1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
|
# mypy: allow-untyped-defs
import copy
import json
import re
import weakref
from collections import defaultdict
from typing import Any, Dict
import torch
import torch.nn
from torch._guards import detect_fake_mode
from torch.autograd.graph import register_multi_grad_hook
from torch.distributed._tools.mod_tracker import ModTracker
from torch.distributed.tensor._api import DTensor
from torch.nn.modules.module import (
register_module_forward_hook,
register_module_forward_pre_hook,
register_module_full_backward_pre_hook,
)
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_flatten
__all__ = ["CommDebugMode"]
funcol_native = torch.ops._c10d_functional
funcol_py = torch.ops.c10d_functional
funcol_autograd = torch.ops._c10d_functional_autograd
c10d_ops = torch.ops.c10d
NATIVE_TO_PY_MAPPING = {
funcol_native.all_gather_into_tensor: funcol_py.all_gather_into_tensor,
funcol_native.all_gather_into_tensor_coalesced: funcol_py.all_gather_into_tensor_coalesced,
funcol_native.all_reduce: funcol_py.all_reduce,
funcol_native.all_reduce_coalesced: funcol_py.all_reduce_coalesced,
funcol_native.all_to_all_single: funcol_py.all_to_all_single,
funcol_native.broadcast: funcol_py.broadcast,
funcol_native.reduce_scatter_tensor: funcol_py.reduce_scatter_tensor,
funcol_native.reduce_scatter_tensor_coalesced: funcol_py.reduce_scatter_tensor_coalesced,
# functional ops
funcol_autograd.all_to_all_single: funcol_py.all_to_all_single,
}
c10d_collective_ops = {
c10d_ops._allgather_base_,
c10d_ops._reduce_scatter_base_,
c10d_ops.allgather_,
c10d_ops.allgather_coalesced_,
c10d_ops.allgather_into_tensor_coalesced_,
c10d_ops.allreduce_,
c10d_ops.allreduce_coalesced_,
c10d_ops.alltoall_,
c10d_ops.alltoall_base_,
c10d_ops.broadcast_,
c10d_ops.gather_,
c10d_ops.scatter_,
c10d_ops.reduce_,
c10d_ops.reduce_scatter_,
c10d_ops.reduce_scatter_tensor_coalesced_,
}
trivial_ops = {
"aten.detach.default",
"aten.t.default",
"aten.view.default",
"aten._to_copy.default",
"aten.as_strided.default",
"aten.transpose.int",
}
class _CommModeModuleTracker(ModTracker):
"""
Inherits ModuleTracker and expands on its functionality to track the
parameters and sharding information of a model at a module-level
"""
def __init__(self):
super().__init__()
self.module_helper_dict = {}
self.module_parameters_dict = {}
self.module_parents_dict = {}
self.register_forward_hook_handles = {}
self.parent_dict = {}
self.parent_list = []
self.sharding_dict = {}
self.activation_checkpointing = False
self.name = ""
def _fw_set_module_hook(self, mod, input, output):
"""
Updates the current module after module finishes running and
all other hooks are resolved
"""
if self.is_bw:
self.activation_checkpointing = True
else:
self.activation_checkpointing = False
if not self.activation_checkpointing:
# module is no longer parent of next modules
self.parent_list.pop()
# set current module to previous parent module
self.name = self.parent_list[-1]
def _fw_pre_hook(self, mod, input):
"""
This function is called before the forward pass of a module. It
collects the parameters and sharding information of a module and
stores it in a dictionary.
