File: _math_ops.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1062 lines) | stat: -rw-r--r-- 40,584 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates
import math
from dataclasses import dataclass
from enum import Enum
from typing import cast, List, Optional, Sequence, Tuple, Union

import torch
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.tensor._dtensor_spec import DTensorSpec
from torch.distributed.tensor._op_schema import (
    OpSchema,
    OpStrategy,
    PlacementList,
    PlacementStrategy,
    RuntimeSchemaInfo,
    TupleStrategy,
)
from torch.distributed.tensor._ops.utils import (
    as_list,
    expand_to_full_mesh_op_strategy,
    generate_redistribute_costs,
    is_tensor_evenly_shardable,
    normalize_dim,
    normalize_dims,
    register_op_strategy,
)
from torch.distributed.tensor._utils import normalize_to_torch_size
from torch.distributed.tensor.placement_types import (
    Partial,
    Placement,
    Replicate,
    Shard,
)


aten = torch.ops.aten


class Reduction(Enum):
    NONE = 0
    MEAN = 1
    SUM = 2


@dataclass(frozen=True)
class NormReduction:
    norm_type: Union[int, float, str]


ReductionOpType = Union[NormReduction, str]


@dataclass(frozen=True)
class _NormPartial(Partial):
    """
    This placement is used for partial vector norm.

    For p-norms (where p not inf or -inf), the p-norm over n elements computes
        (sum_i x_i^p)^(1/p)
    where the sum is from i=1 to n. The reduction op is the p-norm itself.
    For example, consider 2 ranks, a (4,) tensor sharded on dim-0, and 2-norm:
        Rank 0: [t1, t2] | Rank 1: [t3, t4]
    After computing 2-norm per gradient (partial placement):
        Rank 0: [sqrt(t1^2 + t2^2)] | Rank 1: [sqrt(t3^2 + t4^2)]
    Converting from partial to replicate wants to ultimately get:
        Rank 0/1: [sqrt(t1^2 + t2^2 + t3^2 + t4^2)]
    This can be achieved by computing 2-norm on each rank's result. This holds
    similarly for inf and -inf norm. For 0-norm, the reduction op is sum.
    """

    norm_type: Union[int, float, str] = 2

    def __post_init__(self):
        """Set the appropriate reduce op based on the norm type."""
        # Use `object.__setattr__` to bypass frozen checks
        if self.norm_type in (float("inf"), "inf"):
            object.__setattr__(self, "reduce_op", "max")
        elif self.norm_type in (float("-inf"), "-inf"):
            object.__setattr__(self, "reduce_op", "min")
        elif isinstance(self.norm_type, (int, float)):
            object.__setattr__(self, "reduce_op", "sum")
        else:
            raise NotImplementedError(f"Unsupported norm type: {self.norm_type}")

    def _partition_value(
        self, tensor: torch.Tensor, mesh: DeviceMesh, mesh_dim: int
    ) -> torch.Tensor:
        """
        For example, consider 4 ranks, a (3,) replicated tensor, and 2-norm:
            Ranks 0 and 1: sqrt(t1^2 + t2^2 + t3^3)
        To convert from replicated to partial, we want f(x) such that
            sqrt(t1^2 + t2^2 + t3^3) = sqrt(4f(t1)^2 + 4f(t2)^2 + 4f(t3)^2)
                                     = sqrt(4) sqrt(f(t1)^2 + f(t2)^2 + f(t3)^2).
        One such f(x) is f(x) = x / sqrt(4). This generalizes to d ranks and
        p-norm as f(x) = x / d^(1/p).
        """
        if self.reduce_op in ("max", "min"):
            return tensor
        elif self.reduce_op == "sum":
            if self.norm_type == 0:
                raise NotImplementedError(f"Unsupported norm type:: {self.norm_type}")
            elif self.norm_type == 1:
                return tensor / mesh.size(mesh_dim)
            assert isinstance(self.norm_type, (int, float))
            return tensor / math.pow(mesh.size(mesh_dim), 1 / self.norm_type)
        raise NotImplementedError(self.reduce_op)

    def _reduce_shard_value(
        self,
        tensor: torch.Tensor,
        mesh: DeviceMesh,
        mesh_dim: int,
        shard_spec: Placement,
    ) -> torch.Tensor:
        assert isinstance(shard_spec, Shard), f"{shard_spec}"
        tensor = self._pre_reduce_transform(tensor)
        reduced_tensor = super()._reduce_shard_value(tensor, mesh, mesh_dim, shard_spec)
        return self._post_reduce_transform(reduced_tensor)

    def _reduce_value(
        self, tensor: torch.Tensor, mesh: DeviceMesh, mesh_dim: int
    ) -> torch.Tensor:
        tensor = self._pre_reduce_transform(tensor)
        reduced_tensor = super()._reduce_value(tensor, mesh, mesh_dim)
        return self._post_reduce_transform(reduced_tensor)

