1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
|
# mypy: allow-untyped-defs
import functools
import logging
from enum import auto, Enum
from typing import Any, Callable, Dict, List, no_type_check, Optional, Set, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.autograd.graph import register_multi_grad_hook
from torch.distributed.algorithms._comm_hooks import LOW_PRECISION_HOOKS
from torch.distributed.fsdp._common_utils import (
_assert_in_training_states,
_FSDPState,
_get_module_fsdp_state,
_is_composable,
_log_post_backward_hook,
_no_dispatch_record_stream,
clean_tensor_name,
TrainingState,
)
from torch.distributed.fsdp._flat_param import (
FlatParameter,
FlatParamHandle,
HandleShardingStrategy,
HandleTrainingState,
RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES,
)
from torch.distributed.fsdp._init_utils import HYBRID_SHARDING_STRATEGIES
from torch.distributed.fsdp.api import BackwardPrefetch
from torch.distributed.utils import (
_apply_to_tensors,
_cast_forward_inputs,
_p_assert,
_to_kwargs,
)
from torch.utils import _pytree as pytree
logger = logging.getLogger(__name__)
# Do not include "process_group" to enable hybrid shard and MoE cases
HOMOGENEOUS_ATTR_NAMES = (
"_use_orig_params",
"limit_all_gathers",
"_use_full_prec_in_eval",
)
class _PrefetchMode(Enum):
BACKWARD = auto()
FORWARD = auto()
def _get_fsdp_root_states_with_modules(
module: nn.Module,
) -> Tuple[List[_FSDPState], List[nn.Module]]:
"""
Returns a tuple containing:
1. A list of the root ``_FSDPState`` instances in the module tree rooted at
``module`` without any duplicates and following the ``module.modules()``
traversal order (which is assumed to be depth-first).
2. A corresponding list of the root modules owning the states in the first
list.
This is similar to :func:`_get_fsdp_states_with_modules` except that we
must call :func:`_is_fsdp_root` to force a lazy initialization to determine
the FSDP root in case lazy initialization has not yet happened.
"""
fsdp_root_states: List[_FSDPState] = []
fsdp_root_modules: List[nn.Module] = []
visited_fsdp_states: Set[_FSDPState] = set()
# NOTE: This function assumes that `module.modules()` proceeds top-down.
for submodule in module.modules():
optional_state = _get_module_fsdp_state(submodule)
if (
optional_state is not None
and optional_state not in visited_fsdp_states
and _is_fsdp_root(optional_state, submodule)
):
visited_fsdp_states.add(optional_state)
fsdp_root_states.append(optional_state)
fsdp_root_modules.append(submodule)
return fsdp_root_states, fsdp_root_modules
def _get_fsdp_root_states(module: nn.Module) -> List[_FSDPState]:
"""See :func:`_get_fsdp_root_states_with_modules`."""
fsdp_root_states, _ = _get_fsdp_root_states_with_modules(module)
return fsdp_root_states
def _is_fsdp_root(state: _FSDPState, module: nn.Module) -> bool:
"""
Returns if ``state`` corresponds to that of an FSDP root.
For the wrapper code path, ``state`` and ``module`` should be the same. For
the non-wrapper code path, ``state`` should be ``module`` 's state.
"""
# Force a lazy initialization to determine the FSDP root
_lazy_init(state, module)
assert state._is_root is not None # mypy
return state._is_root
@no_type_check
def _lazy_init(
state: _FSDPState,
root_module: nn.Module,
) -> _FSDPState:
"""
Performs initialization lazily, typically right before the first forward
pass. The laziness is needed to ensure that the parameter device/dtype and
the FSDP hierarchy have finalized. This method's actual logic only runs on
the root FSDP instance, which performs initialization for all non-root FSDP
instances to avoid partial initialization.
For the non-composable code path, ``state`` and ``root_module`` should be
the same, namely the FSDP instance itself.
"""
if state._is_root is not None:
return # no-op: already lazily initialized
if not state._device_handle.is_available():
# Allow the FSDP constructor to run even without CUDA but check this
# once we start real execution
raise RuntimeError("FSDP does not support CPU only execution")
# The following logic is only run on the root FSDP instance since it will
# set `_is_root=False` for the non-root instances
state._is_root = True
_assert_in_training_states(state, [TrainingState.IDLE])
_check_flat_params_on_expected_device(state, root_module)
state._all_fsdp_states = traversal_utils._get_fsdp_states(root_module)
_init_streams(state)
buffers, buffer_dtypes = _get_buffers_and_dtypes_for_computation(state, root_module)
_cast_buffers_to_dtype_and_device(buffers, buffer_dtypes, state.compute_device)
state._exec_order_data.init(state, root_module, state.process_group)
_share_state_and_init_handle_attrs(state, root_module)
return state
def _check_flat_params_on_expected_device(state: _FSDPState, module: nn.Module):
"""
Checks that all ``FlatParameter``s in ``module`` 's tree managed by
``state`` are on the expected device for *lazy initialization*.
"""
cpu_device = torch.device("cpu")
for handle in traversal_utils._get_fsdp_handles(module):
if (
not handle._offload_params
and handle.flat_param.device != state.compute_device
):
raise RuntimeError(
"An FSDP-managed module unexpectedly has parameters on "
f"{handle.flat_param.device}. Make sure to move the module to "
f"{state.compute_device} before training."
)
elif handle._offload_params and handle.flat_param.device != cpu_device:
raise RuntimeError(
"An FSDP-managed module with parameter CPU offloading enabled "
f"has parameters on {handle.flat_param.device}. Make sure to "
f"not move the module from CPU when offloading parameters."
)
@no_type_check
def _share_state_and_init_handle_attrs(
root_state: _FSDPState,
root_module: nn.Module,
) -> None:
"""
Shares data structure state from the ``root_state`` to all FSDP states in
``root_module`` 's module tree, and initializes handle attributes. These
are done together to require a single loop over the states.
"""
handle = root_state._handle
if handle:
handle.init_flat_param_attributes()
attr_name_to_values: Dict[str, Set[Any]] = {}
for attr_name in HOMOGENEOUS_ATTR_NAMES:
attr_name_to_values[attr_name] = set()
root_state._all_handles = root_state._exec_order_data.all_handles # share reference
# Update _has_optim_in_backward for each handle.
for handle in root_state._all_handles:
flat_param = handle.flat_param
if hasattr(flat_param, "_in_backward_optimizers"):
raise RuntimeError(
"FSDP optimizer in backward only supported with use_orig_params=True!"
