1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
from typing import cast, List, Sequence, Tuple
import torch
import torch.distributed.tensor._api as dtensor
from torch._prims_common import ShapeType
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.tensor._dtensor_spec import DTensorSpec
from torch.distributed.tensor.placement_types import (
_StridedShard,
Partial,
Placement,
Replicate,
Shard,
)
def compute_local_shape_and_global_offset(
global_shape: ShapeType, mesh: DeviceMesh, placements: Sequence[Placement]
) -> Tuple[Tuple[int, ...], Tuple[int, ...]]:
"""
Compute the local tensor shape and the global offsets into the original tensor
of a DTensor on its current global rank. This is useful for checkpointing purpose.
Example (2 host with 4GPUs each):
# Below is a DeviceMesh with mesh_shape of (2, 4)
mesh = DeviceMesh(device_type="cuda",
mesh=[
[0, 1, 2, 3],
[4, 5, 6, 7]
],
)
Let's say we distribute a global_tensor of shape (8,4) over the above DeviceMesh
with a placements of [Shard(0), Shard(0)].
The local shape and global offset will be as follows:
rank0 -- local_shape:[1, 4], global_offset:[0, 0]
rank1 -- local_shape:[1, 4], global_offset:[1, 0]
rank2 -- local_shape:[1, 4], global_offset:[2, 0]
rank5 -- local_shape:[1, 4], global_offset:[5, 0]
rank3 -- local_shape:[1, 4], global_offset:[3, 0]
rank4 -- local_shape:[1, 4], global_offset:[4, 0]
rank6 -- local_shape:[1, 4], global_offset:[6, 0]
rank7 -- local_shape:[1, 4], global_offset:[7, 0]
Let's say we distribute a global_tensor of shape (2) over the above DeviceMesh with
a placements of [Shard(0)]. We will not have non-empty local tensor for all the ranks.
The local shape and global offset will be as follows:
rank0 -- local_shape:[1,], global_offset:[0,]
rank1 -- local_shape:[1,], global_offset:[1,]
rank2 -- local_shape:[0,], global_offset:[2,]
rank5 -- local_shape:[0,], global_offset:[2,]
rank3 -- local_shape:[0,], global_offset:[2,]
rank4 -- local_shape:[0,], global_offset:[2,]
rank6 -- local_shape:[0,], global_offset:[2,]
rank7 -- local_shape:[0,], global_offset:[2,]
"""
my_coordinate = mesh.get_coordinate()
if my_coordinate is None:
# if rank not in the mesh, return empty offset
return ((0,), ())
else:
local_shape = list(global_shape)
global_offset = [0] * len(global_shape)
shard_idx_stride_by_mesh_dim = [
[0] * mesh.ndim for _ in range(len(global_shape))
] # index by (shard_dim, mesh_dim)
num_shards_by_tensor_dim = [1] * len(global_shape)
for idx, placement in enumerate(placements):
mesh_dim_size = mesh.size(idx)
if isinstance(placement, Shard):
shard_dim = placement.dim
local_offset = [0] * len(global_shape)
assert shard_dim < len(
local_shape
), f"Sharding dim {shard_dim} greater than tensor ndim {len(local_shape)}"
shard_size, shard_offset = placement._local_shard_size_on_dim(
local_shape[shard_dim],
mesh_dim_size,
my_coordinate[idx],
return_offset=True,
)
local_shape[shard_dim] = shard_size
local_offset[shard_dim] = shard_offset
# On a given dimension, if the local_offset[shard_dim] is smaller than global_offset[shard_dim],
# it means that this dimension has been already sharded in previous placement.
# Therefore, we cannot simply replace the global_offset[shard_dim] with local_offset[shard_dim].
# Instead, for the given shard_dim, we need to add local_offset[shard_dim] to existing global_offset[shard_dim].
if global_offset[shard_dim] <= local_offset[shard_dim]:
global_offset[shard_dim] = local_offset[shard_dim]
else:
global_offset[shard_dim] += local_offset[shard_dim]
num_shards_by_tensor_dim[shard_dim] *= mesh_dim_size
# NOTE: the offset compute relies on the local shard index and it has no
# problem when strided sharding is not present. To correctly compute, we assume
# that the ``_StridedShard.split_factor`` field encodes how many partitions
# each local tensor will be further split into when sharding on higher mesh
# dimensions. However, this number is only correct if the DTensor is not
# sharded after the strided sharding completes. For example,
# [Shard(0), _StridedShard(0, split_factor=2), Shard(0)] is the placements
# where the DTensor's dim-0 is first sharded on device mesh dim-0, then on
# device mesh dim-2, and last on mesh dim-1. We define the
# "_StridedShard(0, split_factor=2), Shard(0)" part as the strided sharding
# part because strided sharding happens on mesh dim-1 and it was caused by
# the fact that sharding on dim-2 occurred ahead. In this case, there's no
# further sharding after this strided sharding part and ``split_factor``
# correctly encodes the number. Another example is
# [_StridedShard(0, split_factor=2), Shard(0), Shard(0)] where the DTensor's
# dim-0 is first sharded on mesh dim-1, then on mesh dim-0, and last on mesh
# dim-2. This violates our assumption that no further sharding shall occur
# after the strided sharding part and ``split_factor`` won't correctly
# encode the number of further split. So far, the only case where _StridedShard
# placement would appear is FSDP2 + TP on 2D mesh and the above case could only
# happen on mesh of 3 or more dimensions.
# TODO: change this function to correctly address this.
# TODO: this logic can be applied to contiguous sharding as well
strided_sharding = any(isinstance(p, _StridedShard) for p in placements)
if strided_sharding:
strided_part_seen = [False] * len(global_shape)
strided_part_end = [False] * len(global_shape)
for idx, placement in enumerate(placements):
mesh_dim_size = mesh.size(idx)
if isinstance(placement, Shard):
shard_dim = placement.dim
if strided_part_end[shard_dim]:
raise NotImplementedError(
f"Strided sharding does not allow Shard() to appear after "
f"the strided part has ended. {placement} at idx {idx} in "
f"{placements} violates this assumption."