    def _pre_reduce_transform(self, tensor: torch.Tensor) -> torch.Tensor:
        if self.reduce_op == "sum":
            assert isinstance(self.norm_type, (int, float)), f"{self.norm_type}"
            if self.norm_type != 0 and self.norm_type != 1:
                return tensor**self.norm_type
        return tensor

    def _post_reduce_transform(self, tensor: torch.Tensor) -> torch.Tensor:
        if self.reduce_op == "sum":
            assert isinstance(self.norm_type, (int, float)), f"{self.norm_type}"
            if self.norm_type != 0 and self.norm_type != 1:
                return tensor ** (1.0 / self.norm_type)
        return tensor

    def __eq__(self, other: object) -> bool:
        if not isinstance(other, _NormPartial):
            return False
        return self.norm_type == other.norm_type

    def __hash__(self) -> int:
        return 1 + hash(self.norm_type)


def _infer_reduction_dims(dims_arg: object, ndim: int) -> Optional[List[int]]:
    if dims_arg is None:
        return None
    dims = cast(List[int], as_list(dims_arg))
    dims = cast(List[int], normalize_dims(dims, ndim))
    empty_dims = [[0], [-1], []]
    if ndim == 0 and dims_arg in empty_dims:
        return None
    return dims


def _infer_reduce_dims_map(
    reduction_dims: List[int], input_ndim: int, keep_dim=False
) -> List[int]:
    reduction_dims_map = []
    new_dim_count = 0
    for input_dim in range(input_ndim):
        if input_dim in reduction_dims and not keep_dim:
            # if input dim in reduction dims, mark it as -1
            reduction_dims_map.append(-1)
        else:
            # otherwise mark it as the new dim
            reduction_dims_map.append(new_dim_count)
            new_dim_count += 1

    return reduction_dims_map


def _replicate_dims_start_at(
    placements: Sequence[Placement], start_dim: int = 0
) -> Tuple[Placement, ...]:
    new_placements: List[Placement] = []
    for p in placements:
        if p.is_partial() or (isinstance(p, Shard) and p.dim >= start_dim):
            new_placements.append(Replicate())  # make it replicate
        else:
            new_placements.append(p)  # keep the placement
    return tuple(new_placements)


# return new_placements which align with placements but skip the skipped_dim
def _skip_dim(
    placements: Tuple[Placement, ...], skipped_dim: int
) -> Tuple[Placement, ...]:
    new_placements: List[Placement] = []
    for p in placements:
        if isinstance(p, Shard) and p.dim >= skipped_dim:
            new_placements.append(Shard(p.dim - 1))
        else:
            new_placements.append(p)
    return tuple(new_placements)


def replicate_reduction_dims(
    placements: Tuple[Placement, ...], reduction_dims: List[int]
) -> Tuple[Placement, ...]:
    # replicate the reduction dims if not reduction_linear
    new_placements: List[Placement] = []

    for p in placements:
        if p.is_partial():
            new_placements.append(Replicate())
        elif isinstance(p, Shard) and p.dim in reduction_dims:
            new_placements.append(Replicate())
        else:
            new_placements.append(p)

    return tuple(new_placements)


def map_placements_after_reduction(
    placements: Tuple[Placement, ...],
    reduction_dims: List[int],
    reduction_dims_map: List[int],
    reduction_op: ReductionOpType,
) -> Tuple[Placement, ...]:
    """
    Map each placement based on the output shape after reduction.
    """
    new_placements: List[Placement] = []
    for placement in placements:
        if isinstance(placement, (Replicate, Partial)):
            new_placements.append(placement)
        else:
            assert isinstance(placement, Shard)
            shard_dim = placement.dim
            new_shard_dim = reduction_dims_map[shard_dim]
            if new_shard_dim == -1 or shard_dim in reduction_dims:
                # if new_shard_dim collapsed or its in the reduction dims
                # (i.e. for the case where keepdims=True), we generate partial
                new_placements.append(get_placement_from_reduction_op(reduction_op))
            else:
                new_placements.append(Shard(new_shard_dim))
    return tuple(new_placements)


def get_placement_from_reduction_op(reduction_op: ReductionOpType) -> Placement:
    if isinstance(reduction_op, NormReduction):
        return _NormPartial(norm_type=reduction_op.norm_type)
    return Partial(reduction_op)


def common_reduction_strategy(
    mesh: DeviceMesh,
    input_strategy: OpStrategy,
    reduce_dims: List[int],
    keep_dim: bool = False,
    reduction_linear: bool = True,
    reduction_op: ReductionOpType = "sum",
) -> OpStrategy:
    """
    reduction_linear means that the reduction `f` follows this rule:
        f([f(a), f(b)]) = f([a, b])

    reduction linear should be super set of linearity.
    """
    # by default follow reduction input strategy
    reduction_strategy = OpStrategy([])

    for strtg in input_strategy.strategies:
        if not reduction_linear:
            # input placements for this strategy should clear out pending sum and sharding
            # on the reduction dimension
            input_placements = replicate_reduction_dims(
                strtg.output_spec.placements, reduce_dims
            )
        else:
            input_placements = strtg.output_spec.placements

