1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
# mypy: allow-untyped-defs
import collections
import functools
import inspect
import warnings
from functools import partial
from typing import Any, Callable, Dict, List, Set, Tuple, Type, Union
import torch.nn as nn
from torch.distributed.fsdp._common_utils import (
_get_module_fsdp_state,
_override_module_mixed_precision,
)
from torch.distributed.fsdp.wrap import (
_construct_wrap_fn,
_or_policy,
_Policy,
_post_order_apply,
_recursive_wrap,
_run_mixed_precision_override_policy,
_wrap_module_cls_individually,
)
def _auto_wrap(
root_module: nn.Module,
policy: Union[Callable, _Policy],
ignored_modules: Set[nn.Module],
ignored_params: Set[nn.Parameter],
root_kwargs: Dict[str, Any],
fsdp_fn: Callable, # e.g. `FullyShardedDataParallel` or `fully_shard`
):
"""
Auto wraps modules in ``root_module`` 's tree according to ``policy``
following a post-order traversal.
Precondition: ``root_kwargs`` should contain all arguments except
``module``. This function accepts the kwargs dict directly since it gets
forwarded into the post-order traversal function.
"""
mixed_precision = root_kwargs["mixed_precision"]
is_wrapper = inspect.isclass(fsdp_fn)
# TODO: We may relax this no-nested-wrapping constraint to support manual
# wrapping followed by auto wrapping.
_check_nested_wrapping(root_module)
if isinstance(policy, _Policy):
root_kwargs["auto_wrap_policy" if is_wrapper else "policy"] = None
target_module_to_kwargs = policy._run_policy(
root_module, ignored_modules, root_kwargs
)
if mixed_precision is not None:
target_module_to_kwargs = _run_mixed_precision_override_policy(
root_module,
mixed_precision._module_classes_to_ignore,
ignored_modules,
root_kwargs,
target_module_to_kwargs,
)
overridden_module_classes = _override_module_mixed_precision(
root_module, mixed_precision._module_classes_to_ignore
)
_warn_on_overridden_mixed_precision(overridden_module_classes)
use_orig_params = root_kwargs.get("use_orig_params", False)
_validate_frozen_params(
root_module,
set(target_module_to_kwargs.keys()),
ignored_params,
use_orig_params,
)
wrap_fn = _construct_wrap_fn(root_module, target_module_to_kwargs, fsdp_fn)
_post_order_apply(root_module, wrap_fn)
return
recursive_wrap_kwargs = {
"module": root_module,
"auto_wrap_policy": policy,
"wrapper_cls": fsdp_fn,
"ignored_modules": ignored_modules,
"ignored_params": ignored_params,
"only_wrap_children": True,
}
if mixed_precision is not None:
# Wrap modules of the ignored types separately and register forward
# hooks to cast to fp32 and back to the original dtype, respectively
overridden_module_classes = _override_module_mixed_precision(
root_module, mixed_precision._module_classes_to_ignore
)
policy = functools.partial(
_or_policy,
policies=[
policy,
partial(
_wrap_module_cls_individually,
module_classes=mixed_precision._module_classes_to_ignore,
),
],
)
recursive_wrap_kwargs["auto_wrap_policy"] = policy
_warn_on_overridden_mixed_precision(overridden_module_classes)
_recursive_wrap(**recursive_wrap_kwargs, **root_kwargs) # type: ignore[arg-type]
def _check_nested_wrapping(root_module: nn.Module):
for module_name, module in root_module.named_modules():
if _get_module_fsdp_state(module) is not None:
raise ValueError(
"FSDP auto wrapping requires modules to not already have "
f"FSDP applied but found {module_name} in\n{root_module}"
)
def _warn_on_overridden_mixed_precision(
overridden_module_classes: Set[Type[nn.Module]],
):
if len(overridden_module_classes) == 0:
return
warnings.warn(
"Both mixed precision and an auto_wrap_policy were specified to FSDP, "
f"where the wrapped module has submodules of type:\n{overridden_module_classes}\n"
"These modules will be wrapped as separate FSDP instacnes with mixed "
"precision disabled."
)
def _validate_frozen_params(
root_module: nn.Module,
modules_to_wrap: Set[nn.Module],
ignored_params: Set[nn.Parameter],
use_orig_params: bool,
):
"""
This checks that, given ``modules_to_wrap``, each module would manage
parameters that are uniformly frozen or non-frozen. This uniformity
requirement is strict for ``use_orig_params=False`` (hard error) and highly
recommended for ``use_orig_params=True`` (user warning).
