File: fully_sharded_data_parallel.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (2185 lines) | stat: -rw-r--r-- 100,299 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
# mypy: ignore-errors

import contextlib
import copy
import functools
import math
import traceback
import warnings
from contextlib import contextmanager
from enum import auto, Enum
from typing import (
    Any,
    Callable,
    Dict,
    Generator,
    Iterable,
    Iterator,
    List,
    Optional,
    Tuple,
    Union,
)

import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
    _CHECKPOINT_WRAPPED_MODULE,
    ActivationWrapper,
)
from torch.distributed.algorithms._comm_hooks import LOW_PRECISION_HOOKS
from torch.distributed.fsdp._common_utils import (
    _FSDPState,
    _get_param_to_fqns,
    FSDP_PREFIX,
    FSDP_WRAPPED_MODULE,
    HandleTrainingState,
    TrainingState,
)
from torch.distributed.fsdp._dynamo_utils import _annotate_modules_for_dynamo
from torch.distributed.fsdp._init_utils import (
    _check_orig_params_flattened,
    _init_buffer_state,
    _init_core_state,
    _init_device_handle,
    _init_extension,
    _init_ignored_module_states,
    _init_param_handle_from_module,
    _init_prefetching_state,
    _init_process_group_state,
    _init_runtime_state,
    _init_state_dict_state,
    HYBRID_SHARDING_STRATEGIES,
    ProcessGroupType,
)
from torch.distributed.fsdp._runtime_utils import (
    _get_fsdp_root_states,
    _is_fsdp_root,
    _lazy_init,
    _post_forward,
    _post_forward_reshard,
    _pre_forward,
    _pre_forward_unshard,
    _root_pre_forward,
    _unshard,
    _wait_for_computation_stream,
)
from torch.distributed.fsdp._wrap_utils import _auto_wrap
from torch.distributed.fsdp.api import (
    BackwardPrefetch,
    CPUOffload,
    FullOptimStateDictConfig,
    FullStateDictConfig,
    LocalOptimStateDictConfig,
    LocalStateDictConfig,
    MixedPrecision,
    OptimStateDictConfig,
    ShardedOptimStateDictConfig,
    ShardedStateDictConfig,
    ShardingStrategy,
    StateDictConfig,
    StateDictSettings,
    StateDictType,
)
from torch.distributed.tensor import DeviceMesh
from torch.distributed.utils import _p_assert

from ._flat_param import FlatParameter, FlatParamHandle
from ._optim_utils import (
    _flatten_optim_state_dict,
    _get_param_id_to_param_from_optim_input,
    _get_param_key_to_param,
    _get_param_to_param_id_from_optim_input,
    _get_param_to_param_key,
    _optim_state_dict,
    _rekey_sharded_optim_state_dict,
    _set_optim_use_dtensor,
)
from ._state_dict_utils import _register_all_state_dict_hooks
from ._unshard_param_utils import (
    _deregister_orig_params,
    _register_flat_param,
    _register_orig_params,
    _unshard_params,
    _unshard_params_for_summon,
)
from .wrap import CustomPolicy, ModuleWrapPolicy


__all__ = [
    "FullyShardedDataParallel",
    "OptimStateKeyType",
]


FLAT_PARAM = "_flat_param"


class OptimStateKeyType(Enum):
    """Represents the type of key in an optimizer state-dict."""

    PARAM_NAME = auto()
    PARAM_ID = auto()


class FullyShardedDataParallel(nn.Module, _FSDPState):
    """A wrapper for sharding module parameters across data parallel workers.

    This is inspired by `Xu et al.`_ as well as the ZeRO Stage 3 from DeepSpeed_.
    FullyShardedDataParallel is commonly shortened to FSDP.

    .. _`Xu et al.`: https://arxiv.org/abs/2004.13336
    .. _DeepSpeed: https://www.deepspeed.ai/

    To understand FSDP internals, refer to the
    :ref:`fsdp_notes`.

    Example::

        >>> # xdoctest: +SKIP("undefined variables")
        >>> import torch
        >>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
        >>> torch.cuda.set_device(device_id)
        >>> sharded_module = FSDP(my_module)
        >>> optim = torch.optim.Adam(sharded_module.parameters(), lr=0.0001)
        >>> x = sharded_module(x, y=3, z=torch.Tensor([1]))
        >>> loss = x.sum()
        >>> loss.backward()
        >>> optim.step()

    Using FSDP involves wrapping your module and then initializing your
    optimizer after. This is required since FSDP changes the parameter
    variables.

    When setting up FSDP, you need to consider the destination CUDA
    device. If the device has an ID (``dev_id``), you have three options:

    * Place the module on that device
    * Set the device using ``torch.cuda.set_device(dev_id)``
    * Pass ``dev_id`` into the ``device_id`` constructor argument.

    This ensures that the FSDP instance's compute device is the
    destination device. For option 1 and 3, the FSDP initialization
    always occurs on GPU. For option 2, the FSDP initialization
    happens on module's current device, which may be a CPU.

    If you're using the ``sync_module_states=True`` flag, you need to
    ensure that the module is on a GPU or use the ``device_id``
    argument to specify a CUDA device that FSDP will move the module
    to in the FSDP constructor. This is necessary because
    ``sync_module_states=True`` requires GPU communication.

    FSDP also takes care of moving input tensors to the forward method
    to the GPU compute device, so you don't need to manually move them
    from CPU.

    For ``use_orig_params=True``,
    ``ShardingStrategy.SHARD_GRAD_OP`` exposes the unsharded
    parameters, not the sharded parameters after forward, unlike
    ``ShardingStrategy.FULL_SHARD``. If you want
    to inspect the gradients, you can use the ``summon_full_params``
    method with ``with_grads=True``.

    With ``limit_all_gathers=True``, you may see a gap in the FSDP
    pre-forward where the CPU thread is not issuing any kernels. This is
    intentional and shows the rate limiter in effect. Synchronizing the CPU
    thread in that way prevents over-allocating memory for subsequent
    all-gathers, and it should not actually delay GPU kernel execution.

    FSDP replaces managed modules' parameters with ``torch.Tensor``
    views during forward and backward computation for autograd-related
    reasons. If your module's forward relies on saved references to
    the parameters instead of reacquiring the references each
    iteration, then it will not see FSDP's newly created views,
    and autograd will not work correctly.

    Finally, when using ``sharding_strategy=ShardingStrategy.HYBRID_SHARD``
    with the sharding process group being intra-node and the
    replication process group being inter-node, setting
    ``NCCL_CROSS_NIC=1`` can help improve the all-reduce times over
    the replication process group for some cluster setups.

    **Limitations**

    There are several limitations to be aware of when using FSDP:

    * FSDP currently does not support gradient accumulation outside
      ``no_sync()`` when using CPU offloading. This is because FSDP
      uses the newly-reduced gradient instead of accumulating with any
      existing gradient, which can lead to incorrect results.

    * FSDP does not support running the forward pass of a submodule
      that is contained in an FSDP instance. This is because the
      submodule's parameters will be sharded, but the submodule itself
      is not an FSDP instance, so its forward pass will not all-gather
      the full parameters appropriately.

    * FSDP does not work with double backwards due to the way it
      registers backward hooks.

    * FSDP has some constraints when freezing parameters.
      For ``use_orig_params=False``, each FSDP instance must manage
      parameters that are all frozen or all non-frozen. For
      ``use_orig_params=True``, FSDP supports mixing frozen and
      non-frozen parameters, but it's recommended to avoid doing so to
      prevent higher than expected gradient memory usage.

    * As of PyTorch 1.12, FSDP offers limited support for shared
      parameters. If enhanced shared parameter support is needed for
      your use case, please post in
      `this issue <https://github.com/pytorch/pytorch/issues/77724>`__.

    * You should avoid modifying the parameters between forward and
      backward without using the ``summon_full_params`` context, as
      the modifications may not persist.

    Args:
        module (nn.Module):
            This is the module to be wrapped with FSDP.
        process_group (Optional[Union[ProcessGroup, Tuple[ProcessGroup, ProcessGroup]]]):
            This is the process group over which the model is sharded and thus
            the one used for FSDP's all-gather and reduce-scatter collective
            communications. If ``None``, then FSDP uses the default process
            group. For hybrid sharding strategies such as
            ``ShardingStrategy.HYBRID_SHARD``, users can pass in a tuple of
            process groups, representing the groups over which to shard and
            replicate, respectively. If ``None``, then FSDP constructs process
            groups for the user to shard intra-node and replicate inter-node.
            (Default: ``None``)
        sharding_strategy (Optional[ShardingStrategy]):
            This configures the sharding strategy, which may trade off memory
            saving and communication overhead. See :class:`ShardingStrategy`
            for details. (Default: ``FULL_SHARD``)
        cpu_offload (Optional[CPUOffload]):
            This configures CPU offloading. If this is set to ``None``, then
            no CPU offloading happens. See :class:`CPUOffload` for details.
            (Default: ``None``)
        auto_wrap_policy (Optional[Union[Callable[[nn.Module, bool, int], bool], ModuleWrapPolicy, CustomPolicy]]):
            This specifies a policy to apply FSDP to submodules of ``module``,
            which is needed for communication and computation overlap and thus
            affects performance. If ``None``, then FSDP only applies to
            ``module``, and users should manually apply FSDP to parent modules
            themselves (proceeding bottom-up). For convenience, this accepts
            ``ModuleWrapPolicy`` directly, which allows users to specify the
            module classes to wrap (e.g. the transformer block). Otherwise,
            this should be a callable that takes in three arguments
            ``module: nn.Module``, ``recurse: bool``, and
            ``nonwrapped_numel: int`` and should return a ``bool`` specifying
            whether the passed-in ``module`` should have FSDP applied if
            ``recurse=False`` or if the traversal should continue into the
            module's subtree if ``recurse=True``. Users may add additional
            arguments to the callable. The ``size_based_auto_wrap_policy`` in
            ``torch.distributed.fsdp.wrap.py`` gives an example callable that
            applies FSDP to a module if the parameters in its subtree exceed
            100M numel. We recommend printing the model after applying FSDP
            and adjusting as needed.

