File: _view_ops.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (666 lines) | stat: -rw-r--r-- 22,820 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates
from dataclasses import dataclass
from typing import (
    Callable,
    cast,
    Dict,
    Iterable,
    List,
    Optional,
    Sequence,
    Set,
    Tuple,
    Union,
)

import torch
from torch import Tensor
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.tensor._dtensor_spec import DTensorSpec
from torch.distributed.tensor._op_schema import (
    OpSchema,
    OpStrategy,
    PlacementStrategy,
    RuntimeSchemaInfo,
    StrategyType,
)
from torch.distributed.tensor._ops.utils import (
    generate_redistribute_costs,
    normalize_dim,
    normalize_dims,
    prod,
    register_op_strategy,
)
from torch.distributed.tensor.placement_types import Placement, Replicate, Shard


aten = torch.ops.aten

Shape = Tuple[int, ...]


@dataclass
class DimSpec:
    """Specifies how an output dimension maps to an input dimension."""

    def inputs(self) -> Iterable["DimSpec"]:
        return ()


# Rules that map each dimension of the output to dimensions of the input tensor
DimMap = Tuple[DimSpec, ...]


@dataclass
class Singleton(DimSpec):
    """Output dimension is a singleton."""


@dataclass
class InputDim(DimSpec):
    """Output dimension maps directly to an input dimension."""

    input_dim: int


@dataclass
class Broadcast(DimSpec):
    """Output is the broadcast of a singleton input dimension."""

    dim: DimSpec
    dim_size: int

    @classmethod
    def new(cls, dim: DimSpec, dim_size: int) -> DimSpec:
        return Broadcast(dim, dim_size)

    def inputs(self) -> Iterable[DimSpec]:
        return (self.dim,)


@dataclass
class NewDim(DimSpec):
    """This is a new dimension created by the op."""

    size: int

    @classmethod
    def new(cls, size: int) -> DimSpec:
        return Singleton() if size == 1 else NewDim(size)


@dataclass
class Repeat(DimSpec):
    """Output dimension is the input dimension repeated n-times."""

    input_dim: DimSpec
    times: int

    @classmethod
    def new(cls, dim: DimSpec, times: int) -> DimSpec:
        if times == 1:
            return dim
        elif isinstance(dim, Singleton):
            # repeating a singleton is the same as broadcasting it
            return Broadcast(dim, times)
        else:
            return Repeat(dim, times)

    def inputs(self) -> Iterable[DimSpec]:
        return (self.input_dim,)


@dataclass
class Flatten(DimSpec):
    """Flatten a set of input dimensions, ensuring right-most adjacent elements remain adjacent in the output."""

    input_dims: Sequence[DimSpec]

    @classmethod
    def new(cls, dims: Sequence[DimSpec]) -> DimSpec:
        if len(dims) == 0:
            # flattening a scalar leads to a singleton
            return Singleton()
        elif len(dims) == 1:
            # flattening a single dimension is no-op
            return dims[0]
        else:
            return Flatten(dims)

    def inputs(self) -> Iterable[DimSpec]:
        return self.input_dims


@dataclass
class Split(DimSpec):
    """
    This dimension is a member of a decomposition of the input dim.

    Note that input_dim itself could be a Flattened set of input dims.
    """

    input_dim: DimSpec
    group_shape: Shape
    split_id: int

    @classmethod
    def new(cls, dim: DimSpec, group_shape: Tuple[int, ...], idx: int) -> DimSpec:
        assert len(group_shape) > 0
        if len(group_shape) == 1:
            # not really a group, just return the input dim back
            assert idx == 0
            return dim
        elif group_shape[idx] == 1:
            return Singleton()
        else:
            # remove singletons from group
            # group_mapping = [(new_index, (shape, old_index)) ...]
            group_mapping = list(
                enumerate((s, i) for i, s in enumerate(group_shape) if s != 1)
            )
            new_group_shape = tuple(m[1][0] for m in group_mapping)
            new_idx = next(filter(lambda x: x[1][1] == idx, group_mapping))[0]
            return Split(dim, new_group_shape, new_idx)

