File: __init__.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (43 lines) | stat: -rw-r--r-- 1,439 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
"""
:mod:`torch.distributed.optim` exposes DistributedOptimizer, which takes a list
of remote parameters (:class:`~torch.distributed.rpc.RRef`) and runs the
optimizer locally on the workers where the parameters live.  The distributed
optimizer can use any of the local optimizer :ref:`optimizer-algorithms` to
apply the gradients on each worker.
"""
import warnings

import torch
from torch import optim

from .apply_optimizer_in_backward import (
    _apply_optimizer_in_backward,
    _get_in_backward_optimizers,
)
from .functional_adadelta import _FunctionalAdadelta
from .functional_adagrad import _FunctionalAdagrad
from .functional_adam import _FunctionalAdam
from .functional_adamax import _FunctionalAdamax
from .functional_adamw import _FunctionalAdamW
from .functional_rmsprop import _FunctionalRMSprop
from .functional_rprop import _FunctionalRprop
from .functional_sgd import _FunctionalSGD
from .named_optimizer import _NamedOptimizer
from .utils import as_functional_optim


# DistributedOptimizer imports torch.distributed.rpc names, so gate availability
# based on RPC being available.
if hasattr(torch._C, "_rpc_init"):
    from .optimizer import DistributedOptimizer

from .post_localSGD_optimizer import PostLocalSGDOptimizer
from .zero_redundancy_optimizer import ZeroRedundancyOptimizer


__all__ = [
    "as_functional_optim",
    "DistributedOptimizer",
    "PostLocalSGDOptimizer",
    "ZeroRedundancyOptimizer",
]