1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
|
# mypy: allow-untyped-defs
import contextlib
import logging
import math
import warnings
from typing import (
Any,
Callable,
cast,
Dict,
Generator,
Iterator,
List,
no_type_check,
Tuple,
)
import torch
import torch.distributed as dist
import torch.distributed.algorithms._checkpoint.checkpoint_wrapper as checkpoint_wrapper
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._shard.sharded_tensor import (
init_from_local_shards,
Shard,
ShardedTensor,
)
from torch.distributed.device_mesh import _mesh_resources
from torch.distributed.fsdp._common_utils import (
_FSDPState,
_get_module_fsdp_state_if_fully_sharded_module,
_has_fsdp_params,
_is_composable,
_module_handle,
clean_tensor_name,
FSDP_PREFIX,
FSDP_WRAPPED_MODULE,
)
from torch.distributed.fsdp._debug_utils import SimpleProfiler
from torch.distributed.fsdp._runtime_utils import (
_cast_buffers_to_dtype_and_device,
_get_orig_buffer_dtypes,
_lazy_init,
_reset_flat_param_grad_info_if_needed,
)
from torch.distributed.fsdp.api import (
FullStateDictConfig,
ShardingStrategy,
StateDictType,
)
from torch.distributed.tensor import DTensor
from torch.distributed.utils import _replace_by_prefix
from ._fsdp_extensions import (
_ext_all_gather_dtensor,
_ext_chunk_dtensor,
_ext_chunk_tensor,
_ext_post_unflatten_transform,
_ext_pre_load_state_dict_transform,
)
from ._unshard_param_utils import _unshard_fsdp_state_params, FLAT_PARAM
logger = logging.getLogger(__name__)
def _should_unshard_params(fsdp_state: _FSDPState) -> bool:
return not (
fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD
and (_is_composable(fsdp_state) or fsdp_state._use_orig_params)
)
def _convert_to_wrapped_module_name(module_name: str) -> str:
module_name = module_name.replace(f"{FSDP_PREFIX}", "")
module_name = module_name.replace(f"{FSDP_WRAPPED_MODULE}", "")
if module_name:
module_name = f"{module_name}."
# `CheckpointWrapper` adds a prefix that has to be removed as well.
module_name = module_name.replace(checkpoint_wrapper._CHECKPOINT_PREFIX, "")
return module_name
def _param_name_infos(
module: nn.Module, fsdp_state: _FSDPState
) -> Iterator[Tuple[str, str, str]]:
if not _has_fsdp_params(fsdp_state, module):
return
for param_name, module_name in _module_handle(
fsdp_state, module
).param_module_names():
module_name = _convert_to_wrapped_module_name(module_name)
fqn = f"{module_name}{param_name}"
yield fqn, param_name, module_name
def _shared_param_name_infos(
module: nn.Module, fsdp_state
) -> Iterator[Tuple[str, str, str]]:
for param_name, module_name in _module_handle(
fsdp_state, module
).shared_param_module_names():
module_name = _convert_to_wrapped_module_name(module_name)
fqn = f"{module_name}{param_name}"
yield fqn, param_name, module_name
@no_type_check
def _enter_unshard_params_ctx(
module: nn.Module,
fsdp_state: _FSDPState,
writeback: bool = False,
rank0_only: bool = False,
offload_to_cpu: bool = False,
with_grads: bool = False,
) -> None:
"""
state_dict hooks cannot use the pure context call as the checkpoint flow
requires to enter the context in the pre-hook but leave the context in the
post-hook. This API enters the context of ``_unshard_fsdp_state_params``.
"""
assert module not in fsdp_state._unshard_params_ctx, (
"Entering the ``_unshard_fsdp_state_params`` context but _unshard_params_ctx[module] "
"is not None."