    def inputs(self) -> Iterable[DimSpec]:
        return (self.input_dim,)


def dim_pad_left(ndim: int, min_dims: int) -> DimMap:
    return (Singleton(),) * max(0, min_dims - ndim) + tuple(
        InputDim(i) for i in range(ndim)
    )


def dim_atleast_3d(ndim: int) -> DimMap:
    if ndim == 0:
        return (Singleton(), Singleton(), Singleton())
    elif ndim == 1:
        return (Singleton(), InputDim(0), Singleton())
    elif ndim == 2:
        return (InputDim(0), InputDim(1), Singleton())
    else:
        return tuple(InputDim(i) for i in range(ndim))


def expand(input_shape: Shape, shape: Shape) -> DimMap:
    """Implement broadcast on multiple dimensions."""
    assert len(shape) >= len(input_shape)

    # 1. create padded input dimensions
    padded_input = dim_pad_left(len(input_shape), len(shape))
    # 2. check that input shapes are compatible
    mapping = []
    for p, desired_s in zip(padded_input, shape):
        if isinstance(p, Singleton):
            actual_s = 1
            assert desired_s >= 0
        else:
            assert isinstance(p, InputDim), f"DimSpec not supported in expand: {p}"
            actual_s = input_shape[p.input_dim]
            assert actual_s == 1 or desired_s == -1 or desired_s == actual_s
        mapping.append(
            p
            if desired_s in (1, -1) or desired_s == actual_s
            else Broadcast.new(p, desired_s)
        )
    return tuple(mapping)


def normalize_sizes(sizes: Union[Shape, Tuple[Shape]]) -> Shape:
    if isinstance(sizes[0], int):
        return cast(Shape, sizes)
    elif len(sizes) == 1:
        return sizes[0]
    else:
        raise RuntimeError("Size must be int... or tuple")


def dim_flatten(ndim: int, start_dim=0, end_dim=-1) -> DimMap:
    if ndim == 0:
        return (Singleton(),)
    elif ndim == 1:
        return (InputDim(0),)
    else:
        # only flattening dims from start_dim to end_dim (inclusive)
        # other dims are passed through
        if end_dim < 0:
            end_dim += ndim
        results: List[DimSpec] = [InputDim(i) for i in range(start_dim)]
        results.append(
            Flatten.new(tuple(InputDim(i) for i in range(start_dim, end_dim + 1)))
        )
        results.extend([InputDim(i) for i in range(end_dim + 1, ndim)])
        return tuple(results)


def dim_movedim(
    ndim: int,
    input: Union[int, Sequence[int]],
    destination: Union[int, Sequence[int]],
) -> DimMap:
    input = normalize_dims(input, ndim)
    destination = normalize_dims(destination, ndim)

    assert len(input) == len(destination)
    input_set = set(input)
    assert len(input_set) == len(input), "Found repeated input dims"
    assert len(set(destination)) == len(destination), "Found repeated output dims"
    assert max(input) < ndim
    assert max(destination) < ndim

    dest = [-1] * ndim
    for i, d in zip(input, destination):
        dest[d] = i

    unused_inputs_iter = iter(i for i in range(ndim) if i not in input_set)
    for i in range(ndim):
        if dest[i] == -1:
            dest[i] = next(unused_inputs_iter)

    return tuple(InputDim(i) for i in dest)


def dim_repeat(ndim: int, sizes: Shape) -> DimMap:
    sizes = normalize_sizes(sizes)
    assert (
        len(sizes) >= ndim
    ), f"Number of dimensions of repeat dims {sizes} can not be smaller than number of dimensions of tensor {ndim}."
    pad = len(sizes) - ndim
    return tuple(Repeat.new(Singleton(), s) for s in sizes[:pad]) + tuple(
        Repeat.new(InputDim(i), s) for i, s in enumerate(sizes[pad:])
    )


def infer_size(total_size: int, sizes: Shape) -> Shape:
    """
    One dimension input to view may be "-1".