        input_spec = DTensorSpec(
            mesh=mesh,
            placements=input_placements,
            tensor_meta=strtg.output_spec.tensor_meta,
        )

        reduce_dims_map = _infer_reduce_dims_map(reduce_dims, input_spec.ndim, keep_dim)
        out_placements = map_placements_after_reduction(
            input_spec.placements, reduce_dims, reduce_dims_map, reduction_op
        )
        redistribute_cost = [generate_redistribute_costs(input_strategy, input_spec)]
        reduction_strategy.strategies.append(
            PlacementStrategy(
                output_specs=DTensorSpec(
                    mesh=mesh,
                    placements=out_placements,
                ),
                input_specs=(input_spec,),
                redistribute_cost=redistribute_cost,
            )
        )

    return reduction_strategy


LINEAR_REDUCTION_OP_MAP = {
    aten.all.default: "sum",
    aten.all.dim: "sum",
    aten.sum.default: "sum",
    aten.sum.dim_IntList: "sum",
    aten.prod.default: "product",
    aten.prod.dim_int: "product",
    aten.prod.int_out: "product",
    aten.mean.default: "avg",
    aten.mean.dim: "avg",
    aten.mean.out: "avg",
    aten.max.default: "max",
    aten.max.dim: "max",
    aten.max.out: "max",
    aten.min.default: "min",
    aten.min.dim: "min",
    aten.min.out: "min",
    aten.any.default: "sum",
    aten.any.dim: "sum",
    aten.any.out: "sum",
}


@register_op_strategy(
    list(LINEAR_REDUCTION_OP_MAP.keys()), schema_info=RuntimeSchemaInfo(1)
)
def linear_reduction_strategy(mesh: DeviceMesh, op_schema: OpSchema) -> OpStrategy:
    args_schema = op_schema.args_schema
    input_strategy = args_schema[0]
    assert isinstance(input_strategy, OpStrategy)
    dims = None
    if len(op_schema.args_schema) > 1:
        dims = _infer_reduction_dims(args_schema[1], input_strategy.ndim)

    reduce_dims = list(range(input_strategy.ndim)) if dims is None else dims

    keep_dim = len(op_schema.args_schema) > 2 and bool(op_schema.args_schema[2])
    reduction_op = LINEAR_REDUCTION_OP_MAP[op_schema.op]
    return common_reduction_strategy(
        mesh,
        input_strategy,
        reduce_dims,
        keep_dim=keep_dim,
        reduction_linear=True,
        reduction_op=reduction_op,
    )


@register_op_strategy(
    [aten.var.correction, aten.var.correction_out],
    schema_info=RuntimeSchemaInfo(1, ["keepdim"]),
)
def var_reduction_strategy(mesh: DeviceMesh, op_schema: OpSchema) -> OpStrategy:
    args_schema = op_schema.args_schema
    input_strategy = args_schema[0]
    assert isinstance(input_strategy, OpStrategy)
    dims = None
    if len(op_schema.args_schema) > 1:
        dims = _infer_reduction_dims(args_schema[1], input_strategy.ndim)

    reduce_dims = list(range(input_strategy.ndim)) if dims is None else dims

    keep_dim = cast(bool, op_schema.kwargs_schema.get("keepdim", False))
    return common_reduction_strategy(
        mesh, input_strategy, reduce_dims, keep_dim=keep_dim, reduction_linear=False
    )


@register_op_strategy(
    [aten.linalg_vector_norm.default], schema_info=RuntimeSchemaInfo(1)
)
def vector_norm_strategy(mesh: DeviceMesh, op_schema: OpSchema) -> OpStrategy:
    args_schema = op_schema.args_schema
    input_strategy = args_schema[0]
    assert isinstance(input_strategy, OpStrategy)
    norm_type = args_schema[1] if len(args_schema) > 1 else 2
    assert isinstance(norm_type, (int, float, str)), f"{norm_type}"
    dim = args_schema[2] if len(args_schema) > 2 else None
    keepdim = args_schema[3] if len(args_schema) > 3 else False
    dims = _infer_reduction_dims(dim, input_strategy.ndim)
    reduce_dims = list(range(input_strategy.ndim)) if dims is None else dims
    return common_reduction_strategy(
        mesh,
        input_strategy,
        reduce_dims,
        keep_dim=cast(bool, keepdim),
        reduction_linear=True,
        reduction_op=NormReduction(norm_type),
    )