)
handle._has_optim_in_backward = flat_param._params is not None and any(
hasattr(param, "_in_backward_optimizers") for param in flat_param._params
)
if handle._has_optim_in_backward:
torch._C._log_api_usage_once("fsdp.optimizer_in_backward")
for fsdp_state in root_state._all_fsdp_states:
for attr_name in HOMOGENEOUS_ATTR_NAMES:
_p_assert(
hasattr(fsdp_state, attr_name),
f"FSDP state missing attribute {attr_name}",
)
attr_name_to_values[attr_name].add(getattr(fsdp_state, attr_name))
if fsdp_state is root_state:
continue
# Relax the assert for non-root FSDP instances in case the nested
# initialized module is wrapped again in FSDP later (e.g. after
# training to run inference)
_p_assert(
fsdp_state._is_root is None or not fsdp_state._is_root,
"Non-root FSDP instance's `_is_root` should not have been "
"set yet or should have been set to `False`",
)
fsdp_state._is_root = False
fsdp_state._unshard_stream = root_state._unshard_stream
fsdp_state._post_backward_stream = root_state._post_backward_stream
fsdp_state._pre_unshard_stream = root_state._pre_unshard_stream
fsdp_state._all_reduce_stream = root_state._all_reduce_stream
fsdp_state._default_stream = root_state._default_stream
fsdp_state._exec_order_data = root_state._exec_order_data
fsdp_state._free_event_queue = root_state._free_event_queue
if fsdp_state._fsdp_extension is not None:
fsdp_state._fsdp_extension.compute_stream = root_state._default_stream
handle = fsdp_state._handle
if handle:
handle.init_flat_param_attributes()
for attr_name, attr_values in attr_name_to_values.items():
if len(attr_values) != 1:
raise ValueError(
f"Expects one homogeneous value for {attr_name} but got {attr_values}"
)
@no_type_check
def _init_streams(
state: _FSDPState,
) -> None:
"""
Initializes CUDA streams for overlapping communication, computation, and
data transfers. The streams should be shared across FSDP instances.
"""
assert state._is_root
assert state._device_handle.is_available()
uses_hybrid_sharding = any(
fsdp_state.sharding_strategy in HYBRID_SHARDING_STRATEGIES
for fsdp_state in state._all_fsdp_states
)
# Prioritize all-gathers/reduce-scatters over async all-reduce for HSDP and
# preserve the default priority of 0 otherwise
high_priority = -1 if state.limit_all_gathers and uses_hybrid_sharding else 0
# Default stream for computation
state._default_stream = state._device_handle.current_stream()
if state._fsdp_extension is not None:
# set the compute stream to the FSDP extension
state._fsdp_extension.compute_stream = state._default_stream
# Stream for unshard logic, including allocating the all-gather destination
# tensors and the all-gathers themselves
state._unshard_stream = state._device_handle.Stream(priority=high_priority)
# Stream for overlapping gradient reduction with the backward pass gradient
# computation
state._post_backward_stream = state._device_handle.Stream(priority=high_priority)
# Stream for pre-unshard logic, namely allocations and writes for CPU
# offloading (H2D copy) and mixed precision (low precision cast)
state._pre_unshard_stream = state._device_handle.Stream(priority=high_priority)
# Stream to run HSDP's all-reduce as async (if using HSDP)
state._all_reduce_stream = (
state._device_handle.Stream() if uses_hybrid_sharding else state._default_stream
)
@no_type_check
def _unshard(
state: _FSDPState,
handle: FlatParamHandle,
unshard_stream: torch.Stream,
pre_unshard_stream: torch.Stream,
) -> None:
"""
Unshards the handles in ``handles``. If the handles are in
:meth:`summon_full_params` and are using mixed precision, then they are
forced to full precision.
Postcondition: handle's ``FlatParameter`` 's data is the padded
unsharded flat parameter on the compute device.
"""
if not handle:
return
with state._device_handle.stream(pre_unshard_stream):
ran_pre_unshard = handle.pre_unshard()
if ran_pre_unshard:
unshard_stream.wait_stream(pre_unshard_stream)
if state.limit_all_gathers:
event = state._free_event_queue.dequeue_if_needed()
if event:
with torch.profiler.record_function(
"FullyShardedDataParallel.rate_limiter"
):
event.synchronize()
with state._device_handle.stream(unshard_stream):
handle.unshard()
handle.post_unshard()
@no_type_check
def _reshard(
state: _FSDPState,
handle: FlatParamHandle,
free_unsharded_flat_param: bool,
):
"""
Reshards the handle. ``free_unsharded_flat_param`` indicates whether to
free the handle's padded unsharded flat parameter.
"""
handle.reshard(free_unsharded_flat_param)
if state.limit_all_gathers and free_unsharded_flat_param:
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
# We don't run a even queue for freeing under torch compile atm
# But maybe we need to? TODO(voz): Look into this
free_event = state._device_handle.Event()
free_event.record()
state._free_event_queue.enqueue(free_event)
handle.post_reshard()
# Flat parameter freed or not, we always have to "unshard" the parameter
# upon next access to get its shape correct.
handle._prefetched = False
def _unshard_grads(
handle: Optional[FlatParamHandle],
) -> None:
if handle:
handle.unshard_grad()
def _reshard_grads(
handle: Optional[FlatParamHandle],
) -> None:
if handle:
handle.reshard_grad()
@no_type_check
def _pre_forward(
state: _FSDPState,
handle: Optional[FlatParamHandle],
unshard_fn: Callable,
module: nn.Module,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
"""
Runs the pre-forward logic. This includes an opportunity to unshard
currently sharded parameters such as those for the current forward and
registering post-backward hooks for these current parameters. This function
also converts forward ``args`` and ``kwargs`` to the given precision.
Args:
handles (List[FlatParamHandle]): Handles giving the parameters used in
the current forward.
unshard_fn (Optional[Callable]): A callable to unshard any currently
sharded parameters or ``None`` to not do any unsharding.
module (nn.Module): Module whose forward this method runs right before;
expected by the hook signature.
args (Tuple[Any, ...]): Module forward ``args``.
kwargs (Dict[str, Any]): Module forward ``kwargs``.
"""
with torch.profiler.record_function("FullyShardedDataParallel._pre_forward"):
# For `fully_shard` + `checkpoint`, skip pre-forward logic in the
# recomputed forward
if handle and handle._training_state == HandleTrainingState.BACKWARD_PRE:
# For both checkpoint implementations, we do not need to re-cast
# inputs here since they will be checkpointed in the low precision
# either by AC or normally by autograd as long as the AC region is
# nested within FSDP
return args, kwargs
state.training_state = TrainingState.FORWARD_BACKWARD
state._exec_order_data.record_pre_forward(handle, module.training)
if handle:
handle._training_state = HandleTrainingState.FORWARD
if unshard_fn is not None:
unshard_fn(state, handle)
# Register post-backward hooks to reshard the parameters and reduce-scatter
# their gradients. They must be re-registered every forward pass in case
# the `grad_fn` is mutated.
_register_post_backward_hook(state, handle)
# We have to reallocate the _cpu_grad if optimizer overlap
# set the grad to None in the backward pass.
if handle and handle._offload_params and handle.flat_param._cpu_grad is None:
handle.flat_param._cpu_grad = torch.zeros_like(
handle.flat_param._local_shard, device=torch.device("cpu")
).pin_memory(device=state.compute_device)
should_cast_forward_inputs = (
state._handle and not state._handle._force_full_precision
)
if should_cast_forward_inputs and state.mixed_precision.cast_forward_inputs:
# Recursively convert args and kwargs to specified precision.
input_dtype: Optional[torch.dtype] = state.mixed_precision.param_dtype
args, kwargs = _cast_forward_inputs(input_dtype, *args, **kwargs)
_register_post_backward_reshard_only_hook(state, handle, args, kwargs)
return args, kwargs
@no_type_check
def _pre_forward_unshard(
state: _FSDPState,
handle: Optional[FlatParamHandle],
) -> None:
"""Unshards parameters in the pre-forward."""