            Example::

                >>> def custom_auto_wrap_policy(
                >>>     module: nn.Module,
                >>>     recurse: bool,
                >>>     nonwrapped_numel: int,
                >>>     # Additional custom arguments
                >>>     min_num_params: int = int(1e8),
                >>> ) -> bool:
                >>>     return nonwrapped_numel >= min_num_params
                >>> # Configure a custom `min_num_params`
                >>> my_auto_wrap_policy = functools.partial(custom_auto_wrap_policy, min_num_params=int(1e5))

        backward_prefetch (Optional[BackwardPrefetch]):
            This configures explicit backward prefetching of all-gathers. If
            ``None``, then FSDP does not backward prefetch, and there is no
            communication and computation overlap in the backward pass. See
            :class:`BackwardPrefetch` for details. (Default: ``BACKWARD_PRE``)
        mixed_precision (Optional[MixedPrecision]):
            This configures native mixed precision for FSDP. If this is set to
            ``None``, then no mixed precision is used. Otherwise, parameter,
            buffer, and gradient reduction dtypes can be set. See
            :class:`MixedPrecision` for details. (Default: ``None``)
        ignored_modules (Optional[Iterable[torch.nn.Module]]): Modules whose
            own parameters and child modules' parameters and buffers are
            ignored by this instance. None of the modules directly in
            ``ignored_modules`` should be :class:`FullyShardedDataParallel`
            instances, and any child modules that are already-constructed
            :class:`FullyShardedDataParallel` instances will not be ignored if
            they are nested under this instance. This argument may be used to
            avoid sharding specific parameters at module granularity when using an
            ``auto_wrap_policy`` or if parameters' sharding is not managed by
            FSDP. (Default: ``None``)
        param_init_fn (Optional[Callable[[nn.Module], None]]):
            A ``Callable[torch.nn.Module] -> None`` that
            specifies how modules that are currently on the meta device should
            be initialized onto an actual device. As of v1.12, FSDP detects
            modules with parameters or buffers on meta device via ``is_meta``
            and either applies ``param_init_fn`` if specified or calls
            ``nn.Module.reset_parameters()`` otherwise. For both cases, the
            implementation should *only* initialize the parameters/buffers of
            the module, not those of its submodules. This is to avoid
            re-initialization. In addition, FSDP also supports deferred
            initialization via torchdistX's (https://github.com/pytorch/torchdistX)
            ``deferred_init()`` API, where the deferred modules are initialized
            by calling ``param_init_fn`` if specified or torchdistX's default
            ``materialize_module()`` otherwise. If ``param_init_fn`` is
            specified, then it is applied to all meta-device modules, meaning
            that it should probably case on the module type. FSDP calls the
            initialization function before parameter flattening and sharding.

            Example::

                >>> # xdoctest: +SKIP("undefined variables")
                >>> module = MyModule(device="meta")
                >>> def my_init_fn(module: nn.Module):
                >>>     # E.g. initialize depending on the module type
                >>>     ...
                >>> fsdp_model = FSDP(module, param_init_fn=my_init_fn, auto_wrap_policy=size_based_auto_wrap_policy)
                >>> print(next(fsdp_model.parameters()).device) # current CUDA device
                >>> # With torchdistX
                >>> module = deferred_init.deferred_init(MyModule, device="cuda")
                >>> # Will initialize via deferred_init.materialize_module().
                >>> fsdp_model = FSDP(module, auto_wrap_policy=size_based_auto_wrap_policy)

        device_id (Optional[Union[int, torch.device]]): An ``int`` or
            ``torch.device`` giving the CUDA device on which FSDP
            initialization takes place, including the module initialization
            if needed and the parameter sharding. This should be specified to
            improve initialization speed if ``module`` is on CPU. If the
            default CUDA device was set (e.g. via ``torch.cuda.set_device``),
            then the user may pass ``torch.cuda.current_device`` to this.
            (Default: ``None``)
        sync_module_states (bool): If ``True``, then each FSDP module will
            broadcast module parameters and buffers from rank 0 to ensure that
            they are replicated across ranks (adding communication overhead to
            this constructor). This can help load ``state_dict`` checkpoints
            via ``load_state_dict`` in a memory efficient way. See
            :class:`FullStateDictConfig` for an example of this. (Default:
            ``False``)
        forward_prefetch (bool): If ``True``, then FSDP *explicitly* prefetches
            the next forward-pass all-gather before the current forward
            computation. This is only useful for CPU-bound workloads, in which
            case issuing the next all-gather earlier may improve overlap. This
            should only be used for static-graph models since the prefetching
            follows the first iteration's execution order. (Default: ``False``)
        limit_all_gathers (bool): If ``True``, then FSDP explicitly
            synchronizes the CPU thread to ensure GPU memory usage from only
            *two* consecutive FSDP instances (the current instance running
            computation and the next instance whose all-gather is prefetched).
            If ``False``, then FSDP allows the CPU thread to issue all-gathers
            without any extra synchronization. (Default: ``True``) We often
            refer to this feature as the "rate limiter". This flag should only
            be set to ``False`` for specific CPU-bound workloads with low
            memory pressure in which case the CPU thread can aggressively issue
            all kernels without concern for the GPU memory usage.
        use_orig_params (bool): Setting this to ``True`` has FSDP use
            ``module`` 's original parameters. FSDP exposes those original
            parameters to the user via :meth:`nn.Module.named_parameters`
            instead of FSDP's internal :class:`FlatParameter` s. This means
            that the optimizer step runs on the original parameters, enabling
            per-original-parameter hyperparameters. FSDP preserves the original
            parameter variables and manipulates their data between unsharded
            and sharded forms, where they are always views into the underlying
            unsharded or sharded :class:`FlatParameter`, respectively. With the
            current algorithm, the sharded form is always 1D, losing the
            original tensor structure. An original parameter may have all,
            some, or none of its data present for a given rank. In the none
            case, its data will be like a size-0 empty tensor. Users should not
            author programs relying on what data is present for a given
            original parameter in its sharded form. ``True`` is required to
            use ``torch.compile()``. Setting this to ``False`` exposes FSDP's
            internal :class:`FlatParameter` s to the user via
            :meth:`nn.Module.named_parameters`. (Default: ``False``)
        ignored_states (Optional[Iterable[torch.nn.Parameter]], Optional[Iterable[torch.nn.Module]]):
            Ignored parameters or modules that will not be managed by this FSDP
            instance, meaning that the parameters are not sharded and their
            gradients are not reduced across ranks. This argument unifies with
            the existing ``ignored_modules`` argument, and we may deprecate
            ``ignored_modules`` soon. For backward compatibility, we keep both
            ``ignored_states`` and `ignored_modules``, but FSDP only allows one
            of them to be specified as not ``None``.
        device_mesh (Optional[DeviceMesh]): DeviceMesh can be used as an altenative to
            process_group. When device_mesh is passed, FSDP will use the underlying process
            groups for all-gather and reduce-scatter collective communications. Therefore,
            these two args need to be mutually exclusive. For hybrid sharding strategies such as
            ``ShardingStrategy.HYBRID_SHARD``, users can pass in a 2D DeviceMesh instead
            of a tuple of process groups. For 2D FSDP + TP, users are required to pass in
            device_mesh instead of process_group. For more DeviceMesh info, please visit:
            https://pytorch.org/tutorials/recipes/distributed_device_mesh.html
    """

    def __init__(
        self,
        module: nn.Module,
        process_group: ProcessGroupType = None,
        sharding_strategy: Optional[ShardingStrategy] = None,
        cpu_offload: Optional[CPUOffload] = None,
        auto_wrap_policy: Optional[
            Union[Callable, ModuleWrapPolicy, CustomPolicy]
        ] = None,
        backward_prefetch: Optional[BackwardPrefetch] = BackwardPrefetch.BACKWARD_PRE,
        mixed_precision: Optional[MixedPrecision] = None,
        ignored_modules: Optional[Iterable[torch.nn.Module]] = None,
        param_init_fn: Optional[Callable[[nn.Module], None]] = None,
        device_id: Optional[Union[int, torch.device]] = None,
        sync_module_states: bool = False,
        forward_prefetch: bool = False,
        limit_all_gathers: bool = True,
        use_orig_params: bool = False,
        ignored_states: Union[
            Optional[Iterable[torch.nn.Parameter]], Optional[Iterable[torch.nn.Module]]
        ] = None,
        device_mesh: Optional[DeviceMesh] = None,
    ):
        torch._C._log_api_usage_once("torch.distributed.fsdp")
        super().__init__()
        if isinstance(module, (nn.ModuleList, nn.ModuleDict)):
            warnings.warn(
                "FSDP will not all-gather parameters for containers that do "
                f"not implement forward: {module}",
                stacklevel=2,
            )
        _init_ignored_module_states(self, module, ignored_modules, ignored_states)
        _init_device_handle(self, module, self._ignored_params, device_id)

        # Add module annotations for Dynamo support (see function for details)
        _annotate_modules_for_dynamo(module, self._ignored_modules, use_orig_params)

        # Initializes self.process_group, along with rank and world size. This will
        # also set another attribute, _inter_node_pg, to control the process group
        # over which sharding occurs, if sharding_strategy is {HYBRID_SHARD, _HYBRID_SHARD_ZERO2}.
        # Note that this is done before auto_wrapping, so that child FSDP modules simply pick up
        # the same process group state as the root FSDP module.
        self._device_mesh = device_mesh
        _init_process_group_state(
            self,
            process_group,
            sharding_strategy,
            auto_wrap_policy,
            device_mesh,
        )
        if auto_wrap_policy is not None:
            root_kwargs = {
                "process_group": process_group,
                "sharding_strategy": sharding_strategy,
                "cpu_offload": cpu_offload,
                "backward_prefetch": backward_prefetch,
                "mixed_precision": mixed_precision,
                "param_init_fn": param_init_fn,
                "device_id": device_id,
                "sync_module_states": sync_module_states,
                "forward_prefetch": forward_prefetch,
                "limit_all_gathers": limit_all_gathers,
                "use_orig_params": use_orig_params,
                "ignored_states": self._ignored_params,
                "device_mesh": device_mesh,
            }
            if sharding_strategy in HYBRID_SHARDING_STRATEGIES and device_mesh is None:
                # Share root process groups with children to maintain
                # the invariant that all FSDP modules will have the same
                # process groups.
                root_kwargs["process_group"] = (self.process_group, self._inter_node_pg)

            _auto_wrap(
                module,
                auto_wrap_policy,
                self._ignored_modules,
                self._ignored_params,
                root_kwargs,
                FullyShardedDataParallel,
            )

        backward_prefetch_limit = 1
        forward_prefetch_limit = 1
        _init_core_state(
            self,
            sharding_strategy,
            mixed_precision,
            cpu_offload,
            limit_all_gathers,
            use_orig_params,
            backward_prefetch_limit,
            forward_prefetch_limit,
        )
        _init_runtime_state(self)
        _init_prefetching_state(self, backward_prefetch, forward_prefetch)
        _init_buffer_state(self, module)
        # extension needs to be set before `_init_param_handle_from_module()`
        _init_extension(self, device_mesh)
        _init_param_handle_from_module(
            self,
            module,
            device_id,
            param_init_fn,
            sync_module_states,
        )
        self._fsdp_wrapped_module = module
        if not use_orig_params:
            _check_orig_params_flattened(self, self._ignored_params)
            _register_flat_param(self, self)