)
fsdp_state._unshard_params_ctx[module] = _unshard_fsdp_state_params(
module,
fsdp_state,
writeback=writeback,
rank0_only=rank0_only,
offload_to_cpu=offload_to_cpu,
with_grads=with_grads,
)
fsdp_state._unshard_params_ctx[module].__enter__()
@no_type_check
def _exit_unshard_params_ctx(module: nn.Module, fsdp_state: _FSDPState) -> None:
"""A helper function to exit ``_unshard_fsdp_state_params`` context."""
fsdp_state._unshard_params_ctx[module].__exit__(None, None, None)
fsdp_state._unshard_params_ctx.pop(module)
def _common_pre_state_dict_hook(
module: nn.Module,
fsdp_state: _FSDPState,
) -> None:
"""Performs the pre-state_dict tasks shared by all state_dict types."""
if fsdp_state._device_handle.is_available():
fsdp_state._device_handle.synchronize()
# TODO: need to check if this is always correct for composable FSDP.
_lazy_init(fsdp_state, module)
if fsdp_state._is_root:
_reset_flat_param_grad_info_if_needed(fsdp_state._all_handles)
def _common_unshard_pre_state_dict_hook(
module: nn.Module,
fsdp_state: _FSDPState,
offload_to_cpu: bool,
rank0_only: bool,
) -> None:
"""
Performs the pre-state_dict tasks shared by all state_dict types that require
``_unshard_fsdp_state_params()``. FULL_STATE_DICT and SHARDED_STATE_DICT use this hook.
"""
# For composable `fully_shard`, it does not need to unshard parameters for `NO_SHARD` cases.
if not _should_unshard_params(fsdp_state):
return
_enter_unshard_params_ctx(
module,
fsdp_state,
writeback=False,
offload_to_cpu=offload_to_cpu,
rank0_only=rank0_only,
)
@no_type_check
def _common_unshard_post_state_dict_hook(
module: nn.Module,
fsdp_state: _FSDPState,
state_dict: Dict[str, Any],
prefix: str,
param_hook: Callable,
) -> Dict[str, Any]:
"""
The post-state_dict flow that shared by all state_dict types that require
``_unshard_fsdp_state_params()``. FULL_STATE_DICT and SHARDED_STATE_DICT use this
hook.
"""
_replace_by_prefix(state_dict, prefix + f"{FSDP_PREFIX}", prefix)
# Return early for trivial cases
if not state_dict or not _has_fsdp_params(fsdp_state, module):
if _should_unshard_params(fsdp_state):
_exit_unshard_params_ctx(module, fsdp_state)
return state_dict
# If a rank does not have unsharded parameters(when `rank0_only=True`
# and `rank != 0`), then the rank only needed to participate in the
# all-gather and does not need to save the # state dict. We simply check
# rank0_only to ensure this issue.
rank0_only = (
fsdp_state._state_dict_type == StateDictType.FULL_STATE_DICT
and cast(FullStateDictConfig, fsdp_state._state_dict_config).rank0_only
)
# no_fsdp_return means the state_dict returned by this rank should contain
# only non-FSDP controlled parameters and buffers.
no_fsdp_return = rank0_only and fsdp_state.rank != 0
if no_fsdp_return and not fsdp_state._use_orig_params:
for clean_key in fsdp_state._buffer_names:
# This is a hack to support activation checkpoint.
clean_key = clean_key.replace(
f"{checkpoint_wrapper._CHECKPOINT_PREFIX}.", ""
)
state_dict.pop(f"{prefix}{clean_key}", None)
# Non-zero ranks have flat_param key when rank0_only=True, because rank0_only=True is
# passed in to unshard context, but nonzero ranks reshard early, causing this flat_param
# to appear in state_dict.
state_dict.pop(f"{prefix}{FLAT_PARAM}")
_exit_unshard_params_ctx(module, fsdp_state)
return state_dict
# Loop only the parameters saved in this instance's wrapped module to
# avoid processing buffers.
for fqn, param_name, module_name in _param_name_infos(module, fsdp_state):
fqn = f"{prefix}{fqn}"
if no_fsdp_return:
state_dict.pop(fqn)
continue
assert fqn in state_dict, (
f"FSDP assumes {fqn} is in the state_dict but the state_dict only "
f"has {state_dict.keys()}. "
f"prefix={prefix}, module_name={module_name}, "
f"param_name={param_name} rank={fsdp_state.rank}."
