File: _experimental_ops.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (28 lines) | stat: -rw-r--r-- 988 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# mypy: allow-untyped-decorators
# Copyright (c) Meta Platforms, Inc. and affiliates
# implement matrix related ops for distributed tensor

import torch
from torch.distributed.tensor._dtensor_spec import DTensorSpec
from torch.distributed.tensor._op_schema import (
    OpSchema,
    OpStrategy,
    PlacementStrategy,
    StrategyType,
)
from torch.distributed.tensor._ops.utils import register_op_strategy
from torch.distributed.tensor.device_mesh import DeviceMesh
from torch.distributed.tensor.placement_types import Replicate


aten = torch.ops.aten


@register_op_strategy(aten.slice_backward.default)
def slice_backward_rules(mesh: DeviceMesh, op_schema: OpSchema) -> StrategyType:
    """
    slice_backward is a new_zeros + slice_scatter, we only allow replication
    on the input/output for now since new_zeros would produce replication
    """
    replicate_spec = DTensorSpec(mesh, tuple([Replicate()] * mesh.ndim))
    return OpStrategy([PlacementStrategy(replicate_spec)])