@register_op_strategy(
    [aten._foreach_norm.Scalar], schema_info=RuntimeSchemaInfo(1, needs_pytree=True)
)
def foreach_norm_strategy(mesh: DeviceMesh, op_schema: OpSchema) -> TupleStrategy:
    args_schema = op_schema.args_schema
    input_tuple_strategy = args_schema[0]
    assert isinstance(input_tuple_strategy, TupleStrategy)
    norm_type = args_schema[1] if len(args_schema) > 1 else 2
    assert isinstance(norm_type, (int, float, str)), f"{norm_type}"
    output_tuple_strategy_childs: List[OpStrategy] = []
    for op_strategy in input_tuple_strategy.childs:
        assert isinstance(op_strategy, OpStrategy), f"{op_strategy}"
        reduce_dims = list(range(op_strategy.ndim))
        output_strategy = common_reduction_strategy(
            mesh,
            op_strategy,
            reduce_dims,
            reduction_linear=True,
            reduction_op=NormReduction(norm_type),
        )
        output_tuple_strategy_childs.append(output_strategy)
    return TupleStrategy(output_tuple_strategy_childs)


@register_op_strategy(
    [
        aten._linalg_svd.default,
        aten.linalg_qr.default,
        # TODO: The diagonal ops can have an improved sharding strategy for
        # shard placements that does not require redistributing to replicate.
        aten.diagonal_copy.default,
        aten.diag_embed.default,
        aten.diag.default,
        aten.diagonal.default,
        aten.tril.default,
        aten.triu.default,
        aten._linalg_eigh.default,
        aten.upsample_bicubic2d.default,
        aten.upsample_bilinear2d.default,
        aten.upsample_linear1d.default,
        aten.upsample_nearest2d.default,
        aten.upsample_trilinear3d.default,
        # TODO: support the full F.interpolate set of options.
    ],
    schema_info=RuntimeSchemaInfo(1),
)
def linalg_replicate_strategy(mesh: DeviceMesh, op_schema: OpSchema) -> OpStrategy:
    """
    Since we do not have a simple way to compute some linear algebra operations
    like SVD or QR decomposition, always fall back to replicate.
    """
    args_schema = op_schema.args_schema
    input_strategy = args_schema[0]
    assert isinstance(input_strategy, OpStrategy), f"{input_strategy}"
    output_strategies: List[PlacementStrategy] = []
    for placement_strategy in input_strategy.strategies:
        replicate_placements = tuple(Replicate() for _ in range(mesh.ndim))
        replicate_spec = DTensorSpec(
            mesh=mesh,
            placements=replicate_placements,
            tensor_meta=placement_strategy.output_spec.tensor_meta,
        )
        redistribute_cost = [
            generate_redistribute_costs(input_strategy, replicate_spec)
        ]
        replicate_strategy = PlacementStrategy(
            output_specs=replicate_spec,
            input_specs=(replicate_spec,),
            redistribute_cost=redistribute_cost,
        )
        output_strategies.append(replicate_strategy)
    return OpStrategy(output_strategies)


@register_op_strategy(
    [aten._log_softmax.default, aten._softmax.default, aten._safe_softmax.default],
    schema_info=RuntimeSchemaInfo(1),
)
def softmax_strategy(mesh: DeviceMesh, op_schema: OpSchema) -> OpStrategy:
    input_strategy, softmax_dim, *_ = op_schema.args_schema
    input_strategy = cast(OpStrategy, input_strategy)
    softmax_dim = cast(int, softmax_dim)
    softmax_dim = normalize_dim(softmax_dim, input_strategy.ndim)

    output_strategy = OpStrategy([])
    for input_placement_strategy in input_strategy.strategies:
        redistribute_costs = []
        input_src_spec = input_placement_strategy.output_spec

        # make sure input is replicated along the softmax dim
        input_target_spec = DTensorSpec(
            mesh=mesh,
            placements=replicate_reduction_dims(
                input_src_spec.placements, [softmax_dim]
            ),
            tensor_meta=input_src_spec.tensor_meta,
        )
        redistribute_costs.append(
            generate_redistribute_costs(input_strategy, input_target_spec)
        )
        output_target_spec = input_target_spec
        output_strategy.strategies.append(
            PlacementStrategy(
                output_specs=output_target_spec,
                input_specs=[input_target_spec],
                redistribute_cost=redistribute_costs,
            )
        )

    return output_strategy


@register_op_strategy(
    [
        aten._log_softmax_backward_data.default,
        aten._softmax_backward_data.default,
    ],
    schema_info=RuntimeSchemaInfo(2),
)
def softmax_backward_strategy(mesh: DeviceMesh, op_schema: OpSchema) -> OpStrategy:
    grad_out_strategy, out_strategy, softmax_dim, _ = op_schema.args_schema
    grad_out_strategy = cast(OpStrategy, grad_out_strategy)
    out_strategy = cast(OpStrategy, out_strategy)
    softmax_dim = cast(int, softmax_dim)
    softmax_dim = normalize_dim(softmax_dim, grad_out_strategy.ndim)

    grad_in_strategy = OpStrategy([])
    for grad_out_placement_strat, out_placement_strat in zip(
        grad_out_strategy.strategies, out_strategy.strategies
    ):
        # follow the sharding of the grad_out or out depending on which has more shards
        grad_out_src_spec = grad_out_placement_strat.output_spec
        out_src_spec = out_placement_strat.output_spec
        src_spec = (
            grad_out_src_spec
            if grad_out_src_spec.num_shards >= out_src_spec.num_shards
            else out_src_spec
        )

