torch.distributed._functional_collectives.is_torchdynamo_compiling():
        flat_param._post_backward_hook_handle = hook_handle  # type: ignore[attr-defined, assignment]
    else:
        flat_param._post_backward_hook_state = (hook_handle,)  # type: ignore[attr-defined, assignment]


@no_type_check
def _register_post_backward_final_callback(
    state: _FSDPState, module: nn.Module
) -> None:
    """
    Registers the post-backward final callback that runs at the end of the
    backward pass. This should be called from the root FSDP instance at the
    beginning of the pre-backward.
    """
    _p_assert(
        state._is_root,
        "Only the root FSDP instance should register the post-backward callback",
    )
    if state._post_backward_callback_queued:
        return
    _assert_in_training_states(state, [TrainingState.IDLE])
    # Trace does not need this callback
    if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
        state._post_backward_callback_queued = True
        Variable._execution_engine.queue_callback(
            functools.partial(_post_backward_final_callback, state, module)
        )


def _wait_for_computation_stream(
    computation_stream: torch.Stream,
    unshard_stream: torch.Stream,
    pre_unshard_stream: torch.Stream,
):
    """
    Has the unshard and pre-unshard streams wait for the computation stream.
    For example, this should be called in the FSDP root's pre-forward to
    respect optimizer step computation.
    """
    # Tracing does not need to wait
    if torch.distributed._functional_collectives.is_torchdynamo_compiling():
        return
    unshard_stream.wait_stream(computation_stream)  # type: ignore[attr-defined]
    # Having the pre-all-gather stream wait for the current stream even if we
    # do not leverage the pre-all-gather stream is tolerable since this only
    # runs once per iteration
    pre_unshard_stream.wait_stream(computation_stream)  # type: ignore[attr-defined]


def _reset_flat_param_grad_info_if_needed(
    handles: List[FlatParamHandle],
):
    """
    Clears the original parameters' gradients if needed. This method's CPU
    overhead is minimal, so we may call it throughout FSDP methods, which serve
    as callsites to free the gradient memory earlier.
    """
    if not isinstance(handles, list):
        handles = [handles]
    for handle in handles:
        if handle._use_orig_params:
            handle._reset_flat_param_grad_info_if_needed()


@no_type_check
def _get_buffers_and_dtypes_for_computation(
    state: _FSDPState,
    root_module: nn.Module,
) -> Tuple[List[torch.Tensor], List[Optional[torch.dtype]]]:
    """
    Returns all buffers in the module tree rooted at ``root_module`` and a
    corresponding list of the buffer dtypes for computation. Each buffer dtype
    is either ``None`` if buffer mixed precision is not enabled or the buffer
    low precision dtype otherwise.
    """
    _p_assert(state._is_root, "Expects the root to cast buffers")
    buffers: List[torch.Tensor] = []
    buffer_dtypes: List[Optional[torch.dtype]] = []
    visited_buffers: Set[torch.Tensor] = set()
    # Traverse the FSDP states bottom-up so that we prefer the owning FSDP
    # instance's mixed precision setting for each buffer
    fsdp_states, fsdp_modules = traversal_utils._get_fsdp_states_with_modules(
        root_module
    )
    for fsdp_state, fsdp_module in zip(reversed(fsdp_states), reversed(fsdp_modules)):
        for buffer_name, buffer in fsdp_module.named_buffers():
            if buffer in visited_buffers:
                continue
            visited_buffers.add(buffer)
            if clean_tensor_name(buffer_name) in fsdp_state._ignored_buffer_names:
                continue
            buffers.append(buffer)
            buffer_dtypes.append(fsdp_state.mixed_precision.buffer_dtype)
    assert len(buffers) == len(buffer_dtypes), f"{len(buffers)} {len(buffer_dtypes)}"
    return buffers, buffer_dtypes


@no_type_check
def _get_orig_buffer_dtypes(
    state: _FSDPState,
    buffer_names: List[str],
) -> List[torch.dtype]:
    """
    Returns the original buffer types of the given buffer names.
    """
    buffer_dtypes: List[torch.dtype] = []
    for buffer_name in buffer_names:
        _p_assert(
            buffer_name in state._buffer_name_to_orig_dtype,
            f"{buffer_name} is missing from pre-computed dict on rank "
            f"{state.rank}, which only has keys "
            f"{state._buffer_name_to_orig_dtype.keys()}",
        )
        buffer_dtypes.append(state._buffer_name_to_orig_dtype[buffer_name])
    return buffer_dtypes


def _cast_buffers_to_dtype_and_device(
    buffers: List[torch.Tensor],
    buffer_dtypes: List[Optional[torch.dtype]],
    device: torch.device,
) -> None:
    """
    Casts ``buffers`` to the dtypes given by ``buffer_dtypes`` and moves them
    to ``device``. If an element in ``buffer_dtypes`` is ``None``, then the
    corresponding buffer is only moved to ``device``.
    """
    _p_assert(
        buffer_dtypes is None or len(buffers) == len(buffer_dtypes),
        f"Expects `buffers` and `buffer_dtypes` to have the same length if "
        f"`buffer_dtypes` is specified but got {len(buffers)} and "
        f"{len(buffer_dtypes)}",
    )
    for buffer, buffer_dtype in zip(buffers, buffer_dtypes):
        if not torch.is_floating_point(buffer) or buffer_dtype is None:
            buffer.data = buffer.to(device=device)
        else:
            buffer.data = buffer.to(device=device, dtype=buffer_dtype)