)
param_hook(state_dict, prefix, fqn)
if _should_unshard_params(fsdp_state):
_exit_unshard_params_ctx(module, fsdp_state)
cpu_device = torch.device("cpu")
buffer_clean_fqns = []
buffers = []
for clean_key in fsdp_state._buffer_names:
# This is a hack to support activation checkpoint.
clean_key = clean_tensor_name(clean_key)
fqn = f"{prefix}{clean_key}"
if fqn not in state_dict:
# A buffer can be registered as non-persistent.
continue
if no_fsdp_return:
state_dict.pop(fqn)
else:
buffer = state_dict[fqn]
if (
fsdp_state._state_dict_config.offload_to_cpu
and buffer.device != cpu_device
):
state_dict[fqn] = buffer.to(cpu_device)
# skip upcasting for ignored buffers
if clean_key not in fsdp_state._ignored_buffer_names:
buffer_clean_fqns.append(clean_key)
buffers.append(state_dict[fqn])
if buffers:
mixed_precision_enabled_for_buffers = (
fsdp_state._mixed_precision_enabled_for_buffers()
if not _is_composable(fsdp_state)
else (fsdp_state.mixed_precision.buffer_dtype is not None)
)
if mixed_precision_enabled_for_buffers:
buffer_dtypes = _get_orig_buffer_dtypes(fsdp_state, buffer_clean_fqns)
_cast_buffers_to_dtype_and_device(
buffers, buffer_dtypes, fsdp_state.compute_device
)
for buffer, clean_fqn in zip(buffers, buffer_clean_fqns):
fqn = f"{prefix}{clean_fqn}"
logger.info("FSDP is casting the dtype of %s to %s", fqn, buffer.dtype)
state_dict[fqn] = buffer.clone()
return state_dict
@no_type_check
def _full_pre_state_dict_hook(
fsdp_state: _FSDPState,
module: nn.Module,
*args,
**kwargs,
) -> None:
"""
Hook that runs before model.state_dict() is called. pre-state_dict hook is
not actually supported by ``nn.Module``. As a result, this API is called
from ``_full_post_state_dict_hook()`` to simulate the case. Once pre-state_dict
is supported in ``nn.Module``, this hook will be registered as a hook in
``nn.Module``.
"""
if getattr(fsdp_state, "_device_mesh", False):
_mesh_resources.get_root_mesh(fsdp_state._device_mesh)
_common_pre_state_dict_hook(module, fsdp_state)
_common_unshard_pre_state_dict_hook(
module,
fsdp_state,
offload_to_cpu=fsdp_state._state_dict_config.offload_to_cpu,
rank0_only=cast(FullStateDictConfig, fsdp_state._state_dict_config).rank0_only,
)
@no_type_check
def _full_post_state_dict_hook(
module: nn.Module,
fsdp_state: _FSDPState,
state_dict: Dict[str, Any],
prefix: str,
) -> Dict[str, Any]:
"""
Hook that runs after model.state_dict() is called before returning result to
user. For FSDP, we may have to clone the tensors in state_dict as params go
back to sharded version after _unshard_fsdp_state_params ends, and also remove
the ``FSDP_WRAPPED_MODULE`` prefix.
"""
def param_hook(
state_dict: Dict[str, Any],
prefix: str,
fqn: str,
) -> None:
clean_key = fqn
clean_prefix = clean_tensor_name(prefix)
# Strip prefix out of key if needed as buffer names and param names
# do not have prefix considered as they are not computed in `state_dict`
# call.
if clean_key.startswith(clean_prefix):
clean_key = clean_key[len(clean_prefix) :]
# Clone parameters before exiting the `_unshard_fsdp_state_params()` context.
if not getattr(state_dict[fqn], "_has_been_cloned", False):
try:
state_dict[fqn] = state_dict[fqn].detach().clone()
state_dict[fqn]._has_been_cloned = True # type: ignore[attr-defined]
except BaseException as e:
warnings.warn(
f"Failed to clone() tensor with name {fqn} on rank {fsdp_state.rank}. "
"This may mean that this state_dict entry could point to invalid "
"memory regions after returning from state_dict() call if this "
"parameter is managed by FSDP. Please check clone "
f"implementation of {fqn}. Error: {str(e)}"
)
return _common_unshard_post_state_dict_hook(
module, fsdp_state, state_dict, prefix, param_hook
)
def _full_pre_load_state_dict_hook(
module: nn.Module,
fsdp_state: _FSDPState,
state_dict: Dict[str, Any],
prefix: str,
) -> None:
_lazy_init(fsdp_state, module)
if _should_unshard_params(fsdp_state):
with SimpleProfiler.profile("_enter_unshard_params_ctx"):
_enter_unshard_params_ctx(module, fsdp_state, writeback=True)