if not handle:
return
# If the handles have been prefetched, then there is no need to call
# `_unshard()` again
if not handle._prefetched:
_unshard(state, handle, state._unshard_stream, state._pre_unshard_stream)
handle._needs_pre_forward_unshard = False
# Don't wait during trace
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
current_stream = state._device_handle.current_stream()
if state._unshard_event is not None:
current_stream.wait_event(state._unshard_event)
state._unshard_event = None
else:
current_stream.wait_stream(state._unshard_stream)
with torch.profiler.record_function(
"FullyShardedDataParallel._pre_forward_prefetch"
):
_prefetch_handle(state, handle, _PrefetchMode.FORWARD)
@no_type_check
def _post_forward(
state: _FSDPState,
handle: Optional[FlatParamHandle],
reshard_fn: Callable,
module: nn.Module,
input: Any,
output: Any,
) -> Any:
"""
Runs the post-forward logic. This includes an opportunity to reshard
currently unsharded parameters such as those used in the current forward
and registering pre-backward hooks on the forward outputs.
Args:
handles (List[FlatParamHandle]): Handles giving the parameters used in
the current forward.
reshard_fn (Optional[Callable]): A callable to reshard any currently
unsharded parameters (e.g. from the current forward) or ``None`` to
not do any resharding.
module (nn.Module): Module whose forward just ran, which should be a
fully sharded module (see [Note: Fully Sharded Module]); expected
by the hook signature.
input (Any): Unused; expected by the hook signature.
output (Any): Forward pass output; pre-backward hooks are registered on
the tensors that require gradients in this output.
Postcondition: Each ``FlatParameter`` 's data points to the sharded flat
parameter.
"""
with torch.profiler.record_function("FullyShardedDataParallel._post_forward"):
# For `fully_shard` + `checkpoint`, skip post-forward logic in the
# recomputed forward
if handle and handle._training_state == HandleTrainingState.BACKWARD_PRE:
return output
state._exec_order_data.record_post_forward(handle)
if reshard_fn is not None:
reshard_fn(state, handle)
# Register pre-backward hooks to unshard the flat parameters for the
# gradient computation (if needed)
output = _register_pre_backward_hooks(state, module, output, handle)
state.training_state = TrainingState.IDLE
if handle:
handle._training_state = HandleTrainingState.IDLE
return output
@no_type_check
def _post_forward_reshard(
state: _FSDPState,
handle: FlatParamHandle,
) -> None:
"""Reshards parameters in the post-forward."""
if not handle:
return
# Do not free the root's parameters in the post-forward for `FULL_SHARD`
# with the intention that they are immediately used for backward
# computation (though this may not be true)
free_unsharded_flat_param = (
not state._is_root
and handle._sharding_strategy in RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES
)
_reshard(state, handle, free_unsharded_flat_param)
@no_type_check
def _root_pre_forward(
state: _FSDPState,
module: nn.Module,
args,
kwargs,
) -> None:
"""
Runs pre-forward logic specific to the root FSDP instance, which should run
before any individual module's pre-forward. This starts with an attempt at
lazy initialization (which only runs non-vacuously once). Otherwise, if
this is called on a non-root FSDP instance, then it returns directly.
Args:
module (nn.Module): Module for which this logic tries to run. It may or
may not be the root. If not, then this method does not do anything.
"""
with torch.profiler.record_function("FullyShardedDataParallel._root_pre_forward"):
_lazy_init(state, module)
_p_assert(state._is_root is not None, "Expects a root FSDP to have been set")
if not state._is_root:
# Always cast forward inputs in the root of this local FSDP unit for mixed
# precision, as this is where mixed precision could be configed.
# This is more useful for auto wrapping that is recommended in composable path.
# For manual wrapping, cast forward inputs on each local FSDP unit root will
# increase some overhead, so not turned on for model wrapper path right now where
# manual wrapping is more broadly used.
if _is_composable(state):
return _root_cast_forward_input(state, module, args, kwargs)
return args, kwargs
# We cast buffers back to full precision if we're forcing full precision. Disjointly, we check if buffers
# are in full precision and if we should cast them back to lower precision, which happens when
# exiting eval() mode.
handle = state._handle
if handle:
should_cast_buffers_to_full_prec = handle._force_full_precision
else:
should_cast_buffers_to_full_prec = True
if should_cast_buffers_to_full_prec:
_cast_buffers_to_dtype_and_device(
buffers=dict(module.named_buffers()).values(),
buffer_dtypes=list(state._buffer_name_to_orig_dtype.values()),
device=state.compute_device,
)
# This flag is only set when we cast buffers to full precision, to avoid the
# CPU overhead that can stem from retrieving all buffers and their types in the
# following else branch.
state._needs_buffer_dtype_restore_check = True
elif getattr(state, "_needs_buffer_dtype_restore_check", False):
# Check if buffers are in full precision and we need to cast them
# back down.
(
buffers,
buffer_dtypes_for_computation,
) = _get_buffers_and_dtypes_for_computation(state, module)
if len(buffers) > 0 and len(buffer_dtypes_for_computation) > 0:
if any(
buffer.dtype != buffer_dtype_for_computation
for buffer, buffer_dtype_for_computation in zip(
buffers, buffer_dtypes_for_computation
)
):
# Assume we have to cast everything if there is one mismatch
_cast_buffers_to_dtype_and_device(
buffers, buffer_dtypes_for_computation, state.compute_device
)
# We don't have to check this again until we cast buffers to full precision again.
state._needs_buffer_dtype_restore_check = False
if state.forward_prefetch:
handles = [
fsdp_state._handle
for fsdp_state in state._all_fsdp_states
if fsdp_state._handle
]
for handle in handles:
handle._needs_pre_forward_unshard = True
handle._prefetched = False
_wait_for_computation_stream(
state._device_handle.current_stream(),
state._unshard_stream,
state._pre_unshard_stream,
)
_reset_flat_param_grad_info_if_needed(state._all_handles)
# Prepares the forward inputs by moving them to ``compute_device``
# TODO: Do not use the side stream for tensor copies for now; investigate
# the perf with/without it.
with torch.profiler.record_function("FullyShardedDataParallel._to_kwargs"):
args_tuple, kwargs_tuple = _to_kwargs(
args, kwargs, state.compute_device, False
)
args = args_tuple[0]
kwargs = kwargs_tuple[0]
return _root_cast_forward_input(state, module, args, kwargs)
@no_type_check
def _root_cast_forward_input(
state: _FSDPState, module: torch.nn.Module, args, kwargs
) -> Tuple[Any, Any]:
if state._handle:
force_full_precision = not state._handle._force_full_precision
else:
force_full_precision = True
should_cast_forward_inputs = (
(module.training or not state._use_full_prec_in_eval) and force_full_precision
) and state.mixed_precision.cast_root_forward_inputs
if should_cast_forward_inputs:
input_dtype: Optional[torch.dtype] = state.mixed_precision.param_dtype
args, kwargs = _cast_forward_inputs(input_dtype, *args, **kwargs)
return args, kwargs
@no_type_check
def _pre_backward_hook(
state: _FSDPState,
module: nn.Module,
handle: FlatParamHandle,
grad,
*unused: Any,
) -> Any:
"""
Prepares ``_handle`` 's ``FlatParameter`` s for gradient computation.