        # `_state_dict_type` controls the `state_dict()` behavior, which is
        # implemented using post-save and pre-load hooks
        _init_state_dict_state(self)
        _register_all_state_dict_hooks(self)
        self._zero_scalar = None

    @property
    def module(self) -> nn.Module:
        """Return the wrapped module."""
        # FSDP's `.module` must refer to the innermost wrapped module when
        # composing with other module wrappers in order for state dict to work
        if isinstance(self._fsdp_wrapped_module, ActivationWrapper):
            return getattr(self._fsdp_wrapped_module, _CHECKPOINT_WRAPPED_MODULE)
        return self._fsdp_wrapped_module

    @property
    def _has_params(self) -> bool:
        """Returns whether this FSDP instance manages any parameters."""
        return hasattr(self, "_handle") and self._handle is not None

    @property
    def _flat_param(self) -> Optional[FlatParameter]:
        return self._handle.flat_param if self._handle else None

    def __getattr__(self, name: str) -> Any:
        """Forward missing attributes to the wrapped module."""
        try:
            return super().__getattr__(name)  # defer to nn.Module's logic
        except AttributeError:
            return getattr(self._fsdp_wrapped_module, name)

    def __getitem__(self, key: int) -> Any:
        """Forward indexing calls in case the module is an ``nn.Sequential``."""
        if hasattr(self, FSDP_WRAPPED_MODULE):
            return self._fsdp_wrapped_module.__getitem__(key)  # type: ignore[operator]
        return super().__getitem__(key)

    def check_is_root(self) -> bool:
        """Check if this instance is a root FSDP module."""
        return _is_fsdp_root(self, self)

    @staticmethod
    def fsdp_modules(
        module: nn.Module,
        root_only: bool = False,
    ) -> List["FullyShardedDataParallel"]:
        """Return all nested FSDP instances.

        This possibly includes ``module`` itself and only includes FSDP root modules if ``root_only=True``.

        Args:
            module (torch.nn.Module): Root module, which may or may not be an
                ``FSDP`` module.
            root_only (bool): Whether to return only FSDP root modules.
                (Default: ``False``)

        Returns:
            List[FullyShardedDataParallel]: FSDP modules that are nested in
            the input ``module``.
        """
        if root_only:
            return _get_fsdp_root_states(module)
        return traversal_utils._get_fsdp_states(module)

    def apply(self, fn: Callable[[nn.Module], None]) -> "FullyShardedDataParallel":
        r"""Apply ``fn`` recursively to every submodule (as returned by ``.children()``) as well as self.

        Typical use includes initializing the parameters of a model (see also :ref:`nn-init-doc`).

        Compared to ``torch.nn.Module.apply``, this version additionally gathers
        the full parameters before applying ``fn``. It should not be called from
        within another ``summon_full_params`` context.

        Args:
            fn (:class:`Module` -> None): function to be applied to each submodule

        Returns:
            Module: self
        """
        uninitialized = self._is_root is None
        self._assert_state(TrainingState.IDLE)
        # Use `_unshard_params_for_summon()` with `recurse=False` instead of
        # `_unshard_fsdp_state_params()` directly to perform lazy
        # initialization, which is needed to initialize `FlatParameter`
        # parameter attributes as required by the unshard logic
        with _unshard_params_for_summon(
            self,
            self,
            writeback=True,
            rank0_only=False,
            offload_to_cpu=False,
            with_grads=False,
        ):
            ret = super().apply(fn)

        # Reset lazy init called in `_unshard_params_for_summon()` since
        # `apply()` may have been called on FSDP instance that is not truly a
        # root, in which case it will be incorrectly marked as one.
        if uninitialized and self._is_root:
            for module in traversal_utils._get_fsdp_states(self):
                module._reset_lazy_init()

        return ret

    def _mixed_precision_enabled_for_buffers(self) -> bool:
        """Return whether the user explicitly enabled buffer mixed precision.

        NOTE: Unlike parameters and gradient reduction, buffer mixed precision
        is applied at the FSDP instance level, not the ``FlatParameter`` level,
        which may be different for the composable code path.
        """
        return self.mixed_precision.buffer_dtype is not None

    def _low_precision_hook_enabled(self) -> bool:
        """Whether a low precision hook is registered or not."""
        return self._comm_hook is not None and self._comm_hook in LOW_PRECISION_HOOKS

    def _reset_lazy_init(self) -> None:
        """Reset instance so :func:`_lazy_init` will run on the next forward."""
        self._is_root: Optional[bool] = None

    @staticmethod
    def set_state_dict_type(
        module: nn.Module,
        state_dict_type: StateDictType,
        state_dict_config: Optional[StateDictConfig] = None,
        optim_state_dict_config: Optional[OptimStateDictConfig] = None,
    ) -> StateDictSettings:
        """Set the ``state_dict_type`` of all the descendant FSDP modules of the target module.

        Also takes (optional) configuration for the model's and optimizer's state dict.
        The target module does not have to be a FSDP module. If the target
        module is a FSDP module, its ``state_dict_type`` will also be changed.

        .. note:: This API should be called for only the top-level (root)
            module.

        .. note:: This API enables users to transparently use the conventional
            ``state_dict`` API to take model checkpoints in cases where the
            root FSDP module is wrapped by another ``nn.Module``. For example,
            the following will ensure ``state_dict`` is called on all non-FSDP
            instances, while dispatching into `sharded_state_dict` implementation
            for FSDP:

        Example::

            >>> # xdoctest: +SKIP("undefined variables")
            >>> model = DDP(FSDP(...))
            >>> FSDP.set_state_dict_type(
            >>>     model,
            >>>     StateDictType.SHARDED_STATE_DICT,
            >>>     state_dict_config = ShardedStateDictConfig(offload_to_cpu=True),
            >>>     optim_state_dict_config = OptimStateDictConfig(offload_to_cpu=True),
            >>> )
            >>> param_state_dict = model.state_dict()
            >>> optim_state_dict = FSDP.optim_state_dict(model, optim)

        Args:
            module (torch.nn.Module): Root module.
            state_dict_type (StateDictType): the desired ``state_dict_type`` to set.
            state_dict_config (Optional[StateDictConfig]): the configuration for the
                target ``state_dict_type``.
            optim_state_dict_config (Optional[OptimStateDictConfig]): the configuration
                for the optimizer state dict.

        Returns:
            A StateDictSettings that include the previous state_dict type and
            configuration for the module.
        """
        warnings.warn(
            "FSDP.state_dict_type() and FSDP.set_state_dict_type() are being "
            "deprecated. Please use APIs, get_state_dict() and set_state_dict(), "
            "which can support different parallelisms, FSDP1, FSDP2, DDP. "
            "API doc: https://pytorch.org/docs/stable/distributed.checkpoint.html"
            "#torch.distributed.checkpoint.state_dict.get_state_dict ."
            "Tutorial: https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html .",
            FutureWarning,
        )
        _state_dict_type_to_config = {
            StateDictType.FULL_STATE_DICT: FullStateDictConfig,
            StateDictType.LOCAL_STATE_DICT: LocalStateDictConfig,
            StateDictType.SHARDED_STATE_DICT: ShardedStateDictConfig,
        }
        _optim_state_dict_type_to_config = {
            StateDictType.FULL_STATE_DICT: FullOptimStateDictConfig,
            StateDictType.LOCAL_STATE_DICT: LocalOptimStateDictConfig,
            StateDictType.SHARDED_STATE_DICT: ShardedOptimStateDictConfig,
        }

        # Use the default config if a state_dict config is not set.
        state_dict_config_type = _state_dict_type_to_config[state_dict_type]
        optim_state_dict_config_type = _optim_state_dict_type_to_config[state_dict_type]
        if state_dict_config is None:
            state_dict_config = state_dict_config_type()
        if optim_state_dict_config is None:
            optim_state_dict_config = optim_state_dict_config_type()
        if state_dict_config_type != type(state_dict_config):
            raise RuntimeError(
                f"Expected state_dict_config of type {state_dict_config_type} "
                f"but got {type(state_dict_config)}"
            )
        if optim_state_dict_config_type != type(optim_state_dict_config):
            raise RuntimeError(
                f"Expected optim_state_dict_config of type {optim_state_dict_config_type} "
                f"but got {type(optim_state_dict_config)}"
            )

        # Set the state_dict type and configurations.
        prev_state_dict_type = None
        prev_state_dict_config = None
        prev_optim_state_dict_config = None
        for submodule in traversal_utils._get_fsdp_states(module):
            if prev_state_dict_type is None:
                prev_state_dict_type = submodule._state_dict_type
            else:
                assert (
                    prev_state_dict_type == submodule._state_dict_type
                ), "All FSDP modules should have the same state_dict_type."
            if prev_state_dict_config is None:
                prev_state_dict_config = submodule._state_dict_config
            else:
                assert isinstance(
                    submodule._state_dict_config, type(prev_state_dict_config)
                ), "All FSDP modules must have the same type of state_dict_config."
            if prev_optim_state_dict_config is None:
                prev_optim_state_dict_config = submodule._optim_state_dict_config
            else:
                assert isinstance(
                    submodule._optim_state_dict_config,
                    type(prev_optim_state_dict_config),
                ), "All FSDP modules must have the same type of optim_state_dict_config."

            submodule._state_dict_type = state_dict_type
            submodule._state_dict_config = state_dict_config
            submodule._optim_state_dict_config = optim_state_dict_config

        return StateDictSettings(
            prev_state_dict_type, prev_state_dict_config, prev_optim_state_dict_config
        )

    @staticmethod
    def get_state_dict_type(module: nn.Module) -> StateDictSettings:
        """Get the state_dict_type and the corresponding configurations for the FSDP modules rooted at ``module``.

        The target module does not have to be an FSDP module.

        Returns:
            A ``StateDictSettings`` containing the state_dict_type and
            state_dict / optim_state_dict configs that are currently set.

        Raises:
            ``AssertionError`` if the ``StateDictSettings`` for different
            FSDP submodules differ.
        """
        state_dict_settings: Optional[StateDictSettings] = None
        for submodule in FullyShardedDataParallel.fsdp_modules(module):
            if state_dict_settings is None:
                state_dict_settings = StateDictSettings(
                    state_dict_type=submodule._state_dict_type,
                    state_dict_config=submodule._state_dict_config,
                    optim_state_dict_config=submodule._optim_state_dict_config,
                )
                _set_optim_use_dtensor(submodule, state_dict_settings)
            else:
                submodule_settings = StateDictSettings(
                    submodule._state_dict_type,
                    submodule._state_dict_config,
                    submodule._optim_state_dict_config,
                )
                assert state_dict_settings == submodule_settings, (
                    "All FSDP modules must have the same state dict settings."
                    f"Got {submodule_settings} and {state_dict_settings}."
                )
                _set_optim_use_dtensor(submodule, submodule_settings)
        return state_dict_settings

    @staticmethod
    @contextlib.contextmanager
    def state_dict_type(
        module: nn.Module,
        state_dict_type: StateDictType,
        state_dict_config: Optional[StateDictConfig] = None,
        optim_state_dict_config: Optional[OptimStateDictConfig] = None,
    ) -> Generator:
        """Set the ``state_dict_type`` of all the descendant FSDP modules of the target module.

