1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
# Copyright (c) Meta Platforms, Inc. and affiliates
import contextlib
import functools
import logging
import operator
import warnings
from typing import cast, Dict, List, Optional, Sequence, Tuple, TYPE_CHECKING
import torch
import torch.distributed as dist
import torch.distributed.tensor._api as dtensor
import torch.distributed.tensor._random as random
from torch.distributed.tensor._dtensor_spec import DTensorSpec, TensorMeta
from torch.distributed.tensor._op_schema import (
_is_inplace_op,
_is_out_variant_op,
OpInfo,
OpSchema,
OutputSpecType,
)
from torch.distributed.tensor._random import is_rng_supported_mesh
from torch.distributed.tensor._redistribute import redistribute_local_tensor
from torch.distributed.tensor._sharding_prop import ShardingPropagator
from torch.distributed.tensor._tp_conv import (
convolution_backward_handler,
convolution_handler,
)
from torch.distributed.tensor._utils import try_find_mesh_from_args
from torch.distributed.tensor.placement_types import Partial, Placement, Replicate
if TYPE_CHECKING:
from torch.distributed.device_mesh import DeviceMesh
try:
from torch.utils import _cxx_pytree as pytree
except ImportError:
from torch.utils import _pytree as pytree # type: ignore[no-redef]
aten = torch.ops.aten
logger = logging.getLogger(__name__)
def decompose_handler(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
"""
Decomposes a op to core ATen op, this handler is mostly here
for inference mode usage where the ops are not core aten ops.
"""
r = op_call.decompose(*args, **kwargs)
if r is not NotImplemented:
return r
else:
raise RuntimeError("Decomposition failed")
def is_same_size_handler(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> bool:
lhs = cast(torch.Tensor, args[0])
rhs = cast(torch.Tensor, args[1])
return lhs.shape == rhs.shape
def found_inf_reduce_handler(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> None:
op_info = dtensor.DTensor._op_dispatcher.unwrap_to_op_info(op_call, args, kwargs)
local_tensor_args = pytree.tree_unflatten(
cast(List[object], op_info.local_args), op_info.args_tree_spec
)
local_tensor_args = cast(Tuple[object, ...], local_tensor_args)
op_call(*local_tensor_args, **op_info.local_kwargs)
grad_dtensor = cast(list[dtensor.DTensor], args[0])[0]
grad_placements = grad_dtensor.placements
mesh = grad_dtensor.device_mesh
found_inf_placements: list[Placement] = []
for placement in grad_placements:
if isinstance(placement, Replicate):
found_inf_placements.append(placement)
else:
found_inf_placements.append(Partial("max"))
target_tensor = cast(torch.Tensor, args[1])
spec = DTensorSpec(
mesh=mesh,
placements=tuple(found_inf_placements),
tensor_meta=TensorMeta(
shape=target_tensor.size(),
stride=target_tensor.stride(),
dtype=target_tensor.dtype,
),
)
found_inf_dtensor = dtensor.DTensor(
local_tensor=target_tensor, spec=spec, requires_grad=False
)
found_inf = found_inf_dtensor.full_tensor()
target_tensor.copy_(found_inf)
class OpDispatcher:
"""
Op dispatching class instance to handle args/kwargs pre-processing (un-wrapping), sharding
propagation, redistribute local args, local compute, and post-processing (re-wrapping). It
also handles any op specific logic if necessary.
NOTE: Given the runtime overhead of Tensor subclass (__torch_dispatch__), the OpDispatcher
is designed to minimize the CPU overhead by using the tricks of proper unflattening, faster
pytree if needed, and leveraging various caching mechanisms implemented in the sharding
propagation and redistribute modules. The CPU overhead is critical to eager mode performance,
one need to carefully measure the CPU overhead when making significant changes to the
OpDispatcher and ShardingPropagator.