# Add FSDP_PREFIX only for wrapper-based FSDP.
if not _is_composable(fsdp_state):
_replace_by_prefix(state_dict, prefix, prefix + f"{FSDP_PREFIX}")
def _full_post_load_state_dict_hook(
module: nn.Module, fsdp_state: _FSDPState, *args, **kwargs
) -> None:
if _should_unshard_params(fsdp_state):
with SimpleProfiler.profile("_exit_unshard_params_ctx"):
_exit_unshard_params_ctx(module, fsdp_state)
def _local_pre_state_dict_hook(
fsdp_state: _FSDPState,
module: nn.Module,
*args,
**kwargs,
) -> None:
"""
Hook that runs before model.state_dict() is called. Right now, pre-state_dict
hook is not supported by the PyTorch core. So this API is called from
`_local_post_state_dict_hook()` to simulate the case.
"""
if (
_has_fsdp_params(fsdp_state, module)
and not _module_handle(fsdp_state, module).uses_sharded_strategy
):
raise RuntimeError(
"``local_state_dict`` can only be used when parameters are flatten "
"and sharded."
)
_common_pre_state_dict_hook(module, fsdp_state)
@no_type_check
def _local_post_state_dict_hook(
module: nn.Module,
fsdp_state: _FSDPState,
state_dict: Dict[str, Any],
prefix: str,
) -> Dict[str, Any]:
"""
This hook create a ShardedTensor from the local flat_param and replace
the state_dict[f"{prefix}{FLAT_PARAM}] with the ShardedTensor. No copy
will happen. The underlying storage is the same.
"""
_replace_by_prefix(state_dict, f"{prefix}{FSDP_PREFIX}", prefix)
if not _has_fsdp_params(fsdp_state, module):
return state_dict
# state_dict[f"{prefix}{FLAT_PARAM}"] exists and has the same tensor
# value as the flat_param but it is a pure Tensor because
# nn.Module.state_dict() will detach the parameter. Therefore, we need
# to get flat_param to get the metadata.
assert _module_handle(fsdp_state, module), "Should have returned early"
flat_param = _module_handle(fsdp_state, module).flat_param
# Constructs a ShardedTensor from the flat_param "without" padding.
# Removing the padding allows users to change the number of ranks
# when loading the local_state_dict.
full_numel = flat_param._unpadded_unsharded_size.numel() # type: ignore[attr-defined]
shard_offset = flat_param.numel() * fsdp_state.rank
valid_data_size = flat_param.numel() - flat_param._shard_numel_padded
if valid_data_size > 0:
# If FlatParameter is returned, FlatParameter._local_shard cause a
# pickling issue (can be torch.save but not torch.load). Since there
# is no benefit for state_dict to return the actual FlatParameter class,
# a view (which is a tensor) of the FlatParameter will be returned.
flat_param = flat_param[:valid_data_size].view(valid_data_size)
local_shards = [
Shard.from_tensor_and_offsets(flat_param, [shard_offset], fsdp_state.rank)
]
else:
local_shards = []
sharded_tensor = init_from_local_shards(
local_shards, full_numel, process_group=fsdp_state.process_group
) # type: ignore[assignment]
# TODO: Add DTensor state_dict support for LOCAL_STATE_DICT.
if fsdp_state._state_dict_config.offload_to_cpu:
sharded_tensor = sharded_tensor.cpu()
state_dict[f"{prefix}{FLAT_PARAM}"] = sharded_tensor
return state_dict
def _local_post_load_state_dict_hook(
module: nn.Module, fsdp_state: _FSDPState, *args, **kwargs
) -> None:
pass
def _local_pre_load_state_dict_hook(
module: nn.Module,
fsdp_state: _FSDPState,
state_dict: Dict[str, Any],
prefix: str,
) -> None:
"""
This hook finds the local flat_param for this FSDP module from the
state_dict. The flat_param should be a ShardedTensor. This hook converts
the ShardedTensor to a tensor. No copy happen unless padding is required.