        This context manager has the same functions as :meth:`set_state_dict_type`. Read the document of
        :meth:`set_state_dict_type` for the detail.

        Example::

            >>> # xdoctest: +SKIP("undefined variables")
            >>> model = DDP(FSDP(...))
            >>> with FSDP.state_dict_type(
            >>>     model,
            >>>     StateDictType.SHARDED_STATE_DICT,
            >>> ):
            >>>     checkpoint = model.state_dict()

        Args:
            module (torch.nn.Module): Root module.
            state_dict_type (StateDictType): the desired ``state_dict_type`` to set.
            state_dict_config (Optional[StateDictConfig]): the model ``state_dict``
                configuration for the target ``state_dict_type``.
            optim_state_dict_config (Optional[OptimStateDictConfig]): the optimizer
               ``state_dict`` configuration for the target ``state_dict_type``.
        """
        prev_state_dict_settings = FullyShardedDataParallel.set_state_dict_type(
            module,
            state_dict_type,
            state_dict_config,
            optim_state_dict_config,
        )
        yield
        FullyShardedDataParallel.set_state_dict_type(
            module,
            prev_state_dict_settings.state_dict_type,
            prev_state_dict_settings.state_dict_config,
            prev_state_dict_settings.optim_state_dict_config,
        )

    def forward(self, *args: Any, **kwargs: Any) -> Any:
        """Run the forward pass for the wrapped module, inserting FSDP-specific pre- and post-forward sharding logic."""
        handle = self._handle
        with torch.autograd.profiler.record_function(
            "FullyShardedDataParallel.forward"
        ):
            args, kwargs = _root_pre_forward(self, self, args, kwargs)
            unused = None
            args, kwargs = _pre_forward(
                self,
                handle,
                _pre_forward_unshard,
                self._fsdp_wrapped_module,
                args,
                kwargs,
            )
            if handle:
                _p_assert(
                    handle.flat_param.device == self.compute_device,
                    "Expected `FlatParameter` to be on the compute device "
                    f"{self.compute_device} but got {handle.flat_param.device}",
                )
            output = self._fsdp_wrapped_module(*args, **kwargs)
            return _post_forward(
                self, handle, _post_forward_reshard, self, unused, output
            )

    @staticmethod
    @contextlib.contextmanager
    def summon_full_params(
        module: nn.Module,
        recurse: bool = True,
        writeback: bool = True,
        rank0_only: bool = False,
        offload_to_cpu: bool = False,
        with_grads: bool = False,
    ) -> Generator:
        r"""Expose full params for FSDP instances with this context manager.

        Can be useful *after* forward/backward for a model to get
        the params for additional processing or checking. It can take a non-FSDP
        module and will summon full params for all contained FSDP modules as
        well as their children, depending on the ``recurse`` argument.

        .. note:: This can be used on inner FSDPs.
        .. note:: This can *not* be used within a forward or backward pass. Nor
            can forward and backward be started from within this context.
        .. note:: Parameters will revert to their local shards after the context
            manager exits, storage behavior is the same as forward.
        .. note:: The full parameters can be modified, but only the portion
            corresponding to the local param shard will persist after the
            context manager exits (unless ``writeback=False``, in which case
            changes will be discarded). In the case where FSDP does not shard
            the parameters, currently only when ``world_size == 1``, or ``NO_SHARD``
            config, the modification is persisted regardless of ``writeback``.
        .. note:: This method works on modules which are not FSDP themselves but
            may contain multiple independent FSDP units. In that case, the given
            arguments will apply to all contained FSDP units.

        .. warning:: Note that ``rank0_only=True`` in conjunction with
            ``writeback=True`` is not currently supported and will raise an
            error. This is because model parameter shapes would be different
            across ranks within the context, and writing to them can lead to
            inconsistency across ranks when the context is exited.

        .. warning:: Note that ``offload_to_cpu`` and ``rank0_only=False`` will
            result in full parameters being redundantly copied to CPU memory for
            GPUs that reside on the same machine, which may incur the risk of
            CPU OOM. It is recommended to use ``offload_to_cpu`` with
            ``rank0_only=True``.

        Args:
            recurse (bool, Optional): recursively summon all params for nested
                FSDP instances (default: True).
            writeback (bool, Optional): if ``False``, modifications to params are
                discarded after the context manager exits;
                disabling this can be slightly more efficient (default: True)
            rank0_only (bool, Optional): if ``True``, full parameters are
                materialized on only global rank 0. This means that within the
                context, only rank 0 will have full parameters and the other
                ranks will have sharded parameters. Note that setting
                ``rank0_only=True`` with ``writeback=True`` is not supported,
                as model parameter shapes will be different across ranks
                within the context, and writing to them can lead to
                inconsistency across ranks when the context is exited.
            offload_to_cpu (bool, Optional): If ``True``, full parameters are
                offloaded to CPU. Note that this offloading currently only
                occurs if the parameter is sharded (which is only not the case
                for world_size = 1 or ``NO_SHARD`` config). It is recommended
                to use ``offload_to_cpu`` with ``rank0_only=True`` to avoid
                redundant copies of model parameters being offloaded to the same CPU memory.
            with_grads (bool, Optional): If ``True``, gradients are also
                unsharded with the parameters. Currently, this is only
                supported when passing ``use_orig_params=True`` to the FSDP
                constructor and ``offload_to_cpu=False`` to this method.
                (Default: ``False``)
        """
        with _unshard_params(
            module, recurse, writeback, rank0_only, offload_to_cpu, with_grads
        ):
            yield

    @contextlib.contextmanager
    def _deregister_orig_params_ctx(self):
        """Deregister the original parameters and expose the :class:`FlatParameter`.

        If a :class:`FlatParameter` is sharded, then
        this refreshes the sharded views before exiting. This method should
        only be called when using the original parameters.
        """
        _p_assert(
            self._use_orig_params,
            "`_deregister_orig_params_ctx()` should only be called when "
            "`_use_orig_params=True`",
        )
        for fsdp_module in traversal_utils._get_fsdp_states(self):
            _deregister_orig_params(fsdp_module, fsdp_module)
        try:
            yield
        finally:
            for fsdp_module in traversal_utils._get_fsdp_states(self):
                _register_orig_params(fsdp_module, fsdp_module)

    def _apply(self, *args, **kwargs):
        """Deregister the original parameters and expose the :class:`FlatParameter` s before calling ``_apply()``."""
        # When using the original parameters: Since (1) the `FlatParameter`s
        # own the storage and (2) `_apply()` is the subroutine underlying the
        # most common storage-changing ops like `to()` and `cuda()`, we
        # override `_apply()` to have the storage change directly performed on
        # the `FlatParameter`s instead of applying to the original parameters
        # and then writing back to the `FlatParameter`s.
        context = (
            self._deregister_orig_params_ctx()
            if self._use_orig_params
            else contextlib.nullcontext()
        )
        with context:
            return super()._apply(*args, **kwargs)

    def named_buffers(
        self,
        *args,
        **kwargs,
    ) -> Iterator[Tuple[str, torch.Tensor]]:
        """Return an iterator over module buffers, yielding both the name of the buffer and the buffer itself.

        Intercepts buffer names and removes all occurrences of the FSDP-specific flattened buffer prefix
        when inside the :meth:`summon_full_params` context manager.
        """
        should_clean_name = self.training_state == TrainingState.SUMMON_FULL_PARAMS
        for buffer_name, buffer in super().named_buffers(*args, **kwargs):
            if should_clean_name:
                # Remove any instances of the FSDP-specific prefix; there can
                # be multiple in the case of nested FSDP modules
                buffer_name = buffer_name.replace(FSDP_PREFIX, "")
            yield (buffer_name, buffer)

    def named_parameters(
        self,
        *args,
        **kwargs,
    ) -> Iterator[Tuple[str, torch.nn.Parameter]]:
        """Return an iterator over module parameters, yielding both the name of the parameter and the parameter itself.

        Intercepts parameter names and removes all occurrences of the FSDP-specific flattened parameter prefix
        when inside the :meth:`summon_full_params` context manager.
        """
        should_clean_name = self.training_state == TrainingState.SUMMON_FULL_PARAMS
        for param_name, param in super().named_parameters(*args, **kwargs):
            if should_clean_name:
                # Remove any instances of the FSDP-specific prefix; there can
                # be multiple in the case of nested FSDP modules
                param_name = param_name.replace(FSDP_PREFIX, "")
            yield (param_name, param)

    def _assert_state(self, state: Union[TrainingState, List[TrainingState]]) -> None:
        """Assert we are in the given state."""
        # Since assert can be turned off and this error checking
        # is really important, we use explicit error checking
        # and raise a ValueError if needed.
        if isinstance(state, TrainingState):
            state = [state]
        if self.training_state not in state:
            msg = (
                f"expected to be in states {state} but current state "
                f"is {self.training_state}"
            )
            # In case we are failing in the context of autograd hook, asserting
            # may not generate useful msg. So, let's print it to be sure.
            if self.rank == 0:
                print(f"Asserting FSDP instance is: {self}")
                print(f"ERROR: {msg}")
                traceback.print_stack()
            raise ValueError(msg)

    @contextmanager
    def no_sync(self) -> Generator:
        """Disable gradient synchronizations across FSDP instances.

        Within this context, gradients will be accumulated in module
        variables, which will later be synchronized in the first
        forward-backward pass after exiting the context. This should only be
        used on the root FSDP instance and will recursively apply to all
        children FSDP instances.

        .. note:: This likely results in higher memory usage because FSDP will
            accumulate the full model gradients (instead of gradient shards)
            until the eventual sync.

        .. note:: When used with CPU offloading, the gradients will not be
            offloaded to CPU when inside the context manager. Instead, they
            will only be offloaded right after the eventual sync.
        """
        _lazy_init(self, self)
        if not self._is_root:
            raise RuntimeError(
                "`no_sync()` on inner FSDP instances is not supported. Please call `no_sync()` on root FSDP module."
            )
        self._assert_state(TrainingState.IDLE)
        old_flags = []
        for m in self.modules():
            if isinstance(m, FullyShardedDataParallel):
                old_flags.append((m, m._sync_gradients))
                m._sync_gradients = False
        try:
            yield
        finally:
            for m, old_flag in old_flags:
                assert not m._sync_gradients, (
                    "`_sync_gradients` was incorrectly set to "
                    "`True` while in the `no_sync()` context manager"
                )
                m._sync_gradients = old_flag

    @torch.no_grad()
    def clip_grad_norm_(
        self, max_norm: Union[float, int], norm_type: Union[float, int] = 2.0
    ) -> torch.Tensor:
        """Clip the gradient norm of all parameters.