"""
if self.is_bw:
self.activation_checkpointing = True
else:
self.activation_checkpointing = False
self.name = super()._get_mod_name(mod)
w_mod = weakref.ref(mod)
# adds current sub-module to module tracker parent class
super()._get_append_fn(w_mod, self.name, False)()
args, _ = tree_flatten(input)
tensors = [a for a in args if isinstance(a, torch.Tensor) and a.requires_grad]
if not self.is_bw and tensors:
register_multi_grad_hook(
tensors, super()._get_pop_fn(w_mod, self.name, True)
)
if not self.activation_checkpointing:
# contains information about module ordering and depth in the module tree
if self.name not in self.module_helper_dict:
self.module_helper_dict[self.name] = {}
self.module_helper_dict[self.name]["module_type"] = (
str(type(mod)).replace("<", "").replace(">", "")
)
self.module_helper_dict[self.name]["depth"] = len(self.parents) - 1
for param_name, param in mod.named_parameters(recurse=False):
if self.name not in self.module_parameters_dict:
self.module_parameters_dict[self.name] = {}
self.module_parameters_dict[self.name][param_name] = param.data
if isinstance(param.data, DTensor):
key_name = self.name + "." + param_name
self.sharding_dict[key_name] = param.data.placements
if "parameters" not in self.module_helper_dict[self.name]:
self.module_helper_dict[self.name]["parameters"] = {}
self.module_helper_dict[self.name]["parameters"][param_name] = str(
param.data.placements
)
# used to store module's parents to ensure correctness in backward pass/checkpointing
if self.name not in self.module_parents_dict:
self.module_parents_dict[self.name] = copy.deepcopy(self.parents)
# used to create parent-child module associations for json dumps
parent = self.parent_list[-1]
if parent not in self.parent_dict:
self.parent_dict[parent] = []
self.parent_dict[parent].append(self.name)
self.parent_list.append(self.name)
self.register_forward_hook_handles[self.name] = mod.register_forward_hook(
self._fw_set_module_hook
)
def _fw_post_hook(self, mod, input, output):
"""
This function is called when the forward pass of a module is called.
It updates the module tracker and removes the module from parent data
"""
super()._fw_post_hook(mod, input, output)
def _bw_hook(self, mod, output):
"""
This function is called when the backward pass of a module is called. It
updates the current module for backward passes
"""
self.activation_checkpointing = False
self.name = super()._get_mod_name(mod)
def __enter__(self):
self.activation_checkpointing = False
self.module_parameters_dict.clear()
self.sharding_dict.clear()
self.parent_dict.clear()
self.parent_list = ["Global"]
self.module_helper_dict.clear()
self.module_helper_dict["Global"] = {"depth": 0}
self.module_parents_dict.clear()
self.module_parents_dict["Global"] = set()
self._fw_pre_handle = register_module_forward_pre_hook(self._fw_pre_hook)
self._fw_post_handle = register_module_forward_hook(self._fw_post_hook)
self.register_forward_hook_handles.clear()
self._bw_handle = register_module_full_backward_pre_hook(self._bw_hook)
self.name = "Global"
def __exit__(self, *args):
super().__exit__(*args)
self._bw_handle.remove()
# removes all forward_hook handles added in the pre-hook
for handle in self.register_forward_hook_handles.values():
handle.remove()
def print_paramater_info(self):
print(self.module_parameters_dict)
def print_sharding_info(self):
for key, value in self.sharding_dict.items():
print(key + ": " + str(value))
class CommDebugMode(TorchDispatchMode):
"""
:class:`CommDebugMode` is a context manager that counts the number of
functional collectives within its context. It does this using a
``TorchDispatchMode``.
.. note: Not all collectives are supported yet.
Example usage
.. code-block:: python
mod = ...