"""
def __init__(self) -> None:
self.sharding_propagator = ShardingPropagator()
self._random_ops = {
aten.native_dropout.default,
aten.normal_.default,
aten.rand_like.default,
aten.randn_like.default,
aten.randint_like.default,
aten.randint_like.low_dtype,
aten.randint_like.low_dtype_out,
aten.uniform_.default,
aten.bernoulli.default,
aten.bernoulli_.float,
}
self._custom_op_handlers = {
aten.linear.default: decompose_handler,
aten.matmul.default: decompose_handler,
aten.is_same_size.default: is_same_size_handler,
aten.convolution.default: convolution_handler,
aten.convolution_backward.default: convolution_backward_handler,
aten._amp_foreach_non_finite_check_and_unscale_.default: found_inf_reduce_handler,
}
# This flag is used internally to control whether we treat the torch.Tensor(non-DTensor)
# as implicitly replicated or we throw error to user.
# NOTE: It is EXTREMELY UNSAFE to turn this flag on by default so we intentionally leave
# it as False by default.
self._allow_implicit_replication = False
def dispatch(
self,
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
"""
Main dispatching logic
"""
# operators that does not need to go through sharding propagation
if op_call in self._custom_op_handlers:
return self._custom_op_handlers[op_call](op_call, args, kwargs) # type: ignore[operator]
# extract local tensor and sharding infos to a OpInfo
op_info = self.unwrap_to_op_info(op_call, args, kwargs)
logger.debug("Dispatching op_call: %s", op_info.schema)
self.sharding_propagator.propagate(op_info)
output_sharding = op_info.output_sharding
logger.debug("output_sharding for %s: %s", op_call, output_sharding)
assert output_sharding is not None, "output sharding should not be None"
mesh = op_info.mesh
if mesh.get_coordinate() is not None:
# computation that happens in the current rank of the mesh, normal case
if output_sharding.needs_redistribute:
# If sharding propagation decision needs redistribute, perform redistribute
# on args first, which could potentially modify args (i.e. allgather certain arg)
assert output_sharding.redistribute_schema is not None
self.redistribute_local_args(
op_info, output_sharding.redistribute_schema
)
local_tensor_args = (
pytree.tree_unflatten(
cast(List[object], op_info.local_args), op_info.args_tree_spec
)
if op_info.args_tree_spec
else op_info.local_args
)
# run local op computation with potentially modified args/kwargs
local_tensor_args = cast(Tuple[object, ...], local_tensor_args)
if op_call in self._random_ops:
if not random._rng_tracker and is_rng_supported_mesh(mesh):
# Default to `OffsetBasedRNGTracker` if the parallelism API
# did not already construct one
random._rng_tracker = random.OffsetBasedRNGTracker(mesh.device_type)
first_arg, first_local_arg = cast(dtensor.DTensor, args[0]), cast(
torch.Tensor, local_tensor_args[0]
)
rng_context = (
random._rng_tracker._distribute_region(first_arg._spec)
if random._rng_tracker and not first_local_arg.is_meta
else contextlib.nullcontext()
)
# For DTensor random operator, run it within a RNGTracker context to
# ensure the random number generator is properly distributed.
with rng_context:
local_results = op_call(*local_tensor_args, **op_info.local_kwargs)
else:
# normal case, run local sharded op computation
local_results = op_call(*local_tensor_args, **op_info.local_kwargs)
else:
# For a non-participating device (happens on rank that does not belong to
# the device mesh), we do:
# 1. if the return type is scalar, set the local result to None.
# 2. if the return type is Tensor or List[Tensor], return empty
# tensor(s) with correct dtype.
spec = output_sharding.output_spec
ret_list = op_info.schema.op._schema.returns
if spec is None:
# For a scalar return type, the non-participating device has None
# as its local result
local_results = None
else:
def default_tensor(spec: DTensorSpec) -> torch.Tensor:
if spec.tensor_meta is not None:
shape = spec.tensor_meta.shape
dtype = spec.tensor_meta.dtype
if len(shape) == 0:
# scalar tensor
return torch.zeros((), dtype=dtype)
else:
# non-scalar tensor
return torch.tensor([], dtype=dtype)
else:
raise RuntimeError(f"{spec} has no tensor metadata.")
if isinstance(spec, DTensorSpec):
# return a Tensor value
local_results = default_tensor(spec)
elif isinstance(spec, Sequence):
# return a List[Tensor] value
local_results = [
default_tensor(s) if s is not None else None for s in spec
]
assert isinstance(local_results, List)
if None in local_results:
ret_type = str(ret_list[0].type)
raise NotImplementedError(
f"return type {ret_type} in DTensor op is not supported"
)
if output_sharding.output_spec is None:
if op_call == aten.equal.default:
# For equal operator, The local results from all devices should be all-gathered
# and a reduce op (AND) will be performed on the list of results to ensure SPMD
# execution. We can extend this for more ops if necessary.
obj_list = [None for _ in range(dist.get_world_size())]
dist.all_gather_object(obj_list, local_results) # type: ignore[possibly-undefined]
obj_list = list(filter(lambda x: x is not None, obj_list))
# perform reduce on the collection with AND op
local_results = functools.reduce(operator.and_, obj_list, True)
if _is_inplace_op(op_call):
# inplace op should return self instead of re-wrapping
if output_sharding.output_spec is not None:
return args[0]
else:
return None
elif _is_out_variant_op(op_call):
# out variant could possibly have multiple out args (i.e. lu_unpack.out)
output_specs = (
(output_sharding.output_spec,)
if not isinstance(output_sharding.output_spec, tuple)
else output_sharding.output_spec
)
out_dts = []
spec_idx = 0
for argument in op_call._schema.arguments:
if argument.is_out:
out_dt = cast(dtensor.DTensor, kwargs[argument.name])
out_dt._spec = cast(DTensorSpec, output_specs[spec_idx])
out_dts.append(out_dt)
spec_idx += 1
assert len(out_dts) >= 1, "out variant should have at least one out arg"
return tuple(out_dts) if len(out_dts) > 1 else out_dts[0]
else:
return self.wrap(local_results, output_sharding.output_spec) # type: ignore[possibly-undefined]
@staticmethod
def redistribute_local_args(
op_info: OpInfo,
suggested_input_schema: OpSchema,
) -> None:
# NOTE: it's very rare that we need to reshard kwargs so we intentionally skip it
if op_info.args_tree_spec is not None:
flatten_args_schema_to_reshard = tuple(
pytree.tree_leaves(suggested_input_schema.args_schema)
)
else:
flatten_args_schema_to_reshard = suggested_input_schema.args_schema
new_local_args: List[object] = []
for i, arg_spec in enumerate(op_info.flat_args_schema):
reshard_arg_spec = flatten_args_schema_to_reshard[i]
if isinstance(arg_spec, DTensorSpec):
local_tensor = cast(torch.Tensor, op_info.local_args[i])
if arg_spec != reshard_arg_spec:
resharded_local_tensor = redistribute_local_tensor(
local_tensor, arg_spec, reshard_arg_spec
)
new_local_args.append(resharded_local_tensor)
else:
new_local_args.append(local_tensor)
else:
new_local_args.append(reshard_arg_spec)
op_info.local_args = tuple(new_local_args)
def unwrap_to_op_info(
self,
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> OpInfo:
# get runtime schema info to determine whether to use pytree to flatten inputs
runtime_schema_info = self.sharding_propagator.op_to_schema_info.get(
op_call, None
)
if runtime_schema_info is not None and runtime_schema_info.needs_pytree:
# flatten args/kwargs when op says necessary
tree_args, args_spec = pytree.tree_flatten(args)
args_list: Sequence[object] = tree_args
else:
args_list, args_spec = args, None
args_schema: List[object] = []
kwargs_schema: Dict[str, object] = {}
local_args: List[object] = []
local_kwargs: Dict[str, object] = {}
mesh: Optional[DeviceMesh] = None
for arg in args_list:
if isinstance(arg, dtensor.DTensor):
local_args.append(arg._local_tensor)
if mesh is not None and mesh != arg.device_mesh:
# TODO: try replicate dtensor spec in missing dimension would work
# for most cases for foreach case except when the first DTensor in
# the list is one that also need to be replicated. We need to revisit
# how we want to handle this corner case. For now, this case would hit
# the cross mesh error even if implicit replication is turned on.
spec = self._try_replicate_dtensor_spec_in_missing_dim(
op_call, arg, mesh
)
args_schema.append(spec)
else:
mesh = arg.device_mesh
args_schema.append(arg._spec)
elif isinstance(arg, torch.Tensor):
mesh = mesh or try_find_mesh_from_args(op_call, args_list)
args_schema.append(
self._try_replicate_spec_for_scalar_tensor(op_call, arg, mesh)
)
local_args.append(arg)
else:
args_schema.append(arg)
local_args.append(arg)
for k, v in kwargs.items():
if isinstance(v, dtensor.DTensor):
local_kwargs[k] = v._local_tensor
if mesh is not None and mesh != v.device_mesh:
spec = self._try_replicate_dtensor_spec_in_missing_dim(
op_call, v, mesh
)
kwargs_schema[k] = spec
else:
mesh = v.device_mesh
kwargs_schema[k] = v._spec
elif isinstance(v, torch.Tensor):
mesh = mesh or try_find_mesh_from_args(op_call, args_list)
kwargs_schema[k] = self._try_replicate_spec_for_scalar_tensor(
op_call, v, mesh
)
local_kwargs[k] = v
else:
kwargs_schema[k] = v
local_kwargs[k] = v
assert mesh is not None, f"found no DeviceMesh from dtensor args for {op_call}!"