        The norm is computed over all parameters' gradients as viewed as a single vector, and the
        gradients are modified in-place.

        Args:
            max_norm (float or int): max norm of the gradients
            norm_type (float or int): type of the used p-norm. Can be ``'inf'``
                for infinity norm.

        Returns:
            Total norm of the parameters (viewed as a single vector).

        If every FSDP instance uses ``NO_SHARD``, meaning that no
        gradients are sharded across ranks, then you may directly use
        :func:`torch.nn.utils.clip_grad_norm_`.

        If at least some FSDP instance uses a sharded strategy (i.e.
        one other than ``NO_SHARD``), then you should use this method
        instead of :func:`torch.nn.utils.clip_grad_norm_` since this method
        handles the fact that gradients are sharded across ranks.

        The total norm returned will have the "largest" dtype across
        all parameters/gradients as defined by PyTorch's type promotion
        semantics. For example, if *all* parameters/gradients use a low
        precision dtype, then the returned norm's dtype will be that low
        precision dtype, but if there exists at least one parameter/
        gradient using FP32, then the returned norm's dtype will be FP32.

        .. warning:: This needs to be called on all ranks since it uses
            collective communications.
        """
        _lazy_init(self, self)
        if not self._is_root:
            raise RuntimeError(
                "`clip_grad_norm_()` should only be called on the root FSDP instance"
            )
        if self._zero_scalar is None:
            self._zero_scalar = torch.tensor(0.0, device=self.compute_device)
        self._assert_state(TrainingState.IDLE)
        # If every FSDP instance uses `NO_SHARD`, then we can directly use
        # the normal `nn.utils` one targeting local gradients
        all_no_shard = all(
            not handle.uses_sharded_strategy for handle in self._all_handles
        )
        if all_no_shard:
            return torch.nn.utils.clip_grad_norm_(
                self.parameters(), max_norm, norm_type
            )
        # Otherwise, there exists some FSDP instance using a sharded strategy,
        # where sharded and non-sharded parameters must be handled separately
        max_norm = float(max_norm)
        norm_type = float(norm_type)
        sharded_params_set = set()
        nonsharded_params_set = set()  # `NO_SHARD` or not FSDP-managed
        # Make sure to compute the local norm using lists for deterministic
        # iteration order and hence deterministic total norm computation
        sharded_params = []
        nonsharded_params = []
        grads: List[torch.Tensor] = []
        for handle in self._all_handles:
            if handle.uses_sharded_strategy:
                target_set = sharded_params_set
                target_list = sharded_params
            else:
                target_set = nonsharded_params_set
                target_list = nonsharded_params
            if handle._use_orig_params:
                for param in handle.flat_param._params:
                    if param not in target_set:
                        target_set.add(param)
                        target_list.append(param)
                        if param.grad is not None:
                            grads.append(param.grad)
            else:
                if handle.flat_param not in target_set:
                    target_set.add(handle.flat_param)
                    target_list.append(handle.flat_param)
                    if handle.flat_param.grad is not None:
                        grads.append(handle.flat_param.grad)
        for param in self.parameters():
            not_fsdp_managed = (
                param not in sharded_params_set and param not in nonsharded_params_set
            )
            if not_fsdp_managed:
                nonsharded_params_set.add(param)
                nonsharded_params.append(param)
                if param.grad is not None:
                    grads.append(param.grad)
        # Compute local norms (forced to be in FP32)
        local_sharded_norm = _get_grad_norm(
            sharded_params, norm_type, self._zero_scalar, self.compute_device
        )
        local_nonsharded_norm = (
            _get_grad_norm(
                nonsharded_params, norm_type, self._zero_scalar, self.compute_device
            )
            if nonsharded_params
            else None
        )
        # Reconstruct the total gradient norm depending on the norm type
        if norm_type == math.inf:
            total_norm = (
                torch.maximum(local_sharded_norm, local_nonsharded_norm)
                if local_nonsharded_norm is not None
                else local_sharded_norm
            )
            dist.all_reduce(
                total_norm, op=torch.distributed.ReduceOp.MAX, group=self.process_group
            )
        else:
            total_norm = local_sharded_norm**norm_type
            dist.all_reduce(total_norm, group=self.process_group)
            # All-reducing the local non-sharded norm would count it an extra
            # world-size-many times
            if local_nonsharded_norm is not None:
                total_norm += local_nonsharded_norm**norm_type
            total_norm = total_norm ** (1.0 / norm_type)
        if self.cpu_offload.offload_params:
            total_norm = total_norm.cpu()

        clip_coef = max_norm / (total_norm + 1e-6)
        # Multiplying by the clamped coefficient is meaningless when it is
        # equal to 1, but it avoids the host-device sync that would result from
        # `if clip_coef < 1`
        clip_coef_clamped = torch.clamp(clip_coef, max=1.0)
        for grad in grads:
            grad.mul_(clip_coef_clamped.to(grad.device, grad.dtype))
        # Use the "largest" dtype by type promotion semantics to use the same
        # dtype as if we did not force local norm computation to be in FP32
        if len(grads) == 0:
            # If this rank has no gradients, then we must default to FP32
            # unless we use additional communication, which we prefer to avoid
            # since `clip_grad_norm_()` is called in the training loop
            warnings.warn(
                f"Called FSDP.clip_grad_norm_() on rank {self.rank} with no "
                "gradients -- returning the total norm in the default dtype "
                f"{total_norm.dtype}"
            )  # warn since this is generally unexpected
            return total_norm
        total_norm_dtype = functools.reduce(
            torch.promote_types,
            [grad.dtype for grad in grads],
        )
        return total_norm.to(total_norm_dtype)

    @staticmethod
    def _warn_optim_input(optim_input, *, stacklevel: int = 1):
        if optim_input is not None:
            warnings.warn(
                "The `optim_input` argument is deprecated and will be removed after PyTorch 1.13. "
                "You may remove it from your code without changing its functionality.",
                FutureWarning,
                stacklevel=stacklevel + 1,
            )

    @staticmethod
    def _is_using_optim_input(optim_input, optim) -> bool:
        if optim_input is None and optim is None:
            # Use the default behavior of `optim_input``
            return True
        if optim_input is not None:
            # Use the `optim_input` code path
            return True
        # Use the `optim` code path
        return False

    @staticmethod
    def _warn_legacy_optim_state_dict(curr: str, new: str, *, stacklevel: int = 1):
        warnings.warn(
            f"``FullyShardedDataParallel.{curr}``is being deprecated and is "
            f"replaced by ``FullyShardedDataParallel.{new}``. "
            f"``FullyShardedDataParallel.{curr}`` may be removed after PyTorch 2.2.",
            FutureWarning,
            stacklevel=stacklevel + 1,
        )

    @staticmethod
    def _optim_state_dict_impl(
        model: torch.nn.Module,
        optim: torch.optim.Optimizer,
        optim_state_dict: Dict[str, Any],
        optim_input: Optional[
            Union[
                List[Dict[str, Any]],
                Iterable[torch.nn.Parameter],
            ]
        ] = None,
        rank0_only: bool = True,
        full_state_dict: bool = True,
        group: Optional[dist.ProcessGroup] = None,
        cpu_offload: bool = True,
        *,
        _stacklevel: int = 1,
    ) -> Dict[str, Any]:
        """Transform the state-dict of an optimizer corresponding to a sharded model.

        This is the internal API that is used by all the optim_state_dict implementations.
        Given model, optim, the original optim_state_dict, this API removes the
        FSDP internal information and internal sharding from the optim_state_dict.
        """
        if full_state_dict:
            FullyShardedDataParallel._warn_optim_input(
                optim_input, stacklevel=_stacklevel + 1
            )
            using_optim_input = FullyShardedDataParallel._is_using_optim_input(
                optim_input,
                optim,
            )
        else:
            using_optim_input = False
            assert optim_input is None and not rank0_only

        use_orig_params = FullyShardedDataParallel.fsdp_modules(model)[
            0
        ]._use_orig_params
        assert all(
            use_orig_params == m._use_orig_params
            for m in FullyShardedDataParallel.fsdp_modules(model)
        ), "Not all FSDP modules have the same _use_orig_params value"

        return _optim_state_dict(
            model=model,
            optim=optim,
            optim_state_dict=optim_state_dict,
            optim_input=optim_input,
            rank0_only=rank0_only,
            shard_state=not full_state_dict,
            group=group,
            using_optim_input=using_optim_input,
            use_orig_params=use_orig_params,
            cpu_offload=cpu_offload,
        )

    @staticmethod
    def _optim_state_dict_to_load_impl(
        optim_state_dict: Dict[str, Any],
        model: torch.nn.Module,
        optim_input: Optional[
            Union[
                List[Dict[str, Any]],
                Iterable[torch.nn.Parameter],
            ]
        ] = None,
        optim: Optional[torch.optim.Optimizer] = None,
        full_state_dict: bool = True,
        rank0_only: bool = False,
        is_named_optimizer: bool = False,
        group: Optional[dist.ProcessGroup] = None,
    ) -> Dict[str, Any]:
        """
        Convert an optimizer state-dict so that it can be loaded into the optimizer associated with the FSDP model.

        This is the internal API that is used by all the load optim_state_dict implementations.
        Given model, optim, and the saved optim_state_dict, this API adds the FSDP
        internal information and internal sharding to the optim_state_dict.
        """
        if full_state_dict:
            FullyShardedDataParallel._warn_optim_input(optim_input)
            using_optim_input = FullyShardedDataParallel._is_using_optim_input(
                optim_input,
                optim,
            )
        else:
            using_optim_input = False
            assert optim_input is None and not rank0_only

        use_orig_params = FullyShardedDataParallel.fsdp_modules(model)[
            0
        ]._use_orig_params
        assert all(
            use_orig_params == m._use_orig_params
            for m in FullyShardedDataParallel.fsdp_modules(model)
        ), "Not all FSDP modules have the same _use_orig_params value"

        if rank0_only and dist.get_rank(group) > 0:
            optim_state_dict = {}
        sharded_osd = _flatten_optim_state_dict(
            optim_state_dict,
            model=model,
            use_orig_params=use_orig_params,
            optim=(optim if is_named_optimizer else None),
            rank0_only=rank0_only,
            group=group,
        )
        return _rekey_sharded_optim_state_dict(
            sharded_osd,
            model=model,
            optim=optim,
            optim_input=optim_input,
            using_optim_input=using_optim_input,
            is_named_optimizer=is_named_optimizer,
        )

    @staticmethod
    def full_optim_state_dict(
        model: torch.nn.Module,
        optim: torch.optim.Optimizer,
        optim_input: Optional[
            Union[
                List[Dict[str, Any]],
                Iterable[torch.nn.Parameter],
            ]
        ] = None,
        rank0_only: bool = True,
        group: Optional[dist.ProcessGroup] = None,
    ) -> Dict[str, Any]:
        """Return the full optimizer state-dict.