comm_mode = CommDebugMode()
with comm_mode:
mod.sum().backward()
print(comm_mode.get_comm_counts())
"""
def __init__(self):
self.comm_counts: Dict[Any, int] = defaultdict(int)
self.comm_module_counts = {}
self.comm_module_operation_counts = {}
self.comm_registry = set()
for native_op, py_op in NATIVE_TO_PY_MAPPING.items():
self.comm_registry.add(native_op)
self.comm_registry.add(py_op)
self.comm_registry.add(torch.ops._dtensor.shard_dim_alltoall)
self.advanced_module_tracker = _CommModeModuleTracker()
def generate_json_dump(self, file_name="comm_mode_log.json", noise_level=3):
"""
Creates json file used to build browser visual
0. prints module-level collective counts
1. prints dTensor operations not included in trivial operations
2. prints operations not included in trivial operations
3. prints all operations
"""
(
include_DTensor_ops,
include_module_data,
include_ops,
include_trivial_ops,
) = self._set_noise_parameters(noise_level)
# recursively builds json data
def add_json_information(json_dict, fqn):
json_dict["fqn"] = fqn
json_dict["module_type"] = ""
json_dict["parameters"] = []
json_dict["children"] = []
json_dict["collectives_forward"] = []
json_dict["collectives_backward"] = []
json_dict["operations_forward"] = []
json_dict["operations_backward"] = []
# adds module layer type and parameters, and their sharding
if (
"module_type" in self.advanced_module_tracker.module_helper_dict[fqn]
and include_module_data
):
json_dict[
"module_type"
] = self.advanced_module_tracker.module_helper_dict[fqn]["module_type"]
if "parameters" in self.advanced_module_tracker.module_helper_dict[fqn]:
for (
param_name,
placement,
) in self.advanced_module_tracker.module_helper_dict[fqn][
"parameters"
].items():
json_dict["parameters"].append((param_name, placement))
# adds module collective information
if fqn in self.comm_module_counts:
for collective, count in self.comm_module_counts[fqn][
"forward"
].items():
json_dict["collectives_forward"].append((str(collective), count))
for collective, count in self.comm_module_counts[fqn][
"backward"
].items():
json_dict["collectives_backward"].append((str(collective), count))
# adds module operation information
forward_operations = []
backward_operations = []
checkpointing_operations = []
# only get operations if the minimum operation noise level is set to true
if include_DTensor_ops:
if fqn in self.comm_module_operation_counts:
(
forward_operations,
backward_operations,
checkpointing_operations,
) = self._get_operations_list(
self.comm_module_operation_counts[fqn]
)
# remove all operations who don't have DTensor inputs
if not include_ops:
forward_operations = [
op for op in forward_operations if len(op["input_sharding"])
]
backward_operations = [
op for op in backward_operations if len(op["input_sharding"])
]
checkpointing_operations = [
op for op in checkpointing_operations if len(op["input_sharding"])
]
# remove all operations in trivial operations set
if not include_trivial_ops:
forward_operations = [
op
for op in forward_operations
if str(op["name"]) not in trivial_ops
]
backward_operations = [
op
for op in backward_operations
if str(op["name"]) not in trivial_ops
]
checkpointing_operations = [
op
for op in checkpointing_operations
if str(op["name"]) not in trivial_ops
]
# converts operation information into string format for json.dumps()
forward_operations = copy.deepcopy(forward_operations)
for op in forward_operations:
op["name"] = str(op["name"])
for i in range(len(op["input_sharding"])):
op["input_sharding"][i] = str(op["input_sharding"][i])
op["input_shape"][i] = str(op["input_shape"][i])
backward_operations = copy.deepcopy(backward_operations)
for op in backward_operations:
op["name"] = str(op["name"])
for i in range(len(op["input_sharding"])):
op["input_sharding"][i] = str(op["input_sharding"][i])
op["input_shape"][i] = str(op["input_shape"][i])
checkpointing_operations = copy.deepcopy(checkpointing_operations)
for op in checkpointing_operations:
op["name"] = str(op["name"])
for i in range(len(op["input_sharding"])):
op["input_sharding"][i] = str(op["input_sharding"][i])
op["input_shape"][i] = str(op["input_shape"][i])
json_dict["operations_forward"] = forward_operations
json_dict["operations_backward"] = backward_operations
json_dict["operations_checkpointing"] = checkpointing_operations
if fqn not in self.advanced_module_tracker.parent_dict:
return json_dict
# recursively adds module's children
for ele in self.advanced_module_tracker.parent_dict[fqn]:
json_dict["children"].append(add_json_information({}, ele))
return json_dict
json_dict: Dict[str, Any] = {}
add_json_information(json_dict, "Global")
# converts dictonary into json file
with open(file_name, "w") as json_file:
json.dump(json_dict, json_file, indent=4)
