1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, List, Tuple
import torch
from torch.distributed.checkpoint.metadata import (
ChunkStorageMetadata,
MetadataIndex,
TensorProperties,
TensorStorageMetadata,
)
from torch.distributed.checkpoint.planner import (
TensorWriteData,
WriteItem,
WriteItemType,
)
aten = (
torch.ops.aten
) # pyre-ignore[5]: Globally accessible variable `aten` has no type specified.
class LocalShardsWrapper(torch.Tensor): # pyre-ignore[13]: pyre is bad at __new__
"""
A wrapper class to hold local shards of a DTensor.
This class is used largely for checkpointing purposes and implicity subtypes
the _Checkpointable protocol.
"""
__slots__ = ["_local_shards", "_storage_meta"]
_local_shards: List[torch.Tensor]
_storage_meta: TensorStorageMetadata
@staticmethod
def __new__(
cls, local_shards: List[torch.Tensor], local_offsets: List[Tuple[int, ...]]
) -> "LocalShardsWrapper":
assert len(local_shards) > 0
assert len(local_shards) == len(local_offsets)
assert all(
tensor.device == local_shards[0].device for tensor in local_shards[1:]
)
# we calculate the total tensor size by "concat" on second tensor dimension
cat_tensor_shape = list(local_shards[0].size())
if len(local_shards) > 1: # column-wise sharding
for shard in local_shards[1:]:
cat_tensor_shape[1] += shard.size()[1]
wrapper_properties = TensorProperties.create_from_tensor(local_shards[0])
wrapper_shape = torch.Size(cat_tensor_shape)
chunks_meta = [
ChunkStorageMetadata(
offsets=torch.Size(offset),
sizes=shard.size(),
)
for shard, offset in zip(local_shards, local_offsets)
]
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
cls,
torch.Size(cat_tensor_shape),
)
r._local_shards = local_shards
r._storage_meta = TensorStorageMetadata(
properties=wrapper_properties,
size=wrapper_shape,
chunks=chunks_meta,
)
return r
# necessary for ops dispatching from this subclass to its local shards
@classmethod
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
dispatcher = {
torch.ops._c10d_functional.all_gather_into_tensor.default: cls.handle_all_gather_into_tensor,
torch.ops._c10d_functional.wait_tensor.default: cls.handle_wait_tensor,
aten._to_copy.default: cls.handle_to_copy,
aten.view.default: cls.handle_view,
aten.equal.default: cls.handle_equal,
aten.detach.default: cls.handle_detach,
aten.clone.default: cls.handle_clone,
}
if func in dispatcher:
return dispatcher[func](
args, kwargs
) # pyre-ignore [29] - `Variable[_VT]` is not a function.
else:
raise NotImplementedError(
f"{func} is not supported for LocalShardsWrapper!"
)
@staticmethod
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def handle_all_gather_into_tensor(args, kwargs):
dim = args[0].local_sizes()[0][1]
cat_tensor = torch.cat(
[t.view(-1) for t in args[0].local_shards()], dim=0
).view(-1, dim)
return torch.ops._c10d_functional.all_gather_into_tensor.default(
cat_tensor, *args[1:], **kwargs
)
@staticmethod
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def handle_wait_tensor(args, kwargs):
return torch.ops._c10d_functional.wait_tensor(args[0])
@staticmethod
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def handle_to_copy(args, kwargs):
res_shards_list = [
aten._to_copy.default(shard, *args[1:], **kwargs)
for shard in args[0].local_shards()
]
return LocalShardsWrapper(res_shards_list, args[0].local_offsets())
@staticmethod
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def handle_view(args, kwargs):
# TODO, do we need to change the shape of associated offsets?
res_shards_list = [
aten.view.default(shard, args[1], **kwargs)
for shard in args[0].local_shards()
]
return LocalShardsWrapper(res_shards_list, args[0].local_offsets())
@staticmethod
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def handle_equal(args, kwargs):
"""
LocalShardsWrapper equal impl also checks for equality of storage metadata
and the order of shards
"""
a, b = args[0], args[1]
if len(a.local_shards()) != len(b.local_shards()):
return False
if not all(
aten.equal.default(x, y) for x, y in zip(a.local_shards(), b.local_shards())
):
return False
if not a.storage_metadata() == b.storage_metadata():
return False
return True
@staticmethod
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def handle_detach(args, kwargs):
self_ls = args[0]
deatched_local_shards = [
aten.detach.default(shard) for shard in self_ls.local_shards()
]
self_ls._local_shards = deatched_local_shards
self_ls._storage_meta.properties.requires_grad = False
return self_ls
@staticmethod
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def handle_clone(args, kwargs):
self_ls = args[0]
desired_memory_format = kwargs.get("memory_format", None)
if desired_memory_format and desired_memory_format != torch.preserve_format:
raise NotImplementedError(
f"{desired_memory_format} is not supported for LocalShardsWrapper!"