Args:
module (nn.Module): Fully sharded module (see [Note: Fully Sharded
Module]).
"""
# Only run the pre-backward hook once per group of handles involved in the
# same module forward computation
if (
handle
and hasattr(handle, "_ran_pre_backward_hook")
and handle._ran_pre_backward_hook
):
return grad
with torch.profiler.record_function("FullyShardedDataParallel._pre_backward_hook"):
# Queue the post-backward callback once for the root FSDP instance to
# attach it to the outermost backward graph task so that it is called
# after all backward calls complete
if state._is_root and not state._post_backward_callback_queued:
_register_post_backward_final_callback(state, module)
_reset_flat_param_grad_info_if_needed(state._all_handles)
elif handle:
allowed_states = [TrainingState.IDLE]
if _is_composable(state):
allowed_states.append(TrainingState.FORWARD_BACKWARD)
_assert_in_training_states(state, allowed_states)
state.training_state = TrainingState.FORWARD_BACKWARD
# Queueing the post-backward callback is the only logic that is not
# per-handle in the pre-backward hook, so we can return early here if
# there are no handles.
if not handle:
return grad
handle._training_state = HandleTrainingState.BACKWARD_PRE
if handle._needs_pre_backward_unshard:
# If the handles have been prefetched, then there is no need to
# call `_unshard()` again
if not handle._prefetched:
_unshard(
state,
handle,
state._unshard_stream,
state._pre_unshard_stream,
)
# Don't wait during trace
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
state._device_handle.current_stream().wait_stream(state._unshard_stream)
# Set this to `False` to ensure that a mistargeted prefetch does not
# actually unshard these handles
handle._needs_pre_backward_unshard = False
with torch.profiler.record_function(
"FullyShardedDataParallel._pre_backward_prefetch"
):
_prefetch_handle(state, handle, _PrefetchMode.BACKWARD)
handle.prepare_gradient_for_backward()
handle._ran_pre_backward_hook = True
return grad
@no_type_check
@torch.no_grad()
def _post_backward_hook(
state: _FSDPState,
handle: FlatParamHandle,
flat_param,
*unused: Any,
):
"""
Reduce-scatters the gradient of ``handle`` 's ``FlatParameter``.
Precondition: The ``FlatParameter`` 's ``.grad`` attribute contains the
unsharded gradient for the local batch.
Postcondition:
- If using ``NO_SHARD``, then the ``.grad`` attribute is the reduced
unsharded gradient.
- Otherwise, the ``_saved_grad_shard`` attribute is the reduced sharded
gradient (accumulating with any existing gradient).
"""
_log_post_backward_hook(state, handle, logger)
flat_param = handle.flat_param
flat_param._post_backward_called = True
with torch.autograd.profiler.record_function(
"FullyShardedDataParallel._post_backward_hook"
):
_assert_in_training_states(state, [TrainingState.FORWARD_BACKWARD])
# For multiple applications of reentrant AC across submodules sharing
# the same `FlatParameter`, the post-backward hook may run multiple
# times in one backward, in which case we permit the state to already
# be in `BACKWARD_POST`.
_p_assert(
handle._training_state
in (HandleTrainingState.BACKWARD_PRE, HandleTrainingState.BACKWARD_POST),
f"Expects `BACKWARD_PRE` or `BACKWARD_POST` state but got {handle._training_state}",
)
handle._training_state = HandleTrainingState.BACKWARD_POST
if flat_param.grad is None:
return
if flat_param.grad.requires_grad:
raise RuntimeError("FSDP does not support gradients of gradients")
_post_backward_reshard(state, handle)
if not state._sync_gradients:
if handle._use_orig_params:
handle._use_unsharded_grad_views()
return
# Wait for all ops in the current stream (e.g. gradient computation) to
# finish before reduce-scattering the gradient
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
state._post_backward_stream.wait_stream(
state._device_handle.current_stream()
)
with state._device_handle.stream(state._post_backward_stream):
autograd_computed_grad = flat_param.grad.data
if (
not _low_precision_hook_enabled(state)
and flat_param.grad.dtype != handle._reduce_dtype
# If we are forcing full precision but communicating grads
# (i.e. model.eval() + full precision in eval was configured), don't downcast gradient.
and not handle._force_full_precision
):
flat_param.grad.data = flat_param.grad.to(handle._reduce_dtype)
if handle.uses_sharded_strategy:
_reduce_grad(state, handle)
else:
_reduce_grad_no_shard(state, handle)
# Since the unsharded gradient is produced in the computation
# stream and consumed in the post-backward stream, inform the
# caching allocator (before it goes out of scope)
_no_dispatch_record_stream(
autograd_computed_grad, state._post_backward_stream
)
def _post_backward_reshard_only_hook(
state: _FSDPState,
handle: FlatParamHandle,
*unused: Any,
) -> None:
with torch.profiler.record_function(
"FullyShardedDataParallel._post_backward_hook_reshard_only"
):
# `_pre_backward_hook` may not get executed
# if forward output does not require grad
# overwrite IDLE state for post-backward prefetching
state.training_state = TrainingState.FORWARD_BACKWARD
handle._training_state = HandleTrainingState.BACKWARD_POST
_post_backward_reshard(state, handle)
def _post_backward_reshard(
state: _FSDPState,
handle: FlatParamHandle,
*unused: Any,
) -> None:
free_unsharded_flat_param = _should_free_in_backward(state, handle)
_reshard(state, handle, free_unsharded_flat_param)
# TODO: Post-backward prefetching does not support the multiple handles
# per module case since the post-backward hook runs per handle, not per
# group of handles.
with torch.profiler.record_function(
"FullyShardedDataParallel._post_backward_prefetch"
):
_prefetch_handle(state, handle, _PrefetchMode.BACKWARD)
@no_type_check
def _should_free_in_backward(
state: _FSDPState,
handle: FlatParamHandle,
) -> bool:
"""
Returns whether FSDP should free the unsharded flat parameter in the
post-backward or not.
"""
if not handle.uses_sharded_strategy:
return False
# If not syncing gradients, then we do not free for strategies that do not
# reshard after forward as a *heuristic* to tradeoff higher memory for
# higher throughput.
return (
state._sync_gradients
or handle._sharding_strategy in RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES
)
@no_type_check
def _reduce_grad(state: _FSDPState, handle: FlatParamHandle) -> None:
"""
For sharded strategies, this runs gradient reduction, sharded gradient
accumulation if needed, and the post-reduction callback.