        # make sure inputs are replicated along the softmax dim
        tgt_spec = DTensorSpec(
            mesh=mesh,
            placements=replicate_reduction_dims(src_spec.placements, [softmax_dim]),
        )
        redist_grad_out_cost = generate_redistribute_costs(grad_out_strategy, tgt_spec)
        redist_out_cost = generate_redistribute_costs(out_strategy, tgt_spec)
        grad_in_strategy.strategies.append(
            PlacementStrategy(
                output_specs=tgt_spec,
                redistribute_cost=[redist_grad_out_cost, redist_out_cost],
            )
        )

    return grad_in_strategy


@register_op_strategy(
    [aten.nll_loss_forward.default, aten.nll_loss2d_forward.default],
    schema_info=RuntimeSchemaInfo(3),
)
def nll_loss_forward_strategy(mesh: DeviceMesh, op_schema: OpSchema) -> OpStrategy:
    assert len(op_schema.args_schema) == 5
    (
        input_strategy,
        target_strategy,
        weight_strategy,
        reduction,
        _,
    ) = op_schema.args_schema
    input_strategy = cast(OpStrategy, input_strategy)
    target_strategy = cast(OpStrategy, target_strategy)
    reduction = cast(int, reduction)

    input_shape = input_strategy.shape
    channel_dim = 1 if len(input_shape) >= 2 else 0

    output_strategy = OpStrategy([])
    for idx, input_placement_strategy in enumerate(input_strategy.strategies):
        op_args_target_specs = []
        redistribute_costs = []

        # make sure input is replicated along the channel dim
        input_src_spec = input_placement_strategy.output_spec
        input_expected_spec = DTensorSpec(
            mesh=mesh,
            placements=replicate_reduction_dims(
                input_src_spec.placements, [channel_dim]
            ),
            tensor_meta=input_src_spec.tensor_meta,
        )
        op_args_target_specs.append(input_expected_spec)
        redistribute_costs.append(
            generate_redistribute_costs(input_strategy, input_expected_spec)
        )

        # target doesn't have channel dim, and it follows input on other dims
        target_src_spec = target_strategy.strategies[idx].output_spec
        target_expected_spec = DTensorSpec(
            mesh=mesh,
            placements=_skip_dim(input_expected_spec.placements, channel_dim),
            tensor_meta=target_src_spec.tensor_meta,
        )
        op_args_target_specs.append(target_expected_spec)
        redistribute_costs.append(
            generate_redistribute_costs(target_strategy, target_expected_spec)
        )

        # weight tensor, if given, has to be a Tensor of size input_shape[channel_dim]
        # make sure it is replicated
        if weight_strategy is not None:
            assert isinstance(weight_strategy, OpStrategy)
            weight_src_spec = weight_strategy.strategies[idx].output_spec
            weight_expected_spec = DTensorSpec(
                mesh=mesh,
                placements=_replicate_dims_start_at(weight_src_spec.placements),
                tensor_meta=weight_src_spec.tensor_meta,
            )
            op_args_target_specs.append(weight_expected_spec)
            redistribute_costs.append(
                generate_redistribute_costs(weight_strategy, weight_expected_spec)
            )

        if reduction == Reduction.NONE.value:
            output_expected_spec = target_expected_spec
            total_weight_expected_spec = DTensorSpec(
                mesh=mesh, placements=tuple([Replicate()] * mesh.ndim)
            )
        else:
            if reduction == Reduction.MEAN.value:
                reduction_op = "avg"
                if not is_tensor_evenly_shardable(
                    target_expected_spec.shape, target_expected_spec
                ):
                    raise ValueError(
                        "The intermediate results of nll_loss cannot be evenly sharded, \
                        resulting in biased mean result."
                    )
            else:  # reduction == Reduction.SUM.value:
                reduction_op = "sum"
            reduce_dims = list(range(target_expected_spec.ndim))
            reduce_dims_map = _infer_reduce_dims_map(
                reduce_dims, target_expected_spec.ndim, keep_dim=False
            )
            out_placements = map_placements_after_reduction(
                target_expected_spec.placements,
                reduce_dims,
                reduce_dims_map,
                reduction_op,
            )
            output_expected_spec = DTensorSpec(
                mesh=mesh,
                placements=out_placements,
            )