"""
_lazy_init(fsdp_state, module)
_replace_by_prefix(state_dict, prefix, f"{prefix}{FSDP_PREFIX}")
fqn = f"{prefix}{FSDP_PREFIX}{FLAT_PARAM}"
if fqn not in state_dict:
assert not _has_fsdp_params(fsdp_state, module), (
"No `FlatParameter` in `state_dict` for this FSDP instance "
"but it has parameters"
)
return
load_tensor = state_dict[fqn]
assert isinstance(
load_tensor, ShardedTensor
), "Tensors in local_state_dict should be ShardedTensor."
# Convert the ShardedTensor to a Tensor.
flat_param = _module_handle(fsdp_state, module).flat_param
assert flat_param is not None
valid_data_size = flat_param.numel() - flat_param._shard_numel_padded
shards = load_tensor.local_shards()
if valid_data_size > 0:
assert len(shards), "load_local_state_dict assume one shard per ShardedTensor."
load_tensor = shards[0].tensor
# Get the metadata of the flat_param to decide whether to pad the loaded
# tensor.
if flat_param._shard_numel_padded > 0:
assert load_tensor.numel() < flat_param.numel(), (
f"Local shard size = {flat_param.numel()} and the tensor in "
f"the state_dict is {load_tensor.numel()}."
)
load_tensor = F.pad(load_tensor, [0, flat_param._shard_numel_padded])
else:
load_tensor = flat_param
# TODO: Add DTensor state_dict support for LOCAL_STATE_DICT.
state_dict[fqn] = load_tensor
def _sharded_pre_state_dict_hook(
fsdp_state: _FSDPState,
module: nn.Module,
*args,
**kwargs,
) -> None:
"""
Hook that runs before model.state_dict() is called. Check
``_full_pre_load_state_dict_hook`` for the detail.
"""
if (
_has_fsdp_params(fsdp_state, module)
and not _module_handle(fsdp_state, module).uses_sharded_strategy
):
raise RuntimeError(
"``sharded_state_dict`` can only be used when parameters are flatten "
"and sharded."
)
_common_pre_state_dict_hook(module, fsdp_state)
# Setting offload_to_cpu here does not work even if offload_to_cpu is True.
# We have to create ShardedTensor first then move it to CPU.
_common_unshard_pre_state_dict_hook(
module,
fsdp_state,
offload_to_cpu=False,
rank0_only=False,
)
@no_type_check
def _sharded_post_state_dict_hook(
module: nn.Module,
fsdp_state: _FSDPState,
state_dict: Dict[str, Any],
prefix: str,
) -> Dict[str, Any]:
"""
The hook replaces the unflattened, unsharded parameter in the state_dict
with a unflattened, sharded parameter (a ShardedTensor).
"""
def param_hook(state_dict: Dict[str, Any], prefix: str, fqn: str):
param = state_dict[fqn]
if not fsdp_state._state_dict_config._use_dtensor:
sharded_tensor = _ext_chunk_tensor(
tensor=param,
rank=fsdp_state.rank,
world_size=fsdp_state.world_size,
num_devices_per_node=fsdp_state._device_handle.device_count(),
pg=fsdp_state.process_group,
fsdp_extension=fsdp_state._fsdp_extension,
)
else:
sharded_tensor = _ext_chunk_dtensor(
tensor=param,
rank=fsdp_state.rank,
device_mesh=fsdp_state._device_mesh,
fsdp_extension=fsdp_state._fsdp_extension,
)
if fsdp_state._state_dict_config.offload_to_cpu:
sharded_tensor = sharded_tensor.cpu()
state_dict[fqn] = sharded_tensor
return _common_unshard_post_state_dict_hook(
module, fsdp_state, state_dict, prefix, param_hook
)
@no_type_check
def _sharded_post_load_state_dict_hook(
module: nn.Module, fsdp_state: _FSDPState, *args, **kwargs
) -> None:
if _has_fsdp_params(fsdp_state, module):
with SimpleProfiler.profile("_exit_unshard_params_ctx"):
_exit_unshard_params_ctx(module, fsdp_state)
@no_type_check
def _sharded_pre_load_state_dict_hook(
module: nn.Module,
fsdp_state: _FSDPState,
state_dict: Dict[str, Any],
prefix: str,
) -> None:
"""
The hook combines the unflattened, sharded parameters (ShardedTensor) to
a new FlatParameter and shards the new FlatParameter to the local chunk.