def generate_comm_debug_tracing_table(self, noise_level=3):
"""
Generates detailed table displaying operations and collective tracing information
on a module level. Amount of information is dependent on noise_level
0. prints module-level collective counts
1. prints dTensor operations not included in trivial operations, module information
2. prints operations not included in trivial operations
3. prints all operations
"""
(
include_DTensor_ops,
include_module_data,
include_ops,
include_trivial_ops,
) = self._set_noise_parameters(noise_level)
table = ""
for fqn in self.advanced_module_tracker.module_helper_dict:
# setting up indentations for table formatting
indent = " " * (
2 * self.advanced_module_tracker.module_helper_dict[fqn]["depth"]
)
table += f"{indent}{fqn}\n"
if include_module_data:
if (
"module_type"
in self.advanced_module_tracker.module_helper_dict[fqn]
):
module_type = self.advanced_module_tracker.module_helper_dict[fqn][
"module_type"
]
table += f"{indent}*module type: {module_type}\n"
if "parameters" in self.advanced_module_tracker.module_helper_dict[fqn]:
table += f"{indent}*Parameter List\n"
for (
param_name,
placement,
) in self.advanced_module_tracker.module_helper_dict[fqn][
"parameters"
].items():
table += f"{indent} *{param_name}: {placement}\n"
indent += " "
collective_indent = " " * (
2 * self.advanced_module_tracker.module_helper_dict[fqn]["depth"] + 2
)
operation_indent = " " * (
2 * self.advanced_module_tracker.module_helper_dict[fqn]["depth"] + 3
)
# separate the module's collective and operations by forward and backward
forward_collectives = {}
backward_collectives = {}
if fqn in self.comm_module_counts:
forward_collectives = self.comm_module_counts[fqn]["forward"]
backward_collectives = self.comm_module_counts[fqn]["backward"]
forward_operations = []
backward_operations = []
checkpointing_operations = []
if include_DTensor_ops:
if fqn in self.comm_module_operation_counts:
(
forward_operations,
backward_operations,
checkpointing_operations,
) = self._get_operations_list(
self.comm_module_operation_counts[fqn]
)
def add_tracing_information(table, collectives_dict, operation_list):
"""
adds tracing information for module's forward or backward
"""
for collective, count in collectives_dict.items():
table += (
f"\033[1;33m{collective_indent}*{collective}: {count}\033[0m\n"
)
def add_operations(
table, operation, collective_indent, operation_indent
):
"""
adds operation information to the table
"""
table += f"\033[1;33m{collective_indent}**{operation_name}\033[0m\n"
if len(operation["input_shape"]):
operation_shape = operation["input_shape"]
operation_sharding = operation["input_sharding"]
operation_device_mesh = operation["device_mesh"]
table += f"\033[1;31m{operation_indent}shape: {operation_shape}\033[0m\n"
table += f"\033[1;31m{operation_indent}sharding: {operation_sharding}\033[0m\n"
table += f"\033[1;31m{operation_indent}device mesh: {operation_device_mesh}\033[0m\n"
return table
for operation in operation_list:
operation_name = str(operation["name"])
# include all operations
if include_trivial_ops:
table = add_operations(
table, operation, collective_indent, operation_indent
)
# include all operations not in trivial operations
elif include_ops and operation_name not in trivial_ops:
table = add_operations(
table, operation, collective_indent, operation_indent
)
# only include dTensor operations not in trivial set
elif (
include_DTensor_ops
and (operation_name not in trivial_ops)
and len(operation["input_shape"])
):
table = add_operations(
table, operation, collective_indent, operation_indent
)
return table
if len(forward_collectives) or len(forward_operations):
table += f"{indent}FORWARD PASS\n"
table = add_tracing_information(
table, forward_collectives, forward_operations
)
if len(backward_collectives) or len(backward_operations):
table += f"{indent}BACKWARD PASS\n"
table = add_tracing_information(
table, backward_collectives, backward_operations
)
if len(checkpointing_operations):
table += f"{indent}ACTIVATION CHECKPOINTING\n"
table = add_tracing_information(table, {}, checkpointing_operations)
return table
def _get_operations_list(self, module_operation_counts):
forward_operations = [
op for op in module_operation_counts["operations_list"] if not op["is_bw"]
]
backward_operations = [
op
for op in module_operation_counts["operations_list"]
if op["is_bw"] and not op["is_activation_checkpointing"]
]
checkpointing_operations = [
op
for op in module_operation_counts["operations_list"]
if op["is_activation_checkpointing"]
]
return forward_operations, backward_operations, checkpointing_operations
def get_total_counts(self) -> int:
return sum(self.comm_counts.values())
def get_comm_counts(self) -> Dict[Any, int]:
"""Returns the communication counts as a dictionary.