            # whether reduction is sum or mean, the total weight has to be summed up if not replicated
            total_weight_placements = map_placements_after_reduction(
                target_expected_spec.placements,
                reduce_dims,
                reduce_dims_map,
                "sum",
            )
            total_weight_expected_spec = DTensorSpec(
                mesh=mesh,
                placements=total_weight_placements,
            )

        output_strategy.strategies.append(
            PlacementStrategy(
                output_specs=(output_expected_spec, total_weight_expected_spec),
                input_specs=op_args_target_specs,
                redistribute_cost=redistribute_costs,
            )
        )

    return output_strategy


@register_op_strategy(
    [aten.nll_loss_backward.default, aten.nll_loss2d_backward.default],
    schema_info=RuntimeSchemaInfo(4),
)
def nll_loss_backward_strategy(mesh: DeviceMesh, op_schema: OpSchema) -> OpStrategy:
    assert len(op_schema.args_schema) == 7
    (
        grad_out_strategy,
        input_strategy,
        target_strategy,
        weight_strategy,
        reduction,
        _,
        total_weight_strategy,
    ) = op_schema.args_schema
    grad_out_strategy = cast(OpStrategy, grad_out_strategy)
    input_strategy = cast(OpStrategy, input_strategy)
    target_strategy = cast(OpStrategy, target_strategy)
    reduction = cast(int, reduction)
    total_weight_strategy = cast(OpStrategy, total_weight_strategy)

    input_shape = input_strategy.shape
    channel_dim = 1 if len(input_shape) >= 2 else 0

    grad_in_strategy = OpStrategy([])
    for idx, input_placement_strategy in enumerate(input_strategy.strategies):
        op_args_target_specs = []
        redistribute_costs = []

        # make sure input is replicated along the channel dim
        input_src_spec = input_placement_strategy.output_spec
        input_expected_spec = DTensorSpec(
            mesh=mesh,
            placements=replicate_reduction_dims(
                input_src_spec.placements, [channel_dim]
            ),
            tensor_meta=input_src_spec.tensor_meta,
        )
        op_args_target_specs.append(input_expected_spec)
        redistribute_costs.append(
            generate_redistribute_costs(input_strategy, input_expected_spec)
        )

        # target doesn't have channel dim, and it follows input on other dims
        target_src_spec = target_strategy.strategies[idx].output_spec
        target_expected_spec = DTensorSpec(
            mesh=mesh,
            placements=_skip_dim(input_expected_spec.placements, channel_dim),
            tensor_meta=target_src_spec.tensor_meta,
        )
        op_args_target_specs.append(target_expected_spec)
        redistribute_costs.append(
            generate_redistribute_costs(target_strategy, target_expected_spec)
        )

        # grad_out follows target if there is no reduction;
        # otherwise, it should be a replicated scalar.
        grad_out_src_spec = grad_out_strategy.strategies[idx].output_spec
        if reduction == Reduction.NONE.value:
            grad_out_expected_spec = target_expected_spec
        else:
            grad_out_expected_spec = DTensorSpec(
                mesh=mesh,
                placements=_replicate_dims_start_at(grad_out_src_spec.placements),
                tensor_meta=grad_out_src_spec.tensor_meta,
            )
        op_args_target_specs.insert(0, grad_out_expected_spec)
        redistribute_costs.insert(
            0, generate_redistribute_costs(grad_out_strategy, grad_out_expected_spec)
        )

        # weight tensor, if given, has to be a Tensor of size input_shape[channel_dim]
        # make sure it is replicated
        if weight_strategy is not None:
            assert isinstance(weight_strategy, OpStrategy)
            weight_src_spec = weight_strategy.strategies[idx].output_spec
            weight_expected_spec = DTensorSpec(
                mesh=mesh,
                placements=_replicate_dims_start_at(weight_src_spec.placements),
                tensor_meta=weight_src_spec.tensor_meta,
            )
            op_args_target_specs.append(weight_expected_spec)
            redistribute_costs.append(
                generate_redistribute_costs(weight_strategy, weight_expected_spec)
            )

        # total_weight should always be replicated
        total_weight_src_spec = total_weight_strategy.strategies[idx].output_spec
        total_weight_expected_spec = DTensorSpec(
            mesh=mesh,
            placements=_replicate_dims_start_at(total_weight_src_spec.placements),
            tensor_meta=total_weight_src_spec.tensor_meta,
        )
        op_args_target_specs.append(total_weight_expected_spec)
        redistribute_costs.append(
            generate_redistribute_costs(
                total_weight_strategy, total_weight_expected_spec
            )
        )

        grad_in_expected_spec = input_expected_spec
        grad_in_strategy.strategies.append(
            PlacementStrategy(
                output_specs=grad_in_expected_spec,
                input_specs=op_args_target_specs,
                redistribute_cost=redistribute_costs,
            )
        )

    return grad_in_strategy


@register_op_strategy(
    [aten.native_layer_norm.default],
    schema_info=RuntimeSchemaInfo(1),
)
def layer_norm_strategy(mesh: DeviceMesh, op_schema: OpSchema) -> OpStrategy:
    # args must be: input, normalized_shape, weight, bias, eps
    # for None weight and bias, their corresponding objects will
    # be None as well. layer_norm_strategy returns one OpStrategy
    # for the triple return values (out, mean, rstd).
    assert len(op_schema.args_schema) == 5
    (
        input_strategy,
        normalized_shape,
        weight_strategy,
        bias_strategy,
        _,
    ) = op_schema.args_schema

    # the current layer norm implementation requires that all
    # input DTensor's sharding must be in form of OpStrategy
    assert isinstance(input_strategy, OpStrategy)
    assert isinstance(normalized_shape, (int, Sequence, torch.Size))
    normalized_size = normalize_to_torch_size(normalized_shape)

    input_ndim = input_strategy.ndim
    axis = input_ndim - len(normalized_size)