        Consolidates the full optimizer state on rank 0 and returns it
        as a :class:`dict` following the convention of
        :meth:`torch.optim.Optimizer.state_dict`, i.e. with keys ``"state"``
        and ``"param_groups"``. The flattened parameters in ``FSDP`` modules
        contained in ``model`` are mapped back to their unflattened parameters.

        This needs to be called on all ranks since it uses
        collective communications. However, if ``rank0_only=True``, then
        the state dict is only populated on rank 0, and all other ranks
        return an empty :class:`dict`.

        Unlike ``torch.optim.Optimizer.state_dict()``, this method
        uses full parameter names as keys instead of parameter IDs.

        Like in :meth:`torch.optim.Optimizer.state_dict`, the tensors
        contained in the optimizer state dict are not cloned, so there may
        be aliasing surprises. For best practices, consider saving the
        returned optimizer state dict immediately, e.g. using
        ``torch.save()``.

        Args:
            model (torch.nn.Module): Root module (which may or may not be a
                :class:`FullyShardedDataParallel` instance) whose parameters
                were passed into the optimizer ``optim``.
            optim (torch.optim.Optimizer): Optimizer for ``model`` 's
                parameters.
            optim_input (Optional[Union[List[Dict[str, Any]], Iterable[torch.nn.Parameter]]]):
                Input passed into the optimizer ``optim`` representing either a
                :class:`list` of parameter groups or an iterable of parameters;
                if ``None``, then this method assumes the input was
                ``model.parameters()``. This argument is deprecated, and there
                is no need to pass it in anymore. (Default: ``None``)
            rank0_only (bool): If ``True``, saves the populated :class:`dict`
                only on rank 0; if ``False``, saves it on all ranks. (Default:
                ``True``)
            group (dist.ProcessGroup): Model's process group or ``None`` if using
                the default process group. (Default: ``None``)

        Returns:
            Dict[str, Any]: A :class:`dict` containing the optimizer state for
            ``model`` 's original unflattened parameters and including keys
            "state" and "param_groups" following the convention of
            :meth:`torch.optim.Optimizer.state_dict`. If ``rank0_only=True``,
            then nonzero ranks return an empty :class:`dict`.
        """
        FullyShardedDataParallel._warn_legacy_optim_state_dict(
            "full_optim_state_dict",
            "optim_state_dict",
            stacklevel=2,
        )
        return FullyShardedDataParallel._optim_state_dict_impl(
            model=model,
            optim=optim,
            optim_state_dict=optim.state_dict(),
            optim_input=optim_input,
            rank0_only=rank0_only,
            group=group,
            full_state_dict=True,
            _stacklevel=2,
        )

    @staticmethod
    def sharded_optim_state_dict(
        model: torch.nn.Module,
        optim: torch.optim.Optimizer,
        group: Optional[dist.ProcessGroup] = None,
    ) -> Dict[str, Any]:
        """Return the optimizer state-dict in its sharded form.

        The API is similar to :meth:`full_optim_state_dict` but this API chunks
        all non-zero-dimension states to :class:`ShardedTensor` to save memory.
        This API should only be used when the model ``state_dict`` is derived
        with the context manager ``with state_dict_type(SHARDED_STATE_DICT):``.

        For the detailed usage, refer to :meth:`full_optim_state_dict`.

        .. warning:: The returned state dict contains ``ShardedTensor`` and
            cannot be directly used by the regular ``optim.load_state_dict``.
        """
        FullyShardedDataParallel._warn_legacy_optim_state_dict(
            "sharded_optim_state_dict",
            "optim_state_dict",
            stacklevel=2,
        )
        return FullyShardedDataParallel._optim_state_dict_impl(
            model=model,
            optim=optim,
            optim_state_dict=optim.state_dict(),
            optim_input=None,
            rank0_only=False,
            full_state_dict=False,
            group=group,
            _stacklevel=2,
        )

    @staticmethod
    def shard_full_optim_state_dict(
        full_optim_state_dict: Dict[str, Any],
        model: torch.nn.Module,
        optim_input: Optional[
            Union[
                List[Dict[str, Any]],
                Iterable[torch.nn.Parameter],
            ]
        ] = None,
        optim: Optional[torch.optim.Optimizer] = None,
    ) -> Dict[str, Any]:
        """Shard a full optimizer state-dict.

        Remaps the state in ``full_optim_state_dict`` to flattened parameters instead of unflattened
        parameters and restricts to only this rank's part of the optimizer state.
        The first argument should be the return value of :meth:`full_optim_state_dict`.

        Example::

            >>> # xdoctest: +SKIP("undefined variables")
            >>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
            >>> model, optim = ...
            >>> full_osd = FSDP.full_optim_state_dict(model, optim)
            >>> torch.save(full_osd, PATH)
            >>> # Define new model with possibly different world size
            >>> new_model, new_optim = ...
            >>> full_osd = torch.load(PATH)
            >>> sharded_osd = FSDP.shard_full_optim_state_dict(full_osd, new_model)
            >>> new_optim.load_state_dict(sharded_osd)

        .. note:: Both :meth:`shard_full_optim_state_dict` and
            :meth:`scatter_full_optim_state_dict` may be used to get the
            sharded optimizer state dict to load. Assuming that the full
            optimizer state dict resides in CPU memory, the former requires
            each rank to have the full dict in CPU memory, where each rank
            individually shards the dict without any communication, while the
            latter requires only rank 0 to have the full dict in CPU memory,
            where rank 0 moves each shard to GPU memory (for NCCL) and
            communicates it to ranks appropriately. Hence, the former has
            higher aggregate CPU memory cost, while the latter has higher
            communication cost.

        Args:
            full_optim_state_dict (Dict[str, Any]): Optimizer state dict
                corresponding to the unflattened parameters and holding the
                full non-sharded optimizer state.
            model (torch.nn.Module): Root module (which may or may not be a
                :class:`FullyShardedDataParallel` instance) whose parameters
                correspond to the optimizer state in ``full_optim_state_dict``.
            optim_input (Optional[Union[List[Dict[str, Any]], Iterable[torch.nn.Parameter]]]):
                Input passed into the optimizer representing either a
                :class:`list` of parameter groups or an iterable of parameters;
                if ``None``, then this method assumes the input was
                ``model.parameters()``. This argument is deprecated, and there
                is no need to pass it in anymore. (Default: ``None``)
            optim (Optional[torch.optim.Optimizer]): Optimizer that will load
                the state dict returned by this method. This is the preferred
                argument to use over ``optim_input``. (Default: ``None``)

        Returns:
            Dict[str, Any]: The full optimizer state dict now remapped to
            flattened parameters instead of unflattened parameters and
            restricted to only include this rank's part of the optimizer state.
        """
        FullyShardedDataParallel._warn_legacy_optim_state_dict(
            "shard_full_optim_state_dict",
            "optim_state_dict_to_load",
            stacklevel=2,
        )
        return FullyShardedDataParallel._optim_state_dict_to_load_impl(
            optim_state_dict=full_optim_state_dict,
            model=model,
            optim_input=optim_input,
            optim=optim,
            full_state_dict=True,
            is_named_optimizer=False,
        )

    @staticmethod
    def flatten_sharded_optim_state_dict(
        sharded_optim_state_dict: Dict[str, Any],
        model: torch.nn.Module,
        optim: torch.optim.Optimizer,
    ) -> Dict[str, Any]:
        """Flatten a sharded optimizer state-dict.

        The API is similar to :meth:`shard_full_optim_state_dict`. The only
        difference is that the input ``sharded_optim_state_dict`` should be
        returned from :meth:`sharded_optim_state_dict`. Therefore, there will
        be all-gather calls on each rank to gather ``ShardedTensor`` s.

        Args:
            sharded_optim_state_dict (Dict[str, Any]): Optimizer state dict
                corresponding to the unflattened parameters and holding the
                sharded optimizer state.
            model (torch.nn.Module):
                Refer to :meth:`shard_full_optim_state_dict`.
            optim (torch.optim.Optimizer): Optimizer for ``model`` 's
                parameters.

        Returns:
            Refer to :meth:`shard_full_optim_state_dict`.
        """
        FullyShardedDataParallel._warn_legacy_optim_state_dict(
            "flatten_sharded_optim_state_dict",
            "optim_state_dict_to_load",
            stacklevel=2,
        )
        return FullyShardedDataParallel._optim_state_dict_to_load_impl(
            optim_state_dict=sharded_optim_state_dict,
            model=model,
            optim_input=None,
            optim=optim,
            full_state_dict=False,
            is_named_optimizer=False,
        )

    @staticmethod
    def scatter_full_optim_state_dict(
        full_optim_state_dict: Optional[Dict[str, Any]],
        model: torch.nn.Module,
        optim_input: Optional[
            Union[
                List[Dict[str, Any]],
                Iterable[torch.nn.Parameter],
            ]
        ] = None,
        optim: Optional[torch.optim.Optimizer] = None,
        group: Optional[Any] = None,
    ) -> Dict[str, Any]:
        """Scatter the full optimizer state dict from rank 0 to all other ranks.

        Returns the sharded optimizer state dict on each rank.
        The return value is the same as :meth:`shard_full_optim_state_dict`, and on rank
        0, the first argument should be the return value of
        :meth:`full_optim_state_dict`.

        Example::

            >>> # xdoctest: +SKIP("undefined variables")
            >>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
            >>> model, optim = ...
            >>> full_osd = FSDP.full_optim_state_dict(model, optim)  # only non-empty on rank 0
            >>> # Define new model with possibly different world size
            >>> new_model, new_optim, new_group = ...
            >>> sharded_osd = FSDP.scatter_full_optim_state_dict(full_osd, new_model, group=new_group)
            >>> new_optim.load_state_dict(sharded_osd)

        .. note:: Both :meth:`shard_full_optim_state_dict` and
            :meth:`scatter_full_optim_state_dict` may be used to get the
            sharded optimizer state dict to load. Assuming that the full
            optimizer state dict resides in CPU memory, the former requires
            each rank to have the full dict in CPU memory, where each rank
            individually shards the dict without any communication, while the
            latter requires only rank 0 to have the full dict in CPU memory,
            where rank 0 moves each shard to GPU memory (for NCCL) and
            communicates it to ranks appropriately. Hence, the former has
            higher aggregate CPU memory cost, while the latter has higher
            communication cost.