"""
flat_param = handle.flat_param
uses_hybrid_sharded_strategy = handle._sharding_strategy in (
HandleShardingStrategy.HYBRID_SHARD,
HandleShardingStrategy._HYBRID_SHARD_ZERO2,
)
# We clear `.grad` to permit multiple backwards. This avoids a race where
# the second backward pass computation precedes ahead of the first backward
# pass reduction, which is possible since the reduction is issued in a
# separate stream and is async and would result in reducing the wrong
# gradient.
unsharded_grad = flat_param.grad.data
flat_param.grad = None
padded_unsharded_grad, new_sharded_grad = _get_reduce_scatter_tensors(
state, unsharded_grad
)
if state._comm_hook is None: # default path
_div_if_needed(padded_unsharded_grad, state._gradient_predivide_factor)
pg = (
handle._fake_process_group
if handle._use_fake_reduce
else state.process_group
)
dist.reduce_scatter_tensor(
new_sharded_grad,
padded_unsharded_grad,
group=pg,
)
if uses_hybrid_sharded_strategy:
# Don't wait during trace
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
state._all_reduce_stream.wait_stream(state._post_backward_stream)
with state._device_handle.stream(state._all_reduce_stream):
# Since the new sharded gradient is produced in the post-
# backward stream and consumed in the all-reduce stream,
# inform the caching allocator
_no_dispatch_record_stream(new_sharded_grad, state._all_reduce_stream)
dist.all_reduce(new_sharded_grad, group=state._inter_node_pg)
_div_if_needed(new_sharded_grad, state._gradient_postdivide_factor)
grad_to_offload = _accumulate_sharded_grad(
state, handle, new_sharded_grad
)
_post_reduce_grad_callback(state, handle, grad_to_offload)
return
_div_if_needed(new_sharded_grad, state._gradient_postdivide_factor)
else:
state._comm_hook(
state._comm_hook_state, padded_unsharded_grad, new_sharded_grad
)
# NOTE: HSDP variants do not support communication hook.
grad_to_offload = _accumulate_sharded_grad(state, handle, new_sharded_grad)
_post_reduce_grad_callback(state, handle, grad_to_offload)
@no_type_check
def _get_reduce_scatter_tensors(
state: _FSDPState, unsharded_grad: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Returns the input and output tensors to reduce-scatter, respectively.
"""
chunks = list(unsharded_grad.chunk(state.world_size))
numel_to_pad = state.world_size * chunks[0].numel() - unsharded_grad.numel()
padded_unsharded_grad = (
F.pad(unsharded_grad, [0, numel_to_pad]) if numel_to_pad > 0 else unsharded_grad
)
new_sharded_grad = torch.empty_like(chunks[0]) # padded
return padded_unsharded_grad, new_sharded_grad
@no_type_check
def _accumulate_sharded_grad(
state: _FSDPState,
handle: FlatParamHandle,
sharded_grad: torch.Tensor,
) -> torch.Tensor:
"""
Accumulates the reduce-scattered sharded gradient with any existing sharded
gradient if needed, returning the gradient to offload (if CPU offloading is
enabled).
"""
flat_param = handle.flat_param
_cast_grad_to_param_dtype(state, sharded_grad, flat_param)
# Save the sharded gradient in `_saved_grad_shard` to support gradient
# accumulation -- for multiple backwards, the gradient reductions may
# happen in arbitrary order
accumulate_grad = hasattr(flat_param, "_saved_grad_shard")
if accumulate_grad:
_check_grad_to_accumulate(sharded_grad, flat_param._saved_grad_shard)
flat_param._saved_grad_shard += sharded_grad
else:
flat_param._saved_grad_shard = sharded_grad
grad_to_offload = flat_param._saved_grad_shard
return grad_to_offload
@no_type_check
def _reduce_grad_no_shard(state: _FSDPState, handle: FlatParamHandle) -> None:
"""
For no-shard, this runs gradient reduction (which directly covers any
gradient accumulation implicitly) and the post-reduction callback.
"""
flat_param = handle.flat_param
if state._comm_hook is None: # default path
_div_if_needed(flat_param.grad, state._gradient_predivide_factor)
dist.all_reduce(flat_param.grad, group=state.process_group)
_div_if_needed(flat_param.grad, state._gradient_postdivide_factor)
else:
state._comm_hook(state._comm_hook_state, flat_param.grad)
# For `NO_SHARD`, we can keep the low precision gradients by simply
# omitting the cast altogether
if not handle._keep_low_precision_grads:
_cast_grad_to_param_dtype(state, flat_param.grad, flat_param)
grad_to_offload = flat_param.grad.data
_post_reduce_grad_callback(state, handle, grad_to_offload)
@no_type_check
def _post_reduce_grad_callback(
state: _FSDPState,
handle: FlatParamHandle,
# Additional arguments needed for the callback logic
grad_to_offload: torch.Tensor,
):
"""
This callback captures any logic to run after the gradient reduction
finishes. Currently, this offloads the gradient to CPU if CPU offloading is
enabled and uses sharded gradient views if ``use_orig_params=True``.
"""
_offload_grad(state, handle, grad_to_offload)
_post_backward_use_sharded_grad_views(handle)
@no_type_check
def _offload_grad(
state: _FSDPState,
handle: FlatParamHandle,
grad_to_offload: torch.Tensor,
):
if not handle._offload_params:
return
# Offload the gradient to CPU to ensure parameters and gradients are on the
# same device as required by the optimizer
# TODO: Investigate why `NO_SHARD` breaks correctness when using
# `non_blocking=True` here.
# TODO (rohan-varma): When CPU offload and optimizer overlap,
# non_blocking=True won't work since the copy may have not finished before
# the optimizer step executes on CPU. If we want to use non-blocking=True
# here, we'll have to synchronize before using result on CPU.
non_blocking = handle.uses_sharded_strategy and not handle._has_optim_in_backward
handle.flat_param._cpu_grad.copy_(
grad_to_offload.detach(), non_blocking=non_blocking
) # synchronized in the post-backward callback
# Since the gradient being offloaded may have been produced in the
# computation stream and is being consumed here in the post-backward
# stream, inform the caching allocator
_no_dispatch_record_stream(grad_to_offload.data, state._post_backward_stream)
@no_type_check
def _post_backward_use_sharded_grad_views(handle: FlatParamHandle):
if not handle._use_orig_params:
return
# Since the handle's `FlatParameter` completed its gradient computation, we
# should reset the gradient noneness mask
handle._reset_is_grad_none()
# Delay using sharded gradient views until after the reduce-scatter instead
# of immediately after resharding
handle._use_sharded_grad_views()
if handle._has_optim_in_backward:
handle.prepare_gradient_for_optim()
for orig_param in handle.flat_param._params:
# Check for `None` gradient to filter parameters not in the rank
if orig_param.grad is not None and hasattr(
orig_param, "_in_backward_optimizers"
):
# TODO (rohan-varma): For CPU offload, this unfortunately
# operates on CPU because the parameters and gradients have
# already been offloaded. We should run this on GPU after
# refactoring.
for optim in orig_param._in_backward_optimizers:
optim.step()
optim.zero_grad(set_to_none=True)
handle._reset_flat_param_grad_info_if_needed()
if handle._offload_params:
handle.flat_param._cpu_grad = None
def _div_if_needed(tensor: torch.Tensor, div_factor: float) -> None:
if div_factor > 1:
tensor.div_(div_factor)
@no_type_check
def _cast_grad_to_param_dtype(
state: _FSDPState,
sharded_grad: torch.Tensor,
param: FlatParameter,
):
"""
Casts ``sharded_grad`` back to the full parameter dtype so that the
optimizer step runs with that dtype. This performs an actual cast if
1. parameters were in reduced precision during the forward since then
gradients would be in that reduced precision, or
2. parameters were not in reduced precision but gradients were in
reduced precision for communication.