    # we use OpStrategy because the output (out, mean, rstd)
    # should have the same placements
    output_strategy = OpStrategy([])
    for idx, input_placement_strategy in enumerate(input_strategy.strategies):
        op_args_target_specs = []
        redistribute_costs = []
        input_src_spec = input_placement_strategy.output_spec

        # for the input tensor, we replicate it on the inner dims if necessary
        # TODO: we can avoid forcing the redistribution once we figure out
        # how to decompose layer norm
        input_target_spec = DTensorSpec(
            mesh=mesh,
            placements=_replicate_dims_start_at(input_src_spec.placements, axis),
            tensor_meta=input_src_spec.tensor_meta,
        )
        op_args_target_specs.append(input_target_spec)
        redistribute_costs.append(
            generate_redistribute_costs(input_strategy, input_target_spec)
        )

        if weight_strategy is not None:
            assert isinstance(weight_strategy, OpStrategy)
            weight_src_spec = weight_strategy.strategies[idx].output_spec

            # for the weight tensor, we replicate it on all dims if necessary
            # TODO: we can avoid forcing the redistribution once we figure out
            # how to decompose layer norm
            weight_target_spec = DTensorSpec(
                mesh=mesh,
                placements=_replicate_dims_start_at(weight_src_spec.placements),
                tensor_meta=weight_src_spec.tensor_meta,
            )
            op_args_target_specs.append(weight_target_spec)
            redistribute_costs.append(
                generate_redistribute_costs(weight_strategy, weight_target_spec)
            )

        if bias_strategy is not None:
            assert isinstance(bias_strategy, OpStrategy)
            bias_src_spec = bias_strategy.strategies[idx].output_spec

            # for the bias tensor, we replicate it on all dims if necessary
            # TODO: we can avoid forcing the redistribution once we figure out
            # how to decompose layer norm
            bias_target_spec = DTensorSpec(
                mesh=mesh,
                placements=_replicate_dims_start_at(bias_src_spec.placements),
                tensor_meta=bias_src_spec.tensor_meta,
            )
            op_args_target_specs.append(bias_target_spec)
            redistribute_costs.append(
                generate_redistribute_costs(bias_strategy, bias_target_spec)
            )

        # the output spec is the same as input spec
        output_target_spec = input_target_spec
        output_strategy.strategies.append(
            PlacementStrategy(
                output_specs=output_target_spec,
                input_specs=op_args_target_specs,
                redistribute_cost=redistribute_costs,
            )
        )

    return output_strategy


@register_op_strategy(
    [aten.native_layer_norm_backward.default],
    schema_info=RuntimeSchemaInfo(2),
)
def layer_norm_bwd_strategy(mesh: DeviceMesh, op_schema: OpSchema) -> OpStrategy:
    # args must be: grad_out, input, normalized_shape, mean, rstd,
    # weight, bias, output_mask. For None weight and bias, their
    # corresponding objects will be None as well.
    assert len(op_schema.args_schema) == 8
    (
        grad_out_strategy,
        input_strategy,
        normalized_shape,
        mean_strategy,
        rstd_strategy,
        weight_strategy,
        bias_strategy,
        output_mask,
    ) = op_schema.args_schema

    assert isinstance(grad_out_strategy, OpStrategy)
    assert isinstance(input_strategy, OpStrategy)
    assert isinstance(mean_strategy, OpStrategy)
    assert isinstance(rstd_strategy, OpStrategy)

    assert isinstance(normalized_shape, (int, Sequence, torch.Size))
    normalized_size = normalize_to_torch_size(normalized_shape)
    input_ndim = input_strategy.ndim
    axis = input_ndim - len(normalized_size)
    outer_dims = list(range(axis))

    assert isinstance(output_mask, List) and len(output_mask) == 3

    # output triple: (d_input, d_weight, d_bias)
    out_tuple_strategy = OpStrategy([])
    for idx, input_placement_strategy in enumerate(input_strategy.strategies):
        # args for PlacementStrategy
        output_specs_list: List[Optional[DTensorSpec]] = []
        input_specs_list: List[DTensorSpec] = []
        redistribute_costs = []

        input_src_spec = input_placement_strategy.output_spec
        # arg: grad_out
        # TODO: change the strategy to the following rule.
        # d_input is basically a product of element-wise mul of
        # grad_out, rstd, and normalized input, among which rstd
        # and normalized input (x_hat) should have the same sharding
        # placements, and grad_out's sharding is determined by the
        # pointwise result of x_hat and weight/bias.
        # TODO: now grad_out spec follows input spec. we may need
        # to change it to apply a pointwise rule over grad_out,
        # input, and weight.
        grad_out_target_spec = DTensorSpec(
            mesh=mesh,
            placements=_replicate_dims_start_at(input_src_spec.placements, axis),
            tensor_meta=input_src_spec.tensor_meta,
        )
        input_specs_list.append(grad_out_target_spec)
        redistribute_costs.append(
            generate_redistribute_costs(grad_out_strategy, grad_out_target_spec)
        )
        output_specs_list.append(grad_out_target_spec if output_mask[0] else None)