    Infer the size of this dimension given the total_size.
    """
    infers = [i for i, s in enumerate(sizes) if s == -1]
    size = prod(sizes)
    assert len(infers) <= 1, "can only infer one size"
    if infers:
        size = -size
        missing_size = total_size // size
        assert (
            total_size % size == 0
        ), f"size inferred for -1 is not integral {sizes} should have {total_size} elements."
        return tuple(s if s != -1 else missing_size for s in sizes)
    assert size == total_size, f"sizes do not match {total_size} vs {size}"
    return sizes


def view_groups(from_size: Shape, to_size: Shape) -> DimMap:
    """
    Decompose a reshape operation into forwarding, flattening, or splitting dimensions for each output dimension.

    A view or reshape operation can be decomposed into a set of 3 types of smaller operations:
    1) Forward a dimension from input to output
    2) Flatten a set of dimensions into a single dimension
    3) Split one dimension into multiple dimensions

    view_groups identifies these operations and returns, for each output dimension, what
    is operation was performed in the input dimension. For example:

        view_groups([2, 3, 4], [2, 12]) -> (
            InputDim(0),
            Flatten((InputDim(1), InputDim(2)))
        )

    - ouptut dimension 0 maps to input dimension 0
    - output dimension 1 maps to a flattened input dimensions 1 and 2


        view_groups([2, 3], [3, 2]) -> (
            Split(Flatten((InputDim(0), InputDim(1))), (3, 2), 0),
            Split(Flatten((InputDim(0), InputDim(1))), (3, 2), 1),
        )

    - in the above, input is flattened into a single dimension and then split
      into two separate dimensions with different sizes from the input.
    """
    from_nelem = prod(from_size)
    to_size = infer_size(from_nelem, normalize_sizes(to_size))

    assert from_nelem == prod(to_size), "Total view shape does not add up"

    from_idx = 0
    to_idx = 0
    from_len = len(from_size)
    to_len = len(to_size)

    result_pp = []

    while from_idx < from_len or to_idx < to_len:
        from_group_dim, to_group_shape = [], []

        if from_idx >= from_len:
            f = 1
        else:
            f = from_size[from_idx]
            from_group_dim.append(from_idx)
            from_idx += 1

        if to_idx >= to_len:
            t = 1
        else:
            t = to_size[to_idx]
            to_group_shape.append(t)
            to_idx += 1

        # if any of the groups is singleton, great, we need to backtrack though
        if f == 1 and t != 1:
            # produces ([1], [])
            to_idx -= 1
            to_group_shape = []
        elif f != 1 and t == 1:
            # produces ([], [1])
            from_idx -= 1
            from_group_dim = []
        else:
            # produces ([1], [1]),  ([2], [2]), ([2,3], [6])
            while f != t:
                if f < t:
                    nf = from_size[from_idx]
                    from_group_dim.append(from_idx)
                    from_idx += 1
                    f *= nf
                else:
                    nt = to_size[to_idx]
                    to_group_shape.append(nt)
                    to_idx += 1
                    t *= nt

        if len(to_group_shape) > 0:
            flattened = Flatten.new(
                tuple(InputDim(fi) for fi in from_group_dim if from_size[fi] >= 1)
            )
            result_pp += [
                Split.new(flattened, tuple(to_group_shape), i)
                for i in range(len(to_group_shape))
            ]

    return tuple(result_pp)


def dim_tile(ndim: int, dims: Tuple[int, ...]) -> DimMap:
    if len(dims) < ndim:
        dims = (1,) * (ndim - len(dims)) + dims
    return dim_repeat(ndim, dims)