        Args:
            full_optim_state_dict (Optional[Dict[str, Any]]): Optimizer state
                dict corresponding to the unflattened parameters and holding
                the full non-sharded optimizer state if on rank 0; the argument
                is ignored on nonzero ranks.
            model (torch.nn.Module): Root module (which may or may not be a
                :class:`FullyShardedDataParallel` instance) whose parameters
                correspond to the optimizer state in ``full_optim_state_dict``.
            optim_input (Optional[Union[List[Dict[str, Any]], Iterable[torch.nn.Parameter]]]):
                Input passed into the optimizer representing either a
                :class:`list` of parameter groups or an iterable of parameters;
                if ``None``, then this method assumes the input was
                ``model.parameters()``. This argument is deprecated, and there
                is no need to pass it in anymore. (Default: ``None``)
            optim (Optional[torch.optim.Optimizer]): Optimizer that will load
                the state dict returned by this method. This is the preferred
                argument to use over ``optim_input``. (Default: ``None``)
            group (dist.ProcessGroup): Model's process group or ``None`` if
                using the default process group. (Default: ``None``)

        Returns:
            Dict[str, Any]: The full optimizer state dict now remapped to
            flattened parameters instead of unflattened parameters and
            restricted to only include this rank's part of the optimizer state.
        """
        FullyShardedDataParallel._warn_legacy_optim_state_dict(
            "scatter_full_optim_state_dict",
            "optim_state_dict_to_load",
            stacklevel=2,
        )
        return FullyShardedDataParallel._optim_state_dict_to_load_impl(
            optim_state_dict=full_optim_state_dict,
            model=model,
            optim_input=optim_input,
            optim=optim,
            full_state_dict=True,
            rank0_only=True,
            is_named_optimizer=False,
            group=group,
        )

    @staticmethod
    def rekey_optim_state_dict(
        optim_state_dict: Dict[str, Any],
        optim_state_key_type: OptimStateKeyType,
        model: torch.nn.Module,
        optim_input: Optional[
            Union[
                List[Dict[str, Any]],
                Iterable[torch.nn.Parameter],
            ]
        ] = None,
        optim: Optional[torch.optim.Optimizer] = None,
    ) -> Dict[str, Any]:
        """Re-keys the optimizer state dict ``optim_state_dict`` to use the key type ``optim_state_key_type``.

        This can be used to achieve compatibility between optimizer state dicts from models with FSDP
        instances and ones without.

        To re-key an FSDP full optimizer state dict (i.e. from
        :meth:`full_optim_state_dict`) to use parameter IDs and be loadable to
        a non-wrapped model::

            >>> # xdoctest: +SKIP("undefined variables")
            >>> wrapped_model, wrapped_optim = ...
            >>> full_osd = FSDP.full_optim_state_dict(wrapped_model, wrapped_optim)
            >>> nonwrapped_model, nonwrapped_optim = ...
            >>> rekeyed_osd = FSDP.rekey_optim_state_dict(full_osd, OptimStateKeyType.PARAM_ID, nonwrapped_model)
            >>> nonwrapped_optim.load_state_dict(rekeyed_osd)

        To re-key a normal optimizer state dict from a non-wrapped model to be
        loadable to a wrapped model::

            >>> # xdoctest: +SKIP("undefined variables")
            >>> nonwrapped_model, nonwrapped_optim = ...
            >>> osd = nonwrapped_optim.state_dict()
            >>> rekeyed_osd = FSDP.rekey_optim_state_dict(osd, OptimStateKeyType.PARAM_NAME, nonwrapped_model)
            >>> wrapped_model, wrapped_optim = ...
            >>> sharded_osd = FSDP.shard_full_optim_state_dict(rekeyed_osd, wrapped_model)
            >>> wrapped_optim.load_state_dict(sharded_osd)

        Returns:
            Dict[str, Any]: The optimizer state dict re-keyed using the
            parameter keys specified by ``optim_state_key_type``.
        """
        FullyShardedDataParallel._warn_optim_input(optim_input)
        using_optim_input = FullyShardedDataParallel._is_using_optim_input(
            optim_input,
            optim,
        )
        assert optim_state_key_type in (
            OptimStateKeyType.PARAM_NAME,
            OptimStateKeyType.PARAM_ID,
        )
        osd = optim_state_dict  # alias
        # Validate that the existing parameter keys are uniformly typed
        uses_param_name_mask = [type(param_key) is str for param_key in osd["state"]]
        uses_param_id_mask = [type(param_key) is int for param_key in osd["state"]]
        if (any(uses_param_name_mask) and not all(uses_param_name_mask)) or (
            any(uses_param_id_mask) and not all(uses_param_id_mask)
        ):
            error_msg = f"Invalid parameter keys: {osd['state'].keys()}"
            raise ValueError(error_msg)
        # Return directly if the existing key type matches the target key type
        if (
            optim_state_key_type == OptimStateKeyType.PARAM_NAME
            and all(uses_param_name_mask)
        ) or (
            optim_state_key_type == OptimStateKeyType.PARAM_ID
            and all(uses_param_id_mask)
        ):
            return osd
        # Otherwise, actually perform the re-keying
        new_osd = {}
        if optim_state_key_type == OptimStateKeyType.PARAM_NAME:  # ID -> name
            param_id_to_param = (
                _get_param_id_to_param_from_optim_input(model, optim_input)
                if using_optim_input
                else _get_param_key_to_param(optim)
            )
            param_to_param_name = _get_param_to_fqn(model)
            param_id_to_param_name: List[str] = [
                param_to_param_name[param] for param in param_id_to_param.values()
            ]
            new_osd["state"] = {
                param_id_to_param_name[param_id]: param_state
                for param_id, param_state in osd["state"].items()
            }
            new_osd["param_groups"] = copy.deepcopy(osd["param_groups"])
            for param_group in new_osd["param_groups"]:
                param_group["params"] = sorted(
                    [
                        param_id_to_param_name[param_id]
                        for param_id in param_group["params"]
                    ]
                )
            return new_osd
        elif optim_state_key_type == OptimStateKeyType.PARAM_ID:  # name -> ID
            param_name_to_param = _get_fqn_to_param(model)
            param_to_param_id = (
                _get_param_to_param_id_from_optim_input(model, optim_input)
                if using_optim_input
                else _get_param_to_param_key(optim)
            )
            # Because not all model parameters may be passed as the optimizer
            # input, we may need to drop some parameters from this mapping
            param_name_to_param_id = {
                param_name: param_to_param_id[param]
                for param_name, param in param_name_to_param.items()
                if param in param_to_param_id
            }
            new_osd["state"] = {
                param_name_to_param_id[param_name]: param_state
                for param_name, param_state in osd["state"].items()
            }
            new_osd["param_groups"] = copy.deepcopy(osd["param_groups"])
            for param_group in new_osd["param_groups"]:
                param_group["params"] = sorted(
                    [
                        param_name_to_param_id[param_name]
                        for param_name in param_group["params"]
                    ]
                )
            return new_osd
        return new_osd  # should never reach here

    @staticmethod
    def optim_state_dict(
        model: torch.nn.Module,
        optim: torch.optim.Optimizer,
        optim_state_dict: Optional[Dict[str, Any]] = None,
        group: Optional[dist.ProcessGroup] = None,
    ) -> Dict[str, Any]:
        """
        Transform the state-dict of an optimizer corresponding to a sharded model.

        The given state-dict can be transformed to one of three types:
        1) full optimizer state_dict, 2) sharded optimizer state_dict, 3) local optimizer state_dict.

        For full optimizer state_dict, all states are unflattened and not sharded.
        Rank0 only and CPU only can be specified via :meth:`state_dict_type` to
        avoid OOM.

        For sharded optimizer state_dict, all states are unflattened but sharded.
        CPU only can be specified via :meth:`state_dict_type` to further save
        memory.

        For local state_dict, no transformation will be performed. But a state
        will be converted from nn.Tensor to ShardedTensor to represent its sharding
        nature (this is not supported yet).

        Example::

            >>> # xdoctest: +SKIP("undefined variables")
            >>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
            >>> from torch.distributed.fsdp import StateDictType
            >>> from torch.distributed.fsdp import FullStateDictConfig
            >>> from torch.distributed.fsdp import FullOptimStateDictConfig
            >>> # Save a checkpoint
            >>> model, optim = ...
            >>> FSDP.set_state_dict_type(
            >>>     model,
            >>>     StateDictType.FULL_STATE_DICT,
            >>>     FullStateDictConfig(rank0_only=False),
            >>>     FullOptimStateDictConfig(rank0_only=False),
            >>> )
            >>> state_dict = model.state_dict()
            >>> optim_state_dict = FSDP.optim_state_dict(model, optim)
            >>> save_a_checkpoint(state_dict, optim_state_dict)
            >>> # Load a checkpoint
            >>> model, optim = ...
            >>> state_dict, optim_state_dict = load_a_checkpoint()
            >>> FSDP.set_state_dict_type(
            >>>     model,
            >>>     StateDictType.FULL_STATE_DICT,
            >>>     FullStateDictConfig(rank0_only=False),
            >>>     FullOptimStateDictConfig(rank0_only=False),
            >>> )
            >>> model.load_state_dict(state_dict)
            >>> optim_state_dict = FSDP.optim_state_dict_to_load(
            >>>     model, optim, optim_state_dict
            >>> )
            >>> optim.load_state_dict(optim_state_dict)

        Args:
            model (torch.nn.Module): Root module (which may or may not be a
                :class:`FullyShardedDataParallel` instance) whose parameters
                were passed into the optimizer ``optim``.
            optim (torch.optim.Optimizer): Optimizer for ``model`` 's
                parameters.
            optim_state_dict (Dict[str, Any]): the target optimizer state_dict to
                transform. If the value is None, optim.state_dict() will be used. (
                Default: ``None``)
            group (dist.ProcessGroup): Model's process group across which parameters
                are sharded or ``None`` if using the default process group. (
                Default: ``None``)

        Returns:
            Dict[str, Any]: A :class:`dict` containing the optimizer state for
            ``model``. The sharding of the optimizer state is based on
            ``state_dict_type``.
        """
        state_dict_settings = FullyShardedDataParallel.get_state_dict_type(model)
        if optim_state_dict is None:
            optim_state_dict = optim.state_dict()
        return FullyShardedDataParallel._optim_state_dict_impl(
            model=model,
            optim=optim,
            optim_state_dict=optim_state_dict,
            optim_input=None,
            rank0_only=getattr(
                state_dict_settings.optim_state_dict_config, "rank0_only", False
            ),
            full_state_dict=state_dict_settings.state_dict_type
            == StateDictType.FULL_STATE_DICT,
            group=group,
            cpu_offload=getattr(
                state_dict_settings.optim_state_dict_config, "offload_to_cpu", True
            ),
            _stacklevel=2,
        )

    @staticmethod
    def optim_state_dict_to_load(
        model: torch.nn.Module,
        optim: torch.optim.Optimizer,
        optim_state_dict: Dict[str, Any],
        is_named_optimizer: bool = False,
        load_directly: bool = False,
        group: Optional[dist.ProcessGroup] = None,
    ) -> Dict[str, Any]:
        """
        Convert an optimizer state-dict so that it can be loaded into the optimizer associated with the FSDP model.