)
cloned_local_shards = [
shard.clone(memory_format=desired_memory_format)
for shard in self_ls._local_shards
]
return LocalShardsWrapper(cloned_local_shards, self_ls.local_offsets())
@property
def device(self) -> torch._C.device: # type: ignore[override]
return self._local_shards[0].device
@property
def is_meta(self) -> bool: # type: ignore[override]
return self._local_shards[0].is_meta
# pyre-ignore[14]
def is_pinned(self) -> bool: # type: ignore[override]
return self._storage_meta.properties.pin_memory
# pyre-ignore[14]
def requires_grad_(self, requires_grad: bool = True) -> "LocalShardsWrapper":
self._storage_meta.properties.requires_grad = requires_grad
[shard.requires_grad_(requires_grad) for shard in self._local_shards]
return self
def local_shards(self) -> List[torch.Tensor]:
"""
Returns a list of :class:`torch.Tensor' corresponding to the
local shards for this rank. Returns an empty list if the current rank
does not host any shards for this Tensor.
"""
return self._local_shards
def local_sizes(self) -> List[torch.Size]:
"""
Returns a list of :class:`torch.Size' corresponding to the
local sizes for the shards on this rank. Returns an empty list if the current rank
does not host any shards for this Tensor.
"""
return [chunk.sizes for chunk in self._storage_meta.chunks]
def local_offsets(self) -> List[torch.Size]:
"""
Returns a list of :class:`torch.Size' corresponding to the
local offsets for the shards on this rank. Returns an empty list if the current rank
does not host any shards for this Tensor.
"""
return [chunk.offsets for chunk in self._storage_meta.chunks]
@property
def local_chunks(self) -> List[ChunkStorageMetadata]:
"""
Returns a :class:`List[ChunkStorageMetadata]` object corresponding to the
metadata for each tensor shard
"""
return self._storage_meta.chunks
def storage_metadata(self) -> TensorStorageMetadata:
"""
Returns a :class:`TensorStorageMetadata` object corresponding to the
metadata for the local tensor on current rank
"""
return self._storage_meta
def __create_write_items__(
self, fqn: str, object: Any
) -> List[WriteItem]: # pyre-ignore[2]
"""
For compatibility with DCP, we support creation of WriteItems
such that they can be saved properly.
"""
return [
WriteItem(
index=MetadataIndex(fqn, chunks.offsets),
type=WriteItemType.SHARD,
tensor_data=TensorWriteData(
chunk=ChunkStorageMetadata(
offsets=chunks.offsets,
sizes=chunks.sizes,
),
properties=self._storage_meta.properties,
size=object.size(),
),
)
for tensor, chunks in zip(self.local_shards(), self.local_chunks)
]
def __create_chunk_list__(self) -> List[ChunkStorageMetadata]:
"""
For compatibility with DCP, we support creation of chunk lists
such that they can be saved properly.
"""
return self._storage_meta.chunks
def __get_tensor_shard__(self, index: MetadataIndex) -> torch.Tensor:
"""
For compatibility with DCP, we support finding shard based on index
Return a 'torch.Tensor' shard based on 'MetadataIndex'.
"""
# Fast lookup path
if index.index is not None:
if (
len(self._local_shards) > index.index
and self._storage_meta.chunks[index.index].offsets == index.offset
):
return self._local_shards[index.index]
if index.offset is not None:
for shard, chunk in zip(self._local_shards, self._storage_meta.chunks):
if chunk.offsets == index.offset:
return shard
raise ValueError(
f"Could not find shard at '{index.offset}' for FQN: '{index.fqn}'"
)
def _get_tensor_size_bytes(self) -> int:
object_size = 0
for shard in self.local_shards():
object_size += shard.nelement() * shard.element_size()
return object_size
# pyre-fixme[3]: Return type must be annotated.
def __hash__(self):
return id(self)
# pyre-fixme[14]: `__repr__` overrides method defined in `torch._tensor.Tensor` inconsistently.
# pyre-fixme[3]: Return type must be annotated.
def __repr__(self) -> str: # type: ignore[override]
return f"LocalShardsWrapper:{self._local_shards} {self._storage_meta}"
def __str__(self) -> str:
return f"LocalShardsWrapper:{self._local_shards} {self._storage_meta}"
|