"""
_lazy_init(fsdp_state, module)
if not _is_composable(fsdp_state):
_replace_by_prefix(state_dict, prefix, prefix + f"{FSDP_PREFIX}")
if not _has_fsdp_params(fsdp_state, module):
return
handle = _module_handle(fsdp_state, module)
if not handle.uses_sharded_strategy:
raise RuntimeError(
"load_sharded_state_dict can only be called when parameters "
"are flattened and sharded."
)
fqn_to_param_ext = dict(
zip(handle.flat_param._fqns, handle.flat_param._param_extensions)
)
for fqn, _, _ in _param_name_infos(module, fsdp_state):
if not _is_composable(fsdp_state):
fqn_from_global_root = f"{prefix}{FSDP_PREFIX}{fqn}"
else:
fqn_from_global_root = f"{prefix}{fqn}"
try:
param = state_dict.pop(fqn_from_global_root)
except KeyError:
logger.warning(
f"Did not find param with FQN {fqn_from_global_root}, skipping it. " # noqa: G004
"The weight will not be filled if you expect it to be."
)
continue # TODO: Improve unittesting for state_dict finetuning
# cases: https://github.com/pytorch/pytorch/issues/109134
if not fsdp_state._state_dict_config._use_dtensor:
# All-gather the param (ShardedTensor)
param, shards = _ext_pre_load_state_dict_transform(
param, fsdp_state._fsdp_extension
)
assert len(shards) < 2, (
"Expects 0 or 1 shard per rank "
f"but got {len(shards)} shards on rank {fsdp_state.rank}."
)
param_numel = param.size().numel()
dim_0_size = param.size()[0]
chunk_size = (
math.ceil(dim_0_size / fsdp_state.world_size)
* param_numel
// dim_0_size
)
if len(shards) == 1:
local_tensor = shards[0].tensor.flatten()
with SimpleProfiler.profile(SimpleProfiler.Type.H2D):
local_tensor = local_tensor.to(fsdp_state.compute_device)
num_padding = chunk_size - local_tensor.numel()
if num_padding > 0:
local_tensor = F.pad(local_tensor, [0, num_padding])
else:
local_tensor = torch.zeros(
chunk_size, dtype=param.dtype, device=fsdp_state.compute_device
)
tensor = torch.empty(
chunk_size * fsdp_state.world_size,
dtype=local_tensor.dtype,
device=fsdp_state.compute_device,
)
with SimpleProfiler.profile(SimpleProfiler.Type.ALLGATHER):
dist.all_gather_into_tensor(
tensor, local_tensor, group=fsdp_state.process_group
)
tensor = tensor.narrow(0, 0, param_numel).reshape(param.size())
state_dict[fqn_from_global_root] = tensor
else:
if param.device != fsdp_state._device_mesh.device_type:
param = param.to(fsdp_state._device_mesh.device_type)
root_mesh = _mesh_resources.get_root_mesh(fsdp_state._device_mesh)
local_tensor = _ext_all_gather_dtensor(
param, root_mesh, fsdp_state._fsdp_extension
)
if fqn_to_param_ext.get(fqn) is not None:
ext = fqn_to_param_ext[fqn]
local_tensor = _ext_post_unflatten_transform(
local_tensor, ext, fsdp_state._fsdp_extension
)
state_dict[fqn_from_global_root] = local_tensor
with SimpleProfiler.profile("_enter_unshard_params_ctx"):
_enter_unshard_params_ctx(module, fsdp_state, writeback=True)
@contextlib.contextmanager
def _replace_with_full_state_dict_type(fsdp_state: _FSDPState) -> Generator:
old_state_dict_config = fsdp_state._state_dict_config
old_state_dict_type = fsdp_state._state_dict_type
fsdp_state._state_dict_config = FullStateDictConfig()
fsdp_state._state_dict_type = StateDictType.FULL_STATE_DICT
yield
fsdp_state._state_dict_config = old_state_dict_config
fsdp_state._state_dict_type = old_state_dict_type
@no_type_check
@torch.no_grad()
def _post_state_dict_hook(
module: nn.Module,
state_dict: Dict[str, Any],
prefix: str,
*args: Any,
) -> Dict[str, Any]:
"""
_post_state_dict_hook() is called after the state_dict() of this
FSDP module is executed. ``fsdp_state._state_dict_type`` is used to decide
what postprocessing will be done.