However, if a low precision communication hook is registered, then this
dtype cast happens in the hook instead.
"""
_assert_in_training_states(state, [TrainingState.FORWARD_BACKWARD])
if not _low_precision_hook_enabled(state) and sharded_grad.dtype != param.dtype:
low_prec_grad_data = sharded_grad.data
sharded_grad.data = sharded_grad.data.to(dtype=param.dtype)
# Since for `NO_SHARD`, the gradient is produced in the computation
# stream and consumed here in the post-backward stream, inform the
# caching allocator; for the sharded strategies, the gradient is
# produced in the post-backward stream, so this `record_stream()`
# should be a no-op
_no_dispatch_record_stream(
low_prec_grad_data, state._device_handle.current_stream()
)
def _check_grad_to_accumulate(
new_sharded_grad: torch.Tensor,
accumulated_grad: torch.Tensor,
) -> None:
_p_assert(
accumulated_grad.shape == new_sharded_grad.shape,
"Shape mismatch when accumulating gradients: "
f"existing gradient shape={accumulated_grad.shape} "
f"new gradient shape={new_sharded_grad.shape}",
)
_p_assert(
accumulated_grad.device == new_sharded_grad.device,
"Device mismatch when accumulating gradients: "
f"existing gradient device={accumulated_grad.device} "
f"new gradient device={new_sharded_grad.device}",
)
@no_type_check
def _low_precision_hook_enabled(state: _FSDPState) -> bool:
return state._comm_hook in LOW_PRECISION_HOOKS
@no_type_check
@torch.no_grad()
def _post_backward_final_callback(
state: _FSDPState,
module: nn.Module,
):
"""
This waits for the post-backward to finish and performs some final cleanup.
This runs at the end of the entire backward pass and should only be called
on the root FSDP instance.
"""
_p_assert(
state._is_root,
"The post-backward callback should only be called on the root FSDP instance",
)
root_state = state
if root_state._sync_gradients:
current_stream = state._device_handle.current_stream()
# TODO (rohan-varma): this also waits for the overlapped optimizer step to finish
# since it currently runs in the post-backward stream. That can be
# pushed to the next forward if run in a different stream
current_stream.wait_stream(root_state._post_backward_stream)
if root_state._all_reduce_stream is not current_stream: # uses HSDP
current_stream.wait_stream(root_state._all_reduce_stream)
if root_state.cpu_offload.offload_params:
# Wait for non-blocking GPU -> CPU sharded gradient copies from the
# post-backward hooks to finish explicitly since CPU gradients do
# not automatically synchronize with the GPU
state._device_handle.current_stream().synchronize()
root_state._exec_order_data.next_iter()
for fsdp_state in state._all_fsdp_states:
_catch_all_reshard(fsdp_state)
_finalize_params(fsdp_state)
fsdp_state.training_state = TrainingState.IDLE
handle = fsdp_state._handle
if handle:
handle._ran_pre_backward_hook = False
handle._needs_pre_backward_unshard = False
handle._post_forward_index = None
handle._training_state = HandleTrainingState.IDLE
handle._prefetched = False
# Reset for cases like one forward and multiple backwards
root_state._post_backward_callback_queued = False
@no_type_check
def _catch_all_reshard(
state: _FSDPState,
) -> None:
"""
Reshards the parameters that may not have been resharded in the
post-backward hook. This can happen when a module's output is used in the
forward pass, meaning that its pre-backward hook runs (unsharding the
parameter), but the post-backward hook does not run because the output was
not jused in the loss computation corresponding to this backward pass.
"""
# Wrap with a try-except to provide a more informative traceback if an
# error is raised
try:
if state._handle:
# TODO: This already-resharded check is brittle:
# https://github.com/pytorch/pytorch/issues/83956
already_resharded = (
state._handle.flat_param.data_ptr()
== state._handle.flat_param._local_shard.data_ptr()
# If FSDP skipped using sharded views, then the flat parameter
# still points to the sharded data, so we need to reshard to
# use sharded views
and not state._handle._skipped_use_sharded_views
)
if already_resharded:
return
free_unsharded_flat_param = _should_free_in_backward(state, state._handle)
_reshard(state, state._handle, free_unsharded_flat_param)
except Exception as e:
_p_assert(
False,
f"Got exception in the catch-all reshard for {state}: {str(e)}",
raise_assertion_error=False,
)
raise e
@no_type_check
def _finalize_params(
state: _FSDPState,
) -> None:
"""Finalizes the parameters before the next iteration."""
handle = state._handle
if not handle:
return
flat_param = handle.flat_param
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
if hasattr(flat_param, "_post_backward_hook_handle"):
pbhs_handle = flat_param._post_backward_hook_handle
pbhs_handle.remove()
del flat_param._post_backward_hook_handle
else:
if hasattr(flat_param, "_post_backward_hook_state"):
post_backward_hook_state_len = len(flat_param._post_backward_hook_state)
expected_post_backward_hook_state_len = int(flat_param.requires_grad) + 1
_p_assert(
post_backward_hook_state_len == expected_post_backward_hook_state_len,
f"Invalid: ``_post_backward_hook_state``: {flat_param._post_backward_hook_state}",
)
flat_param._post_backward_hook_state[-1].remove()
delattr(flat_param, "_post_backward_hook_state")
if flat_param.requires_grad:
if not state._sync_gradients:
# Preserve the gradient accumulation state if not synchronizing
# gradients: `.grad` remains the unsharded gradient from prior
# `no_sync()` iterations, and `_saved_grad_shard` remains the
# sharded gradient from the last synchronized iteration
return
if not handle._has_optim_in_backward:
handle.prepare_gradient_for_optim()
_p_assert(
hasattr(flat_param, "_post_backward_called"),
"Expects `_post_backward_called` to be set on the `FlatParameter`",
)
flat_param._post_backward_called = False
@no_type_check
def _prefetch_handle(
state: _FSDPState,
current_handle: Optional[FlatParamHandle],
prefetch_mode: _PrefetchMode,
) -> None:
"""
Prefetches the next handles if needed (without synchronization). An empty
handles key cannot prefetch.
