1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates
import functools
import itertools
import operator
from typing import cast, Iterable, List, Optional, Sequence, Tuple, Union
import torch
from torch.distributed.tensor._api import DTensor
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._dtensor_spec import DTensorSpec
from torch.distributed.tensor._op_schema import (
OpSchema,
OpStrategy,
PlacementList,
PlacementStrategy,
RuntimeSchemaInfo,
)
from torch.distributed.tensor.device_mesh import DeviceMesh
from torch.distributed.tensor.placement_types import (
Partial,
Placement,
Replicate,
Shard,
)
# convenient wrapper to register sharding propagation rules
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def register_prop_rule(op, schema_info=None):
# pyre-fixme[53]: Captured variable `func` is not annotated.
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def wrapper(impl):
overloads = op if isinstance(op, list) else [op]
for overload in overloads:
DTensor._op_dispatcher.sharding_propagator.register_sharding_prop_rule(
overload, impl, schema_info
)
return impl
return wrapper
def register_op_strategy(op, schema_info=None):
# pyre-fixme[53]: Captured variable `func` is not annotated.
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
# For every ATen op that accepts any args in this list,
# the arg itself can impact the strides (and potentially the sharding strategy)
# of the output tensor.
# thus, we will detect ATen schemas with any of these args and ensure
# that they get specialized here.
arg_names_that_require_specializing_cache_strategy = [
"memory_format",
]
def wrapper(impl):
if isinstance(op, list):
overloads = op
else:
overloads = [op]
for overload in overloads:
curr_schema_info = None
if schema_info is None:
specialized_args = [
a.name
for a in overload._schema.arguments
if a.name in arg_names_that_require_specializing_cache_strategy
]
if any(specialized_args):
curr_schema_info = RuntimeSchemaInfo(
static_kwargkey=specialized_args
)
else:
curr_schema_info = schema_info
DTensor._op_dispatcher.sharding_propagator.register_op_strategy(
overload, impl, curr_schema_info
)
return impl
return wrapper
def as_list(
x: Union[List[object], object]
# pyre-fixme[11]: Annotation `immutable_list` is not defined as a type.
) -> Union[List[object], torch.fx.immutable_collections.immutable_list]: # type: ignore[valid-type]
# During tracing, `aten.sum.dim_IntList` uses `immutable_list` for its args,
# which is an object but treated as a list by the tracer. Therefore, keep
# `immutable_list` intact here as well.
if type(x) is list or isinstance(x, torch.fx.immutable_collections.immutable_list):
return x
else:
return [x]
def normalize_dim(dim: int, ndim: int) -> int:
return dim if dim >= 0 else dim + ndim
def normalize_dims(dims: Union[int, Sequence[int]], ndim: int) -> Sequence[int]:
"""Normalize a dim or a sequence of dims, so that they are all positive."""
if isinstance(dims, int):
dims = (normalize_dim(dims, ndim),)
elif isinstance(dims, list):
dims = [normalize_dim(dim, ndim) for dim in dims]
elif isinstance(dims, tuple):
dims = tuple([normalize_dim(dim, ndim) for dim in dims])
return dims
def prod(xs: Iterable[int]) -> int:
return functools.reduce(operator.mul, xs, 1)
def is_tensor_shardable(shape: Sequence[int], spec: DTensorSpec) -> bool:
"""Check if the shape is shardable according to the spec."""
# number of shards in each tensor dimension
shards_map = [1] * len(shape)
for i, placement in enumerate(spec.placements):
if placement.is_shard():
shard_dim = cast(Shard, placement).dim
shards_map[shard_dim] *= spec.mesh.size(i)
for i, dim_size in enumerate(shape):
# TODO: maybe we should determine is_shardable based on
# whether it's evenly sharded or not
if shards_map[i] > 1 and dim_size < shards_map[i]:
return False
return True
def is_tensor_evenly_shardable(shape: Sequence[int], spec: DTensorSpec) -> bool:
"""Check if the shape is evenly shardable according to the spec."""