"""
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
if fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD:
context = _replace_with_full_state_dict_type(fsdp_state)
warnings.warn(
"When using ``NO_SHARD`` for ``ShardingStrategy``, full_state_dict will"
"be returned."
)
else:
context = contextlib.nullcontext()
with context:
_post_state_dict_hook_fn = {
StateDictType.FULL_STATE_DICT: _full_post_state_dict_hook,
StateDictType.LOCAL_STATE_DICT: _local_post_state_dict_hook,
StateDictType.SHARDED_STATE_DICT: _sharded_post_state_dict_hook,
}
processed_state_dict = _post_state_dict_hook_fn[fsdp_state._state_dict_type](
module, fsdp_state, state_dict, prefix
)
if fsdp_state._is_root:
logger.info("FSDP finished processing state_dict(), prefix=%s", prefix)
for key, tensor in sorted(processed_state_dict.items()):
if key.startswith(prefix) and isinstance(tensor, torch.Tensor):
local_shape = tensor.shape
device = None
if isinstance(tensor, ShardedTensor):
local_shape = None
shards = tensor.local_shards()
if shards:
local_shape = shards[0].tensor.shape
device = shards[0].tensor.device
elif isinstance(tensor, DTensor):
local_shape = tensor.to_local().shape
device = tensor.device
else:
device = tensor.device
logger.info(
"FQN=%s: type=%s, shape=%s, local_shape=%s, dtype=%s, device=%s",
key,
type(tensor),
tensor.shape,
local_shape,
tensor.dtype,
device,
)
return processed_state_dict
@no_type_check
@torch.no_grad()
def _pre_state_dict_hook(
module: nn.Module,
*args,
**kwargs,
) -> None:
"""
This is called before the core state dict saving logic of ``module``.
``fsdp_state._state_dict_type`` is used to decide what postprocessing will
be done.
"""
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
if fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD:
context = _replace_with_full_state_dict_type(fsdp_state)
warnings.warn(
"When using ``NO_SHARD`` for ``ShardingStrategy``, full_state_dict will"
"be returned."
)
else:
_set_use_dtensor(fsdp_state)
context = contextlib.nullcontext()
with context:
_pre_state_dict_hook_fn = {
StateDictType.FULL_STATE_DICT: _full_pre_state_dict_hook,
StateDictType.LOCAL_STATE_DICT: _local_pre_state_dict_hook,
StateDictType.SHARDED_STATE_DICT: _sharded_pre_state_dict_hook,
}
_pre_state_dict_hook_fn[fsdp_state._state_dict_type](
fsdp_state,
module,
*args,
**kwargs,
)
@no_type_check
def _set_use_dtensor(fsdp_state: _FSDPState) -> None:
# If device_mesh is passed in when initalizing FSDP, we automatically turn the
# _use_dtensor flag to be true for ShardedStateDictConfig().
if getattr(fsdp_state, "_device_mesh", None):
state_dict_type = fsdp_state._state_dict_type
if state_dict_type == StateDictType.LOCAL_STATE_DICT:
raise RuntimeError(
"Found state_dict_type LOCAL_STATE_DICT",
"DeviceMesh is not compatible with LOCAL_STATE_DICT.",
"Please set state_dict_type to SHARDED_STATE_DICT to get DTensor state_dict.",
)
else:
fsdp_state._state_dict_config._use_dtensor = True
@no_type_check
@torch.no_grad()
def _pre_load_state_dict_hook(
module: nn.Module,
state_dict: Dict[str, Any],
prefix: str,
*args: Any,
) -> None:
"""
This is called before ``module._load_from_state_dict()``.