        # arg: input
        input_target_spec = DTensorSpec(
            mesh=mesh,
            placements=_replicate_dims_start_at(input_src_spec.placements, axis),
            tensor_meta=input_src_spec.tensor_meta,
        )
        input_specs_list.append(input_target_spec)
        redistribute_costs.append(
            generate_redistribute_costs(input_strategy, input_target_spec)
        )

        # arg: mean, rstd
        mean_src_spec = mean_strategy.strategies[idx].output_spec
        input_specs_list.append(mean_src_spec)
        redistribute_costs.append([0.0 for _ in mean_strategy.strategies])
        rstd_src_spec = rstd_strategy.strategies[idx].output_spec
        input_specs_list.append(rstd_src_spec)
        redistribute_costs.append([0.0 for _ in rstd_strategy.strategies])

        def _add_target_input_spec(strategy) -> DTensorSpec:
            # shared logic for setting the weight and bias target input specs
            assert isinstance(strategy, OpStrategy)
            src_spec = strategy.strategies[idx].output_spec
            # no need to redistribute since they should be replicated in forward pass
            input_specs_list.append(src_spec)
            redistribute_costs.append([0.0 for _ in strategy.strategies])
            return src_spec

        # arg: weight
        # d_weight = sum(grad_out * (input - mean) / rstd, outer_dim, keepdim=False)
        if weight_strategy is not None:
            weight_src_spec = _add_target_input_spec(weight_strategy)
            # TODO: now d_weight spec follows input spec w/ a reduction.
            # we may need to change to a pointwise rule over grad_out and
            # input, then apply a reduction.
            inp_placements = _replicate_dims_start_at(input_src_spec.placements, axis)
            reduce_dims_map = _infer_reduce_dims_map(
                outer_dims, input_src_spec.ndim, False
            )
            out_placements = map_placements_after_reduction(
                inp_placements, outer_dims, reduce_dims_map, "sum"
            )
            weight_out_spec = DTensorSpec(
                mesh=mesh,
                placements=out_placements,
                tensor_meta=weight_src_spec.tensor_meta,
            )
            output_specs_list.append(weight_out_spec if output_mask[1] else None)
        else:
            assert (
                output_mask[1] is False
            ), "output_mask[1] should not be `True` while weight argument is `None` in native_layer_norm_backward."
            output_specs_list.append(None)

        # arg: bias
        # d_bias = sum(grad_out, outer_dim, keepdim=False)
        if bias_strategy is not None:
            bias_src_spec = _add_target_input_spec(bias_strategy)
            # d_bias spec follows a reduction over grad_out
            inp_placements = _replicate_dims_start_at(
                grad_out_target_spec.placements, axis
            )
            reduce_dims_map = _infer_reduce_dims_map(
                outer_dims, grad_out_target_spec.ndim, False
            )
            out_placements = map_placements_after_reduction(
                inp_placements, outer_dims, reduce_dims_map, "sum"
            )
            bias_out_spec = DTensorSpec(
                mesh=mesh,
                placements=out_placements,
                tensor_meta=bias_src_spec.tensor_meta,
            )
            output_specs_list.append(bias_out_spec if output_mask[2] else None)
        else:
            assert (
                output_mask[2] is False
            ), "output_mask[2] should not be `True` while bias argument is `None` in native_layer_norm_backward."
            output_specs_list.append(None)

        out_tuple_strategy.strategies.append(
            PlacementStrategy(
                output_specs=tuple(output_specs_list),
                input_specs=input_specs_list,
                redistribute_cost=redistribute_costs,
            )
        )

    return out_tuple_strategy


@register_op_strategy(
    [aten.topk.default],
    schema_info=RuntimeSchemaInfo(2),
)
def topk_strategy(mesh: DeviceMesh, op_schema: OpSchema) -> OpStrategy:
    input_strategy = cast(OpStrategy, op_schema.args_schema[0])
    topk_dim = (
        cast(int, op_schema.args_schema[2]) if len(op_schema.args_schema) > 2 else -1
    )
    topk_dim = normalize_dim(topk_dim, input_strategy.ndim)

    single_mesh_dim_strategies = []

    # two outputs (values, indices), 1 input
    # replicate always works
    all_replicate: PlacementList = [Replicate()] * 3
    single_mesh_dim_strategies.append(all_replicate)

    # every dim except topk dim should work
    for dim in range(input_strategy.ndim):
        if dim != topk_dim:
            dim_shardings: PlacementList = [Shard(dim)] * 3
            single_mesh_dim_strategies.append(dim_shardings)
    # TODO: topk on sharded dim requries non-trival reduction, address it later

    return expand_to_full_mesh_op_strategy(
        mesh, op_schema, single_mesh_dim_strategies, input_index=2
    )