# number of shards in each tensor dimension
shards_map = [1] * len(shape)
for i, placement in enumerate(spec.placements):
if placement.is_shard():
shard_dim = cast(Shard, placement).dim
shards_map[shard_dim] *= spec.mesh.size(i)
for i, dim_size in enumerate(shape):
if shards_map[i] > 1 and (dim_size % shards_map[i] != 0):
return False
return True
def is_tensor_dim_sharded(spec: DTensorSpec, dim: int) -> bool:
"""Return True if tensor dim is sharded."""
return any(p.is_shard(dim) for p in spec.placements)
def is_tensor_partial(spec: DTensorSpec) -> bool:
"""Return True if tensor is partial on the mesh."""
return any(p.is_partial() for p in spec.placements)
def infer_broadcast_dims_map(
common_shape: torch.Size, input_shape: torch.Size
) -> List[int]:
# infer the broadcast dims map, where it maps from the common shape dim to the input shape dim
# this is aligned with the broadcast semantics
common_ndim = len(common_shape)
input_ndim = len(input_shape)
broadcast_dims_map = [-1] * common_ndim
for idx in range(-1, -1 - input_ndim, -1):
if input_shape[idx] == common_shape[idx]:
broadcast_dims_map[common_ndim + idx] = input_ndim + idx
return broadcast_dims_map
def map_placements_after_broadcast(
placements: Tuple[Placement, ...],
shape: torch.Size,
broadcast_dims_map: List[int],
) -> Tuple[Placement, ...]:
"""Map each placement based on the output shape after broadcast."""
new_placements: List[Placement] = []
for placement in placements:
if isinstance(placement, (Replicate, Partial)):
new_placements.append(placement)
else:
assert isinstance(placement, Shard)
shard_dim = normalize_dim(placement.dim, len(shape))
new_shard_dim = broadcast_dims_map[shard_dim]
if new_shard_dim != -1:
# there's a map from the common shape shard dim to
# the input shape shard dim before broadcasting,
# use that instead
new_placements.append(Shard(new_shard_dim))
else:
# there's no map between common shape shard dim and
# the input shape shard dim before broadcasting,
# in this case it means implicit broadcasting happen
# in this dim, so we can just mark it as replicate
# and implict broadcast will broadcast automatically
# to the sharded shape
new_placements.append(Replicate())
return tuple(new_placements)
def generate_redistribute_costs(
src_strategy: OpStrategy, dst_spec: DTensorSpec
) -> List[float]:
redistribute_costs: List[float] = [
redistribute_cost(strat.output_spec, dst_spec)
for strat in src_strategy.strategies
]
return redistribute_costs
def expand_to_full_mesh_op_strategy(
mesh: DeviceMesh,
op_schema: OpSchema,
single_mesh_dim_strategies: List[PlacementList],
*,
input_index: int = 1,
inplace_op: bool = False,
) -> OpStrategy:
# Expand the single_mesh_dim_strategies to full mesh dim strategies.
all_mesh_dim_strategies = [single_mesh_dim_strategies] * mesh.ndim
strategy_combs = itertools.product(*all_mesh_dim_strategies)
all_strategies = []
for strategy_comb in strategy_combs:
spec_list: List[Optional[DTensorSpec]] = []
for specs in zip(*strategy_comb):
if specs[0] is not None:
spec_list.append(DTensorSpec(mesh, specs))
else:
spec_list.append(None)
input_specs: List[DTensorSpec] = [
s for s in spec_list[input_index:] if isinstance(s, DTensorSpec)
]
input_args_strategy = op_schema.args_strategy
assert len(input_specs) == len(input_args_strategy)
self_spec = input_args_strategy[0].strategies[0].output_spec
if inplace_op and self_spec.placements != input_specs[0].placements:
# if it's inplace op, we would only allow the placement strategy to be added when the
# input_spec matches the first argument's runtime sharding, otherwise we skip
continue
# check inputs shardable
inputs_shardable = all(
is_tensor_shardable(inp.shape, s)
for inp, s in zip(input_args_strategy, input_specs)
)
# only add to the all_strategies list when all inputs are shardable
if inputs_shardable:
redistribute_cost = [
generate_redistribute_costs(input_strategy, input_spec)
for input_strategy, input_spec in zip(input_args_strategy, input_specs)
]
if input_index > 1:
output_specs = tuple(spec_list[:input_index])
else:
if spec_list[0] is not None:
output_specs = spec_list[0] # type: ignore[assignment]
else:
raise RuntimeError("output spec is None")
strategy = PlacementStrategy(
output_specs=output_specs,
input_specs=input_specs,
redistribute_cost=redistribute_cost,
)
all_strategies.append(strategy)
return OpStrategy(all_strategies)
|