``fsdp_state._state_dict_type`` is used to decide what preprocessing will
be done.
"""
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
if fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD:
context = _replace_with_full_state_dict_type(fsdp_state)
warnings.warn(
"When using ``NO_SHARD`` for ``ShardingStrategy``, full_state_dict will"
"be returned."
)
else:
_set_use_dtensor(fsdp_state)
context = contextlib.nullcontext()
_lazy_init(fsdp_state, module)
if fsdp_state._is_root:
SimpleProfiler.reset()
with context:
_pre_load_state_dict_hook_fn = {
StateDictType.FULL_STATE_DICT: _full_pre_load_state_dict_hook,
StateDictType.LOCAL_STATE_DICT: _local_pre_load_state_dict_hook,
StateDictType.SHARDED_STATE_DICT: _sharded_pre_load_state_dict_hook,
}
# Code that is common for all state_dict impls
if fsdp_state._device_handle.is_available():
fsdp_state._device_handle.synchronize()
# Dispatch into state_dict specific implementation of pre-hook.
_pre_load_state_dict_hook_fn[fsdp_state._state_dict_type](
module, fsdp_state, state_dict, prefix
)
@no_type_check
@torch.no_grad()
def _post_load_state_dict_hook(
module: nn.Module,
incompatible_keys: Tuple[List[str], List[str]],
*args: Any,
) -> None:
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
if fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD:
context = _replace_with_full_state_dict_type(fsdp_state)
warnings.warn(
"When using ``NO_SHARD`` for ``ShardingStrategy``, full_state_dict will"
"be returned."
)
else:
context = contextlib.nullcontext()
with context:
_post_load_state_dict_hook_fn = {
StateDictType.FULL_STATE_DICT: _full_post_load_state_dict_hook,
StateDictType.LOCAL_STATE_DICT: _local_post_load_state_dict_hook,
StateDictType.SHARDED_STATE_DICT: _sharded_post_load_state_dict_hook,
}
# Code that is common for all state_dict impls
# Dispatch into state_dict type specific implementation of post-hook for
# loading state_dict.
_post_load_state_dict_hook_fn[fsdp_state._state_dict_type](module, fsdp_state)
# When reporting incompatible keys, trim FSDP prefixes.
missing_keys = incompatible_keys[0]
unexpected_keys = incompatible_keys[1]
for i in range(len(missing_keys)):
missing_keys[i] = clean_tensor_name(missing_keys[i])
for i in range(len(unexpected_keys)):
unexpected_keys[i] = clean_tensor_name(unexpected_keys[i])
if fsdp_state._is_root:
SimpleProfiler.dump_and_reset("FSDP model load_state_dict profiling: ")
def _register_all_state_dict_hooks(state: _FSDPState):
"""
Registers pre-save, post-save, pre-load, and post-load state dict hooks.
"""
for hook_registration_fn_str, hook, hook_registration_fn_kwargs in (
("register_state_dict_pre_hook", _pre_state_dict_hook, {}),
("_register_state_dict_hook", _post_state_dict_hook, {}),
(
"_register_load_state_dict_pre_hook",
_pre_load_state_dict_hook,
{"with_module": True},
),
("register_load_state_dict_post_hook", _post_load_state_dict_hook, {}),
):
_register_state_dict_hooks_base(
state, hook_registration_fn_str, hook, hook_registration_fn_kwargs
)
@no_type_check
def _register_state_dict_hooks_base(
state: _FSDPState,
hook_registration_fn_name: str,
hook: Callable,
hook_registration_fn_kwargs: Dict[str, Any],
) -> None:
"""Registers ``hook`` using ``hook_registration_fn``."""
if not _is_composable(state):
getattr(state, hook_registration_fn_name)(hook, **hook_registration_fn_kwargs)
else:
handle = state._handle
if handle:
getattr(handle._fully_sharded_module, hook_registration_fn_name)(
hook, **hook_registration_fn_kwargs
)
|