op_info = OpInfo(
mesh,
OpSchema(
op_call,
(
pytree.tree_unflatten(args_schema, args_spec)
if args_spec
else tuple(args_schema)
),
kwargs_schema,
schema_info=runtime_schema_info,
),
args_schema,
tuple(local_args),
local_kwargs,
args_spec,
)
return op_info
@staticmethod
def wrap(res: object, spec: OutputSpecType) -> object:
if isinstance(res, torch.Tensor):
if spec is not None:
assert isinstance(
spec, DTensorSpec
), f"output spec does not match with output! Expected DTensorSpec, got {spec}."
return dtensor.DTensor(res, spec, requires_grad=res.requires_grad)
else:
# if output does not have a DTensorSpec due to specific ops, it must be a scalar tensor
assert res.ndim == 0, "output tensor should be scalar!"
return res
elif isinstance(res, (list, tuple)):
assert spec is not None and isinstance(
spec, (list, tuple)
), f"output spec does not match with output! Expected list/tuple, got {spec}."
res_list = []
for e, s in zip(res, spec):
res_list.append(OpDispatcher.wrap(e, s))
return tuple(res_list) if isinstance(res, tuple) else res_list
else:
# if the res contains only non tensor values (i.e. int/float/none), we simply return it
# without rewrapping to DTensor.
return res
def _try_replicate_spec_for_scalar_tensor(
self,
op_call: torch._ops.OpOverload,
tensor_arg: torch.Tensor,
mesh: "DeviceMesh",
) -> DTensorSpec:
# util function to produce a replicate spec for a scalar tensor arg/kwarg
if tensor_arg.numel() == 1 and tensor_arg.ndim == 1:
warnings.warn(
"Found a non-scalar tensor with numel=1 and ndim!=0, "
"we are implicitly creating a replicated DTensor for it. "
"However, please consider changing it to a scalar tensor "
"or explicitly create a DTensor under distributed enviroment."
)
if tensor_arg.numel() == 1 or self._allow_implicit_replication:
# scalar tensor can be safely treated as replicated
replication_spec = DTensorSpec(
mesh,
(Replicate(),) * mesh.ndim,
tensor_meta=TensorMeta(
shape=tensor_arg.shape,
stride=tensor_arg.stride(),
dtype=tensor_arg.dtype,
),
)
else:
raise RuntimeError(
f"{op_call}: got mixed torch.Tensor and DTensor, need to convert all"
" torch.Tensor to DTensor before calling distributed operators!"
)
return replication_spec
def _try_replicate_dtensor_spec_in_missing_dim(
self,
op_call: torch._ops.OpOverload,
dtensor_arg: "dtensor.DTensor",
mesh: "DeviceMesh",
) -> DTensorSpec:
# util function to produce a new spec for a DTensor arg/kwarg
# that puts Replicate() placement in the missing dimension for foreach ops
from torch.distributed.device_mesh import _mesh_resources
cur_mesh = dtensor_arg.device_mesh
root_mesh = _mesh_resources.get_root_mesh(cur_mesh)
if (
self._allow_implicit_replication
and "foreach" in op_call.__name__
and root_mesh == mesh
):
placements = [Replicate() for _ in range(root_mesh.ndim)]
cur_mesh_root_idx = _mesh_resources.get_root_mesh_dim(cur_mesh)
placements[cur_mesh_root_idx] = dtensor_arg.placements[0] # type: ignore[call-overload]
replicate_spec = DTensorSpec(
root_mesh,
tuple(placements),
tensor_meta=TensorMeta(
shape=dtensor_arg.shape,
stride=dtensor_arg.stride(),
dtype=dtensor_arg.dtype,
),
)
else:
raise NotImplementedError(
f"{op_call}: DTensor does not support cross-mesh operation yet! "
f"Got meshes: {mesh} {cur_mesh}"
)
return replicate_spec
|