def dim_transpose(ndim: int, dim1: int, dim2: int) -> DimMap:
    dim1 = normalize_dim(dim1, ndim)
    dim2 = normalize_dim(dim2, ndim)
    assert dim1 < ndim
    assert dim2 < ndim
    dimmap = [InputDim(i) for i in range(ndim)]
    swapdim = dimmap[dim1]
    dimmap[dim1] = dimmap[dim2]
    dimmap[dim2] = swapdim
    return tuple(dimmap)


def dim_squeeze(shape: Shape, dim: Optional[int] = None) -> DimMap:
    # FIXME: this is wrong when dim=None and one of the dimensions
    # equals size of the mesh. For example squeeze(DTensor(tensor(4), Shard[0])) could
    # end up as squeeze(tensor(1)) if we have 4 devices; this would lead to
    # removal of a dimension that is not actually a singleton.
    return tuple(
        InputDim(i)
        for i, s in enumerate(shape)
        if s > 1 or (dim is not None and i != normalize_dim(dim, len(shape)))
    )


def dim_unsqueeze(ndim: int, dim: int) -> DimMap:
    dims = tuple(InputDim(i) for i in range(ndim))
    if dim < 0:
        dim += ndim + 1
    return dims[:dim] + (Singleton(),) + dims[dim:]


def dim_view_as_real(shape: Shape) -> DimMap:
    ndim = len(shape)
    results: List[DimSpec] = [InputDim(i) for i in range(ndim - 1)]
    # each complex number is split into two real numbers,
    # resulting in one more dimension of size 2
    results.append(Split(InputDim(ndim - 1), (shape[-1], 2), 0))
    results.append(Split(InputDim(ndim - 1), (shape[-1], 2), 1))
    return tuple(results)


def dim_reduction(
    ndim: int, dim_or_dims: Optional[Union[int, Sequence[int]]], keepdim: bool
) -> DimMap:
    """
    General fallback for reduction ops where Partial() does not apply.

    This will cause incoming tensor to be replicated on the reducing dimensions.
    """
    if dim_or_dims is None:
        dim_or_dims = tuple(range(ndim))
    if isinstance(dim_or_dims, int):
        dim_or_dims = (dim_or_dims,)
    dim_or_dims = tuple(d if d >= 0 else d + ndim for d in dim_or_dims)
    return tuple(
        InputDim(i) if i not in dim_or_dims else Singleton()
        for i in range(ndim)
        if i not in dim_or_dims or keepdim
    )


dim_maps: Dict[Callable[..., torch.Tensor], Callable[..., DimMap]] = {
    torch.atleast_1d: lambda x: dim_pad_left(x.ndim, 1),
    torch.atleast_2d: lambda x: dim_pad_left(x.ndim, 2),
    torch.atleast_3d: lambda x: dim_atleast_3d(x.ndim),
    torch.broadcast_to: lambda input, shape: expand(input.shape, shape),
    Tensor.expand: lambda self, *sizes: expand(self.shape, normalize_sizes(sizes)),
    torch.flatten: lambda tensor: dim_flatten(tensor.ndim),
    torch.movedim: lambda input, source, destination: dim_movedim(
        input.ndim, source, destination
    ),
    torch.permute: lambda input, dims: tuple(
        InputDim(i) for i in normalize_dims(dims, input.ndim)
    ),
    torch.ravel: lambda tensor: dim_flatten(tensor.ndim),
    Tensor.repeat: lambda self, *sizes: dim_repeat(self.ndim, sizes),
    torch.reshape: lambda input, shape: view_groups(input.shape, shape),
    torch.squeeze: lambda input, dim=None: dim_squeeze(input.shape, dim),
    torch.tile: lambda input, dims: dim_tile(input.ndim, dims),
    torch.transpose: lambda input, dim0, dim1: dim_transpose(input.ndim, dim0, dim1),
    torch.unsqueeze: lambda input, dim: dim_unsqueeze(input.ndim, dim),
    Tensor.view: lambda input, *shape: view_groups(input.shape, shape),
    torch.view_as_complex: lambda input: dim_flatten(input.ndim, input.ndim - 2),
    torch.view_as_real: lambda input: dim_view_as_real(input.shape),
}


def propagate_shape_and_sharding(
    input_src_placements: Sequence[Placement],
    local_in_shape: Shape,
    rule: DimMap,
    mesh_sizes: Shape,
) -> Tuple[Sequence[Placement], Sequence[Placement]]:
    """
    Determine input target sharding and output sharding based on
    given global tensor shape and input source sharding.