)
if strided_part_seen[shard_dim]:
strided_part_end[shard_dim] = True
if isinstance(placement, _StridedShard):
strided_part_seen[shard_dim] = True
shard_idx_stride_by_mesh_dim[shard_dim][
idx
] = num_shards_by_tensor_dim[shard_dim] // (
placement.split_factor * mesh_dim_size
)
else:
num_shards_by_tensor_dim[shard_dim] //= mesh_dim_size
shard_idx_stride_by_mesh_dim[shard_dim][
idx
] = num_shards_by_tensor_dim[shard_dim]
shard_idx = [
sum([x * y for x, y in zip(shard_idx_stride, my_coordinate)])
for shard_dim, shard_idx_stride in enumerate(
shard_idx_stride_by_mesh_dim
)
]
global_offset = [x * y for x, y in zip(local_shape, shard_idx)]
return tuple(local_shape), tuple(global_offset)
def compute_global_tensor_info(
tensor: torch.Tensor, mesh: DeviceMesh, placements: Sequence[Placement]
) -> Tuple[List[int], List[int]]:
"""
Compute the global size and stride of a DTensor from the given local tensor.
The local size is multiplited by `world_size` per Sharding dim.
The local stride is multiplited by `world_size` per Sharding dim, as long as the
dimension is outside sharding dim.
For example, if we have a local tensor with size (4, 8, 2) and stride (16, 1, 8).
If the DTensor placements are [Shard(2)] and world_size is 2;
then the global size is (4, 8, 4) and stride is (16 * 2, 1, 8).
Args:
tensor (:class:`torch.Tensor`):
Local tensor which DTensor will be constructed from.
mesh (:class:`DeviceMesh`):
Object which describes the mesh topology
of devices for the DTensor.
placements (Sequence[:class:`Placement`]]):
The attribute of the DTensor that describes its layout
on the mesh topology.
Return:
tensor_shape: A List of int which specifies the size of DTensor which build
on top of the local tensor.
tensor_stride: A List of int which specifies the stride of DTensor.
"""
tensor_shape = list(tensor.size())
tensor_stride = list(tensor.stride())
for idx, placement in enumerate(placements):
mesh_dim_size = mesh.size(idx)
if placement.is_shard():
shard_placement = cast(Shard, placement)
if shard_placement.dim < 0:
raise AssertionError(
"Shard placements should have negative dims normalized in "
f"the user-facing APIs: {shard_placement}"
)
shard_dim = shard_placement.dim
assert (
shard_dim < tensor.ndim
), f"Sharding dim {shard_dim} greater than tensor ndim {tensor.ndim} for placement number {idx}."
local_dim_size = tensor_shape[shard_dim]
tensor_shape[shard_dim] = local_dim_size * mesh_dim_size
# recover tensor stride by modifying the stride that larger than
# the current stride on the shard_dim
for i in range(len(tensor_stride)):
if i != shard_dim and tensor_stride[i] >= tensor_stride[shard_dim]:
# rescale the stride by the shard size
tensor_stride[i] = tensor_stride[i] * mesh_dim_size
elif not isinstance(placement, (Replicate, Partial)):
raise RuntimeError(f"placement type {type(placement)} not supported!")
return tensor_shape, tensor_stride
def try_find_mesh_from_args(
op_call: torch._ops.OpOverload, args: Sequence[object]
) -> DeviceMesh:
"""
Find the device mesh object from args.
It returns None if no mesh is found.
NOTE: we can optimize this search if needed
"""
for arg in args:
if isinstance(arg, (dtensor.DTensor, DTensorSpec)):
return arg.device_mesh
elif (
isinstance(arg, (list, tuple))
and len(arg) > 0
and isinstance(arg[0], (dtensor.DTensor, DTensorSpec))
):
return arg[0].device_mesh
raise ValueError(f"Cannot find device mesh from args for op : {op_call}.")
def compute_local_stride(
global_stride: ShapeType, mesh: DeviceMesh, placements: Sequence[Placement]
) -> Tuple[int, ...]:
"""
Compute the stride of a local tensor shard, given the global stride of the DTensor.
NOTE: Currently this function is assuming the DTensor is evenly shardable.
"""
stride_divisors = [1] * len(global_stride)
for mesh_idx, p in enumerate(placements):
if p.is_shard():
i = cast(Shard, p).dim
# tensor dimension i is sharded on mesh dimension mesh_idx,
# so we need to divide all the strides larger than stride[i]
# (by the submesh size)
for j in range(len(global_stride)):
if global_stride[j] > global_stride[i]:
stride_divisors[j] *= mesh.size(mesh_idx)
return tuple(
global_stride[i] // stride_divisors[i] for i in range(len(global_stride))
)
def normalize_to_torch_size(size) -> torch.Size: # type: ignore[no-untyped-def]
"""
Unify variable types of size argument to torch.Size
Acceptable types include:
int, Sequence[int], Tuple[int], Tuple[Sequence[int]],
or torch.Size
"""
if isinstance(size, torch.Size):
return size
if isinstance(size, int):
torch_size = [size]
elif len(size) == 1 and isinstance(size[0], Sequence):
torch_size = list(size[0])
else:
torch_size = list(size)
return torch.Size(torch_size)
|