"""
post_order_named_modules = _get_post_order_named_modules(root_module)
visited_modules: Set[nn.Module] = set()
for module_name, module in post_order_named_modules:
if module in modules_to_wrap:
param_to_fqn = _get_managed_param_to_fqn(
module, ignored_params, visited_modules, module_name
)
frozen_param_fqns: List[str] = []
frozen_param_numel = 0
nonfrozen_param_fqns: List[str] = []
nonfrozen_param_numel = 0
for param, fqn in param_to_fqn.items():
if param.requires_grad:
nonfrozen_param_fqns.append(fqn)
nonfrozen_param_numel += param.numel()
else:
frozen_param_fqns.append(fqn)
frozen_param_numel += param.numel()
if len(frozen_param_fqns) > 0 and len(nonfrozen_param_fqns) > 0:
msg = f"{module_name} has both parameters with requires_grad=True and False."
if use_orig_params:
total_param_numel = frozen_param_numel + nonfrozen_param_numel
msg += (
" We do not recommend wrapping such modules since "
"the gradient memory usage will be higher than expected "
f"({total_param_numel} numel instead of {nonfrozen_param_numel} numel "
"before sharding via reduce-scatter). "
)
else:
msg += " FSDP does not support wrapping such modules when use_orig_params=False. "
msg += "If possible, wrap the frozen parameters with FSDP separately.\n"
msg += (
f"The following parameters have requires_grad=True:\n{nonfrozen_param_fqns}\n"
f"The following parameters have requires_grad=False:\n{frozen_param_fqns}"
)
if use_orig_params:
warnings.warn(msg)
else:
raise ValueError(msg)
def _get_post_order_named_modules(
root_module: nn.Module,
) -> List[Tuple[str, nn.Module]]:
"""
This returns the named modules following a post-order traversal, which is a
valid reverse topological sort. We achieve this using the reverse of a
stack-based DFS order instead of reversing ``root_module.named_modules()``
since the former gives the modules in registration order at each level in
the module tree (as opposed to the reverse), which allows us to error/warn
on the first registered module that violates the condition.
For example, consider the following module structure:
M(
S1(),
S2(
SS1(),
SS2(),
),
S3(),
)
The reverse DFS order is [S1, SS1, SS2, S2, S3, M], while the reverse
``named_modules()`` order is [S3, SS2, SS1, S2, S1, M].
"""
visited_modules = {root_module}
stack = [("", root_module)]
# Append and reverse at the end for linear-time algorithm
reverse_post_order_named_modules: List[Tuple[str, nn.Module]] = []
while stack:
module_name, module = stack.pop()
reverse_post_order_named_modules.append((module_name, module))
for child_module_name, child_module in module.named_children():
if child_module is None: # only for overrides of `named_children()`
continue
if child_module not in visited_modules:
visited_modules.add(child_module)
if module_name != "":
child_module_name = module_name + "." + child_module_name
stack.append((child_module_name, child_module))
post_order_named_modules = list(reversed(reverse_post_order_named_modules))
return post_order_named_modules
def _get_managed_param_to_fqn(
module_to_wrap: nn.Module,
ignored_params: Set[nn.Parameter],
visited_modules: Set[nn.Module],
root_prefix: str,
) -> Dict[nn.Parameter, str]:
"""
This returns a dict that maps managed parameter to its FQN for the given
``module_to_wrap``. The dict's keys are exactly the parameters that would
be managed by the module, where this is achieved by calling this function
on the modules to wrap in reverse topological order, destructively updating
``visited_modules``, and not traversing into those modules. The FQNs are
prefixed from the root (via ``root_prefix``) to be more informative.
NOTE: This function is meant to be called pre-wrapping and iteratively in
reverse topological order to cover the full module tree. This differs from
the ``_get_param_to_fqn()`` function meant to be called post-wrapping and
on the full module tree in one shot. Given those differences, we do not try
to unify the two.
"""
param_to_fqn: Dict[nn.Parameter, str] = {}
# Run BFS (or any tree traversal works)
queue = collections.deque([(module_to_wrap, root_prefix)])
visited_modules.add(module_to_wrap)
while queue:
module, prefix = queue.popleft()
for param_name, param in module.named_parameters(recurse=False):
if param not in ignored_params:
fqn = param_name if prefix == "" else prefix + "." + param_name
param_to_fqn[param] = fqn
for child_module_name, child_module in module.named_children():
if child_module is None: # only for overrides of `named_children()`
continue
if child_module not in visited_modules:
visited_modules.add(child_module)
child_prefix = (
child_module_name
if prefix == ""
else prefix + "." + child_module_name
)
queue.append((child_module, child_prefix))
return param_to_fqn
|