    Sharding propagation follows mapped dimensions:
    - An output dimension that maps directly to an input dimension is sharded equally
    - An output dimension that is a flattened set of input dimensions can only be
      sharded if only the leftmost flattened dimension is sharded.
    - An output dimension that is a split of the input dimension can only be sharded
      if the leftmost split size is divisible by the mesh dimension
    """
    assert len(input_src_placements) == len(mesh_sizes)
    # for each input dim, for each mesh dim, provides a list of possible shardable dimensions
    mesh_ndim = len(mesh_sizes)
    shardable_dims: Dict[int, List[bool]] = {}

    # in case an input dimension disappears (e.g. collapsing, reduction)
    # we cannot shard in that dimension (we need a replication fall-back rule)
    seen_input_dims: Set[int] = set()

    def collect_used_inputs(cmd: DimSpec) -> None:
        if isinstance(cmd, InputDim):
            seen_input_dims.add(cmd.input_dim)
        for inp in cmd.inputs():
            collect_used_inputs(inp)

    for cmd in rule:
        collect_used_inputs(cmd)
    for dim in range(len(local_in_shape)):
        shardable_dims[dim] = [dim in seen_input_dims] * mesh_ndim

    def get_in_dim_to_shard(cmd: DimSpec) -> Optional[InputDim]:
        if isinstance(cmd, InputDim):
            return cmd
        elif isinstance(cmd, Flatten):
            for dim in cmd.input_dims[1:]:
                if isinstance(dim, InputDim):
                    shardable_dims[dim.input_dim] = [False] * mesh_ndim
            dim0 = cmd.input_dims[0]
            return dim0 if isinstance(dim0, InputDim) else None
        elif isinstance(cmd, Split):
            in_dim = get_in_dim_to_shard(cmd.input_dim)
            out_size = cmd.group_shape[cmd.split_id]
            if cmd.split_id == 0 and in_dim is not None:
                # we need to check that the input dimension is divisible
                # by the size of the submesh we're sharding it on
                # NOTE: it would be possible to shard the same input dimension
                # on more than one mesh dimension. In that case, the dimension
                # needs to be divisible by the product of mesh sizes.
                # In order to keep the problem more tractable, we will not consider
                # double resharding as a suggestion (e.g. [Shard(0), Shard(0) ])
                # but we will allow it if that's the input and it's compatible

                # 1. is this dimension shardable on each individual mesh dim?
                shardable_dims[in_dim.input_dim] = [
                    out_size % mesh_dim_size == 0 for mesh_dim_size in mesh_sizes
                ]

                # 2. here we special case things like [Shard(0), Shard(0)]
                submesh_size = 1
                for size, shard in zip(mesh_sizes, input_src_placements):
                    if isinstance(shard, Shard) and shard.dim == in_dim:
                        submesh_size *= size
                assert (
                    out_size % submesh_size == 0
                ), f"Resulting dimension size {out_size} is not divisible by its mesh dimension {submesh_size}."