        Given a ``optim_state_dict`` that is transformed through
        :meth:`optim_state_dict`, it gets converted to the flattened optimizer
        state_dict that can be loaded to ``optim`` which is the optimizer for
        ``model``. ``model`` must be sharded by FullyShardedDataParallel.

            >>> # xdoctest: +SKIP("undefined variables")
            >>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
            >>> from torch.distributed.fsdp import StateDictType
            >>> from torch.distributed.fsdp import FullStateDictConfig
            >>> from torch.distributed.fsdp import FullOptimStateDictConfig
            >>> # Save a checkpoint
            >>> model, optim = ...
            >>> FSDP.set_state_dict_type(
            >>>     model,
            >>>     StateDictType.FULL_STATE_DICT,
            >>>     FullStateDictConfig(rank0_only=False),
            >>>     FullOptimStateDictConfig(rank0_only=False),
            >>> )
            >>> state_dict = model.state_dict()
            >>> original_osd = optim.state_dict()
            >>> optim_state_dict = FSDP.optim_state_dict(
            >>>     model,
            >>>     optim,
            >>>     optim_state_dict=original_osd
            >>> )
            >>> save_a_checkpoint(state_dict, optim_state_dict)
            >>> # Load a checkpoint
            >>> model, optim = ...
            >>> state_dict, optim_state_dict = load_a_checkpoint()
            >>> FSDP.set_state_dict_type(
            >>>     model,
            >>>     StateDictType.FULL_STATE_DICT,
            >>>     FullStateDictConfig(rank0_only=False),
            >>>     FullOptimStateDictConfig(rank0_only=False),
            >>> )
            >>> model.load_state_dict(state_dict)
            >>> optim_state_dict = FSDP.optim_state_dict_to_load(
            >>>     model, optim, optim_state_dict
            >>> )
            >>> optim.load_state_dict(optim_state_dict)

        Args:
            model (torch.nn.Module): Root module (which may or may not be a
                :class:`FullyShardedDataParallel` instance) whose parameters
                were passed into the optimizer ``optim``.
            optim (torch.optim.Optimizer): Optimizer for ``model`` 's
                parameters.
            optim_state_dict (Dict[str, Any]): The optimizer states to be loaded.
            is_named_optimizer (bool): Is this optimizer a NamedOptimizer or
                KeyedOptimizer. Only set to True if ``optim`` is TorchRec's
                KeyedOptimizer or torch.distributed's NamedOptimizer.
            load_directly (bool): If this is set to True, this API will also
                call optim.load_state_dict(result) before returning the result.
                Otherwise, users are responsible to call ``optim.load_state_dict()``
                (Default: ``False``)
            group (dist.ProcessGroup): Model's process group across which parameters
                are sharded or ``None`` if using the default process group. (
                Default: ``None``)
        """
        state_dict_settings = FullyShardedDataParallel.get_state_dict_type(model)
        result = FullyShardedDataParallel._optim_state_dict_to_load_impl(
            optim_state_dict=optim_state_dict,
            model=model,
            optim_input=None,
            optim=optim,
            full_state_dict=(
                state_dict_settings.state_dict_type == StateDictType.FULL_STATE_DICT
            ),
            rank0_only=getattr(
                state_dict_settings.optim_state_dict_config, "rank0_only", False
            ),
            is_named_optimizer=is_named_optimizer,
            group=group,
        )
        if load_directly:
            optim.load_state_dict(result)
        return result

    def register_comm_hook(self, state: object, hook: callable):
        """Register a communication hook.

        This is an enhancement that provides a flexible hook to users where they can specify how FSDP aggregates
        gradients across multiple workers.
        This hook can be used to implement several algorithms like
        `GossipGrad <https://arxiv.org/abs/1803.05880>`_ and gradient compression
        which involve different communication strategies for
        parameter syncs while training with :class:`FullyShardedDataParallel`.

        .. warning ::
            FSDP communication hook should be registered before running an initial forward pass
            and only once.

        Args:
            state (object): Passed to the hook to maintain any state information during the training process.
                            Examples include error feedback in gradient compression,
                            peers to communicate with next in `GossipGrad <https://arxiv.org/abs/1803.05880>`_, etc.
                            It is locally stored by each worker
                            and shared by all the gradient tensors on the worker.
            hook (Callable): Callable, which has one of the following signatures:
                            1) ``hook: Callable[torch.Tensor] -> None``:
                            This function takes in a Python tensor, which represents
                            the full, flattened, unsharded gradient with respect to all variables
                            corresponding to the model this FSDP unit is wrapping
                            (that are not wrapped by other FSDP sub-units).
                            It then performs all necessary processing and returns ``None``;
                            2) ``hook: Callable[torch.Tensor, torch.Tensor] -> None``:
                            This function takes in two Python tensors, the first one represents
                            the full, flattened, unsharded gradient with respect to all variables
                            corresponding to the model this FSDP unit is wrapping
                            (that are not wrapped by other FSDP sub-units). The latter
                            represents a pre-sized tensor to store a chunk of a sharded gradient after
                            reduction.
                            In both cases, callable performs all necessary processing and returns ``None``.
                            Callables with signature 1 are expected to handle gradient communication for a `NO_SHARD` case.
                            Callables with signature 2 are expected to handle gradient communication for sharded cases.

        """
        if not self.check_is_root():
            raise AssertionError(
                "register_comm_hook can only be called on a root instance."
            )
        for fsdp_state in traversal_utils._get_fsdp_states(self):
            if fsdp_state.sharding_strategy in HYBRID_SHARDING_STRATEGIES:
                raise AssertionError(
                    f"Communication hook is not supported for hybrid strategies: {fsdp_state.sharding_strategy}"
                )
            if fsdp_state._comm_hook is not None:
                raise AssertionError("A communication hook is already registered")
            if not callable(hook):
                raise ValueError(
                    f"The communication hook must be callable but got {hook}"
                )
            fsdp_state._comm_hook = hook
            fsdp_state._comm_hook_state = state

    def _unshard(self, async_op: bool = False):
        class UnshardHandle:
            def __init__(
                self,
                flat_param_handle: Optional[FlatParamHandle],
                unshard_event: torch.Event,
            ):
                self._flat_param_handle = flat_param_handle
                self._unshard_event = unshard_event

            def wait(self):
                if self._flat_param_handle is not None:
                    current_stream = (
                        self._flat_param_handle._device_handle.current_stream()
                    )
                    current_stream.wait_event(self._unshard_event)
                    self._flat_param_handle = None

        if self._handle:
            with self._use_training_state(
                TrainingState.FORWARD_BACKWARD, HandleTrainingState.FORWARD
            ):
                _unshard(
                    self, self._handle, self._unshard_stream, self._pre_unshard_stream
                )
                self._unshard_event = self._unshard_stream.record_event()
            self._handle._prefetched = True
        unshard_handle = UnshardHandle(self._handle, self._unshard_stream)
        if async_op:
            return unshard_handle
        unshard_handle.wait()
        return None

    def _wait_unshard_streams_on_current_stream(self):
        _wait_for_computation_stream(
            self._device_handle.current_stream(),
            self._unshard_stream,
            self._pre_unshard_stream,
        )

    @contextlib.contextmanager
    def _use_training_state(
        self, training_state: TrainingState, handle_training_state: HandleTrainingState
    ):
        prev_training_state = self.training_state
        self.training_state = training_state
        if self._handle:
            prev_handle_training_state = self._handle._training_state
            self._handle._training_state = handle_training_state
        try:
            yield
        finally:
            self.training_state = prev_training_state
            if self._handle:
                self._handle._training_state = prev_handle_training_state


def _get_grad_norm(
    params: Iterable[nn.Parameter],
    norm_type: float,
    zero: torch.Tensor,
    device: torch.device,
) -> torch.Tensor:
    """
    Return the gradient norm of parameters ``param`` s, where the gradients are viewed as a single vector.

    The returned norm is in FP32 even if parameters/gradients are in a low precision. This is because the downstream
    use of this return value is a reduction across ranks.
    """
    params_with_grad = [param for param in params if param.grad is not None]
    if len(params_with_grad) == 0:
        # Reuse a tensor for zero to avoid a GPU sync
        return zero
    grads = [param.grad for param in params_with_grad]
    grad_dtypes = {grad.dtype for grad in grads}
    if len(grad_dtypes) != 1:
        raise ValueError(
            f"Requires uniform dtype across all gradients but got {grad_dtypes}"
        )
    # Compute the gradient norm in FP32, where we treat the gradients as a
    # single vector
    grad_norm = torch.linalg.vector_norm(
        torch.stack(
            [
                torch.linalg.vector_norm(grad.detach(), norm_type, dtype=torch.float32)
                for grad in grads
            ],
        ),
        norm_type,
        dtype=torch.float32,
    )
    return grad_norm.to(device=device)


def _get_param_to_fqn(
    model: torch.nn.Module,
) -> Dict[torch.nn.Parameter, str]:
    """
    Construct a mapping from parameters to their parameter names.

    The ``model`` should not contain any :class:`FullyShardedDataParallel` instances, which
    means that none of the parameters should be ``FlatParameter`` s. As a
    result, compared to :meth:`_get_param_to_fqns`, the mapped
    values may be flattened from singleton :class:`list` s to the contained
    names themselves.

    Args:
        model (torch.nn.Module): Root module, which should not contain any
            :class:`FullyShardedDataParallel` instances.
    """
    param_to_param_names = _get_param_to_fqns(model)
    for param_names in param_to_param_names.values():
        assert (
            len(param_names) > 0
        ), "`_get_param_to_fqns()` should not construct empty lists"
        if len(param_names) > 1:
            raise RuntimeError(
                "Each parameter should only map to one parameter name but got "
                f"{len(param_names)}: {param_names}"
            )
    param_to_param_name = {
        param: param_names[0] for param, param_names in param_to_param_names.items()
    }
    return param_to_param_name


def _get_fqn_to_param(
    model: torch.nn.Module,
) -> Dict[str, torch.nn.Parameter]:
    """Construct the inverse mapping of :meth:`_get_param_to_fqn`."""
    param_to_param_name = _get_param_to_fqn(model)
    return dict(zip(param_to_param_name.values(), param_to_param_name.keys()))