"""
if not current_handle:
return
handle = _get_handle_to_prefetch(state, current_handle)
if not handle:
return
# Temporarily emulate the training state while calling `_unshard` to
# ensure the correct `as_params` for `_use_unsharded_views()`
prev_training_state = handle._training_state
if prefetch_mode == _PrefetchMode.BACKWARD:
handle._training_state = HandleTrainingState.BACKWARD_PRE
elif prefetch_mode == _PrefetchMode.FORWARD:
handle._training_state = HandleTrainingState.FORWARD
else:
raise ValueError(f"Invalid prefetch mode on rank {state.rank}: {prefetch_mode}")
# Prefetch the next set of handles without synchronizing to allow
# the sync to happen as late as possible to maximize overlap
_unshard(state, handle, state._unshard_stream, state._pre_unshard_stream)
handle._training_state = prev_training_state
handle._prefetched = True
@no_type_check
def _get_handle_to_prefetch(
state: _FSDPState,
current_handle: FlatParamHandle,
) -> FlatParamHandle:
"""
Returns a :class:`list` of the handles keys to prefetch for the next
module(s), where ``current_handle`` represents the current module.
"Prefetching" refers to running the unshard logic early (without
synchronization), and the "next" modules depend on the recorded execution
order and the current training state.
"""
training_state = _get_training_state(current_handle)
valid_training_states = (
HandleTrainingState.BACKWARD_PRE,
HandleTrainingState.BACKWARD_POST,
HandleTrainingState.FORWARD,
)
_p_assert(
training_state in valid_training_states,
f"Prefetching is only supported in {valid_training_states} but "
f"currently in {training_state}",
)
eod = state._exec_order_data
target_handle: Optional[FlatParamHandle] = None
if (
training_state == HandleTrainingState.BACKWARD_PRE
and state.backward_prefetch == BackwardPrefetch.BACKWARD_PRE
) or (
training_state == HandleTrainingState.BACKWARD_POST
and state.backward_prefetch == BackwardPrefetch.BACKWARD_POST
):
target_handle_candidate = eod.get_handle_to_backward_prefetch(current_handle)
if (
target_handle_candidate
and target_handle_candidate._needs_pre_backward_unshard
and not target_handle_candidate._prefetched
):
target_handle = target_handle_candidate
else:
target_handle = None
elif training_state == HandleTrainingState.FORWARD and state.forward_prefetch:
target_handle_candidate = eod.get_handle_to_forward_prefetch(current_handle)
if (
target_handle_candidate
and target_handle_candidate._needs_pre_forward_unshard
and not target_handle_candidate._prefetched
):
target_handle = target_handle_candidate
else:
target_handle = None
return target_handle
def _get_training_state(
handle: FlatParamHandle,
) -> HandleTrainingState:
"""Returns the training state of the handles in ``handle``."""
_p_assert(handle, "Expects a non-empty handle")
return handle._training_state
@no_type_check
def _register_pre_forward_hook(
state: _FSDPState,
module: nn.Module,
) -> None:
"""
Registers a pre-forward hook on ``module``.
"""
for forward_handle in state._pre_forward_handles:
forward_handle.remove()
state._pre_forward_handles.clear()
module_param_handle = state._fully_sharded_module_to_handle.get(module, None)
hook = functools.partial(
_pre_forward, state, module_param_handle, _pre_forward_unshard
)
state._pre_forward_handles.append(
module.register_forward_pre_hook(hook, prepend=True, with_kwargs=True)
)
@no_type_check
def _register_post_forward_hook(
state: _FSDPState,
module: nn.Module,
) -> None:
"""
Registers a post-forward hook on ``module``. Even if the module has no
handles, we should register the hook since it will register the module's
pre-backward hook.
"""
for forward_handle in state._post_forward_handles:
forward_handle.remove()
state._post_forward_handles.clear()
module_param_handle = state._fully_sharded_module_to_handle.get(module, None)
hook = functools.partial(
_post_forward,
state,
module_param_handle,
_post_forward_reshard,
)
state._post_forward_handles.append(module.register_forward_hook(hook))
@no_type_check
def _register_root_pre_forward_hook(
state: _FSDPState,
module: nn.Module,
):
"""
Registers root pre-forward hook on ``module``, which should be the local
FSDP root.
NOTE: For the current composable FSDP design, we have each application of
``fully_shard()`` to a module to indicate that that module is the local
FSDP root. We may remove this assumption in the future, in which case we
will need to register this root pre-forward hook on any candidate module
that may be the local FSDP root.
"""
for forward_handle in state._root_pre_forward_handles:
forward_handle.remove()
state._root_pre_forward_handles.clear()
hook = functools.partial(_root_pre_forward, state)
state._root_pre_forward_handles.append(
module.register_forward_pre_hook(hook, prepend=True, with_kwargs=True)
)
@no_type_check
def _register_pre_backward_hooks(
state: _FSDPState,
module: nn.Module,
outputs: Any,
handle: FlatParamHandle,
) -> None:
"""
Registers pre-backward hooks on the tensors that require gradients in the
forward pass outputs ``outputs``, which were computed using the
``FlatParameter`` s of ``handles``.
Args:
module (nn.Module): Fully sharded module (see [Note: Fully Sharded
Module]).
Returns:
Forward pass outputs with pre-backward hooks registered to tensors that
require gradients.
"""
# If there is no gradient computation, then there is no need for
# pre-backward logic
if not torch.is_grad_enabled():
return outputs
if state._is_root:
state._post_backward_callback_queued = False # only defined on the root
if handle:
handle._needs_pre_backward_unshard = False
# Since these handles' `FlatParameter`s participated in a forward, we
# conservatively assume that they will be used in the backward
handle._ran_pre_backward_hook = False
def _register_hook(t: torch.Tensor) -> torch.Tensor:
if t.requires_grad:
t.register_hook(
torch.utils.hooks.unserializable_hook(
functools.partial(_pre_backward_hook, state, module, handle)
)
)
if handle:
handle._needs_pre_backward_unshard = True
return t
return _apply_to_tensors(_register_hook, outputs)
def _register_post_backward_hook(
state: _FSDPState,
handle: Optional[FlatParamHandle],
) -> None:
"""
Registers post-backward hooks on the ``FlatParameter`` s'
``AccumulateGrad`` objects to reshard and to reduce-scatter gradients.
The ``AccumulateGrad`` object represents the last function that finalizes
the ``FlatParameter`` 's gradient, so it only runs after its entire
gradient computation has finished.
We register the post-backward hook only once in the *first* forward that a
``FlatParameter`` participates in. This relies on the ``AccumulateGrad``
object being preserved through multiple forwards.
NOTE: We follow this heuristic to prefer the *first* forward to target the
parameter mixed precision case, where there are *separate*
``AccumulateGrad`` objects across the different forwards. (Without
parameter mixed precision, the ``AccumulateGrad`` objects are the same.) If
we instead prefer the *last* forward, then the hook runs early.