            # we will only shard our first component of the split
            return in_dim if cmd.split_id == 0 else None
        elif isinstance(cmd, Repeat):
            in_dim = get_in_dim_to_shard(cmd.input_dim)
            if in_dim is not None:
                shardable_dims[in_dim.input_dim] = [False] * mesh_ndim
            return None
        else:
            return None

    # for each output dim, find the corresponding input dim in terms of sharding prop
    shard_dim_map = {}
    for dim, cmd in enumerate(rule):
        in_dim = get_in_dim_to_shard(cmd)
        if in_dim is not None:
            shard_dim_map[in_dim.input_dim] = dim

    input_tgt_placements = [
        Replicate()
        if isinstance(p, Shard) and not shardable_dims[p.dim][mesh_dim]
        else p
        for mesh_dim, p in enumerate(input_src_placements)
    ]
    output_placements = [
        Shard(shard_dim_map[p.dim]) if isinstance(p, Shard) else p
        for p in input_tgt_placements
    ]

    return input_tgt_placements, output_placements


def register_op_strategy_map(
    aten_op_overload: torch._ops.OpOverload,
    local_op_name: Callable[..., torch.Tensor],
    schema_info: Optional[RuntimeSchemaInfo] = None,
) -> None:
    dim_map: Callable[..., DimMap] = dim_maps[local_op_name]

    @register_op_strategy(aten_op_overload, schema_info=schema_info)
    def reshape_strategy(mesh: DeviceMesh, op_schema: OpSchema) -> StrategyType:
        rules = dim_map(*op_schema.args_schema, **op_schema.kwargs_schema)
        input_strategy = cast(OpStrategy, op_schema.args_schema[0])
        global_in_shape = input_strategy.shape
        assert global_in_shape is not None, "Shape required."

        output_strategy = OpStrategy([])
        for input_placement_strategy in input_strategy.strategies:
            input_src_spec = input_placement_strategy.output_spec

            input_tgt_placements, output_placements = propagate_shape_and_sharding(
                input_src_spec.placements,
                tuple(global_in_shape),
                rules,
                mesh.shape,
            )

            # TODO: optimize this. we shouldn't simply blindly replicate
            #       unshardable dims ...
            # FIXME: this can be wrong for situations where we have
            #        [Shard(0), Shard(0)]
            input_tgt_spec = DTensorSpec(
                placements=tuple(input_tgt_placements),
                mesh=input_src_spec.mesh,
                tensor_meta=input_src_spec.tensor_meta,
            )
            redistribute_costs = [
                generate_redistribute_costs(input_strategy, input_tgt_spec)
            ]

            output_spec = DTensorSpec(mesh=mesh, placements=tuple(output_placements))
            output_strategy.strategies.append(
                PlacementStrategy(
                    output_specs=output_spec,
                    input_specs=(input_tgt_spec,),
                    redistribute_cost=redistribute_costs,
                )
            )

        return output_strategy


register_op_strategy_map(aten.squeeze.default, torch.squeeze)
register_op_strategy_map(
    aten.squeeze.dim, torch.squeeze, schema_info=RuntimeSchemaInfo(1)
)
register_op_strategy_map(
    aten.view.default, Tensor.view, schema_info=RuntimeSchemaInfo(1)
)
register_op_strategy_map(
    aten.reshape.default, torch.reshape, schema_info=RuntimeSchemaInfo(1)
)
register_op_strategy_map(
    aten._unsafe_view.default, Tensor.view, schema_info=RuntimeSchemaInfo(1)
)
register_op_strategy_map(
    aten.unsqueeze.default, torch.unsqueeze, schema_info=RuntimeSchemaInfo(1)
)
register_op_strategy_map(
    aten.expand.default, Tensor.expand, schema_info=RuntimeSchemaInfo(1)
)
register_op_strategy_map(
    aten.permute.default, torch.permute, schema_info=RuntimeSchemaInfo(1)
)
register_op_strategy_map(
    aten.repeat.default, Tensor.repeat, schema_info=RuntimeSchemaInfo(1)
)
register_op_strategy_map(
    aten.transpose.int, torch.transpose, schema_info=RuntimeSchemaInfo(1)
)
register_op_strategy_map(aten.view_as_complex.default, torch.view_as_complex)
register_op_strategy_map(aten.view_as_real.default, torch.view_as_real)