"""
# If there is no gradient computation, then there is no need for
# post-backward logic
if not torch.is_grad_enabled():
return
if not handle:
return
flat_param = handle.flat_param
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
already_registered = hasattr(flat_param, "_post_backward_hook_handle")
if already_registered or not flat_param.requires_grad:
return
hook = functools.partial(_post_backward_hook, state, handle)
hook_handle = flat_param.register_post_accumulate_grad_hook(hook)
flat_param._post_backward_hook_handle = hook_handle # type: ignore[attr-defined]
else:
already_registered = hasattr(flat_param, "_post_backward_hook_state")
if already_registered or not flat_param.requires_grad:
return
# Get the `AccumulateGrad` object
temp_flat_param = flat_param.expand_as(flat_param)
_p_assert(
temp_flat_param.grad_fn is not None,
"The `grad_fn` is needed to access the `AccumulateGrad` and "
"register the post-backward hook",
)
acc_grad = temp_flat_param.grad_fn.next_functions[0][0] # type: ignore[union-attr]
assert acc_grad is not None
hook_handle = acc_grad.register_hook(
functools.partial(_post_backward_hook, state, handle)
)
flat_param._post_backward_hook_state = (acc_grad, hook_handle) # type: ignore[attr-defined]
def _register_post_backward_reshard_only_hook(
state: _FSDPState,
handle: Optional[FlatParamHandle],
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
) -> None:
"""
Registers post-backward hooks to reshard flat parameters that do not
require gradient. We register these using multi-post-grad hooks on the
input activations to ensure that all gradients that may depend on the
parameters have been computed before resharding.
"""
# If there is no gradient computation, then there is no need for
# post-backward logic
if not torch.is_grad_enabled():
return
# Construct `inp_tensors` lazily to avoid CPU overhead in typical case
# where each flat parameter requires gradient
inp_tensors: Optional[List[torch.Tensor]] = None
if not handle:
return
flat_param = handle.flat_param
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
already_registered = hasattr(flat_param, "_post_backward_hook_handle")
else:
already_registered = hasattr(flat_param, "_post_backward_hook_state")
if already_registered or flat_param.requires_grad:
return
if inp_tensors is None:
args_flat = pytree.arg_tree_leaves(*args, **kwargs)
inp_tensors = [
obj for obj in args_flat if torch.is_tensor(obj) and obj.requires_grad
]
assert inp_tensors is not None # mypy
hook_handle = register_multi_grad_hook(
inp_tensors, functools.partial(_post_backward_reshard_only_hook, state, handle)
)
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
flat_param._post_backward_hook_handle = hook_handle # type: ignore[attr-defined, assignment]
else:
flat_param._post_backward_hook_state = (hook_handle,) # type: ignore[attr-defined, assignment]
@no_type_check
def _register_post_backward_final_callback(
state: _FSDPState, module: nn.Module
) -> None:
"""
Registers the post-backward final callback that runs at the end of the
backward pass. This should be called from the root FSDP instance at the
beginning of the pre-backward.
"""
_p_assert(
state._is_root,
"Only the root FSDP instance should register the post-backward callback",
)
if state._post_backward_callback_queued:
return
_assert_in_training_states(state, [TrainingState.IDLE])
# Trace does not need this callback
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
state._post_backward_callback_queued = True
Variable._execution_engine.queue_callback(
functools.partial(_post_backward_final_callback, state, module)
)
def _wait_for_computation_stream(
computation_stream: torch.Stream,
unshard_stream: torch.Stream,
pre_unshard_stream: torch.Stream,
):
"""
Has the unshard and pre-unshard streams wait for the computation stream.
For example, this should be called in the FSDP root's pre-forward to
respect optimizer step computation.
"""
# Tracing does not need to wait
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
return
unshard_stream.wait_stream(computation_stream) # type: ignore[attr-defined]
# Having the pre-all-gather stream wait for the current stream even if we
# do not leverage the pre-all-gather stream is tolerable since this only
# runs once per iteration
pre_unshard_stream.wait_stream(computation_stream) # type: ignore[attr-defined]
def _reset_flat_param_grad_info_if_needed(
handles: List[FlatParamHandle],
):
"""
Clears the original parameters' gradients if needed. This method's CPU
overhead is minimal, so we may call it throughout FSDP methods, which serve
as callsites to free the gradient memory earlier.
"""
if not isinstance(handles, list):
handles = [handles]
for handle in handles:
if handle._use_orig_params:
handle._reset_flat_param_grad_info_if_needed()
@no_type_check
def _get_buffers_and_dtypes_for_computation(
state: _FSDPState,
root_module: nn.Module,
) -> Tuple[List[torch.Tensor], List[Optional[torch.dtype]]]:
"""
Returns all buffers in the module tree rooted at ``root_module`` and a
corresponding list of the buffer dtypes for computation. Each buffer dtype
is either ``None`` if buffer mixed precision is not enabled or the buffer
low precision dtype otherwise.
"""
_p_assert(state._is_root, "Expects the root to cast buffers")
buffers: List[torch.Tensor] = []
buffer_dtypes: List[Optional[torch.dtype]] = []
visited_buffers: Set[torch.Tensor] = set()
# Traverse the FSDP states bottom-up so that we prefer the owning FSDP
# instance's mixed precision setting for each buffer
fsdp_states, fsdp_modules = traversal_utils._get_fsdp_states_with_modules(
root_module
)
for fsdp_state, fsdp_module in zip(reversed(fsdp_states), reversed(fsdp_modules)):
for buffer_name, buffer in fsdp_module.named_buffers():
if buffer in visited_buffers:
continue
visited_buffers.add(buffer)
if clean_tensor_name(buffer_name) in fsdp_state._ignored_buffer_names:
continue
buffers.append(buffer)
buffer_dtypes.append(fsdp_state.mixed_precision.buffer_dtype)
assert len(buffers) == len(buffer_dtypes), f"{len(buffers)} {len(buffer_dtypes)}"
return buffers, buffer_dtypes
@no_type_check
def _get_orig_buffer_dtypes(
state: _FSDPState,
buffer_names: List[str],
) -> List[torch.dtype]:
"""
Returns the original buffer types of the given buffer names.
"""
buffer_dtypes: List[torch.dtype] = []
for buffer_name in buffer_names:
_p_assert(
buffer_name in state._buffer_name_to_orig_dtype,
f"{buffer_name} is missing from pre-computed dict on rank "
f"{state.rank}, which only has keys "
f"{state._buffer_name_to_orig_dtype.keys()}",
)
buffer_dtypes.append(state._buffer_name_to_orig_dtype[buffer_name])
return buffer_dtypes
def _cast_buffers_to_dtype_and_device(
buffers: List[torch.Tensor],
buffer_dtypes: List[Optional[torch.dtype]],
device: torch.device,
) -> None:
"""
Casts ``buffers`` to the dtypes given by ``buffer_dtypes`` and moves them
to ``device``. If an element in ``buffer_dtypes`` is ``None``, then the
corresponding buffer is only moved to ``device``.
"""
_p_assert(
buffer_dtypes is None or len(buffers) == len(buffer_dtypes),
f"Expects `buffers` and `buffer_dtypes` to have the same length if "
f"`buffer_dtypes` is specified but got {len(buffers)} and "
f"{len(buffer_dtypes)}",
)
for buffer, buffer_dtype in zip(buffers, buffer_dtypes):
if not torch.is_floating_point(buffer) or buffer_dtype is None:
buffer.data = buffer.to(device=device)
else:
buffer.data = buffer.to(device=device, dtype=buffer_dtype)
|