Returns:
Dict[Any, int]: The communication counts as a dictionary.
"""
return self.comm_counts
def get_parameter_info(self) -> Dict[str, Dict[str, Any]]:
return self.advanced_module_tracker.module_parameters_dict
def get_sharding_info(self) -> Dict[str, Dict[str, Any]]:
return self.advanced_module_tracker.sharding_dict
def __enter__(self):
self.comm_counts.clear()
self.comm_module_counts.clear()
self.comm_module_counts["Global"] = {}
self.comm_module_counts["Global"]["forward"] = defaultdict(int)
self.comm_module_counts["Global"]["backward"] = defaultdict(int)
self.comm_module_operation_counts.clear()
super().__enter__()
self.advanced_module_tracker.__enter__()
return self
def __exit__(self, *args):
self.advanced_module_tracker.__exit__()
super().__exit__(*args)
def log_comm_debug_tracing_table_to_file(
self, file_name="comm_mode_log.txt", noise_level=3
):
"""
Alternative to console CommDebugMode output, writes to file specified by the user
"""
ansi_escape = re.compile(r"\x1B\[[0-?]*[ -/]*[@-~]")
table = ansi_escape.sub("", self.generate_comm_debug_tracing_table(noise_level))
with open(file_name, "w") as log_file:
log_file.write(table)
def _set_noise_parameters(self, noise_level):
"""
sets variables controlling what information displays based on noise level
"""
include_DTensor_ops = False
include_module_data = False
include_ops = False
include_trivial_ops = False
if noise_level > 0:
include_DTensor_ops = True
include_module_data = True
if noise_level > 1:
include_ops = True
if noise_level > 2:
include_trivial_ops = True
return (
include_DTensor_ops,
include_module_data,
include_ops,
include_trivial_ops,
)
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
# When running this mode with DTensor, ordinarily all modes will
# run **before** subclasses get a chance to run.
# Returning NotImplemented here gives us a chance to let DTensor
# run and desugar into comms ops, before CommDebugMode sees them.
# sets up operation-level collective count
if self.advanced_module_tracker.name not in self.comm_module_operation_counts:
# dictionary should hold module input and output shape, operations list and collective counter
self.comm_module_operation_counts[self.advanced_module_tracker.name] = {
"operations_list": []
}
operation_dict = {}
operation_dict["name"] = func
operation_dict["input_shape"] = []
operation_dict["input_sharding"] = []
operation_dict["device_mesh"] = ""
# tracks if the operation is part of the backward pass
operation_dict["is_bw"] = self.advanced_module_tracker.is_bw
# tracks if the operation is part of activation checkpointing
operation_dict[
"is_activation_checkpointing"
] = self.advanced_module_tracker.activation_checkpointing
if any(t == DTensor for t in types):
for ele in args:
if isinstance(ele, DTensor):
# saves shapes and placements of all DTensor args
operation_dict["input_shape"].append(ele.shape)
operation_dict["input_sharding"].append(ele.placements)
operation_dict["device_mesh"] = str(ele.device_mesh)
self.comm_module_operation_counts[self.advanced_module_tracker.name][
"operations_list"
].append(operation_dict)
return NotImplemented
kwargs = kwargs if kwargs else {}
out = func(*args, **kwargs)
func_packet = func._overloadpacket
# We have many tests that use CommDebugMode to verify the occurrence of
# collectives. These tests do so by querying comm_counts with legacy
# funcol ops as key. For the purpose of native funcol migration, we
# need these tests to work for both legacy and native funcol. To avoid
# the need to modify all tests to accommodate the two implementations,
# we make CommDebugMode translate native funcol ops into legacy funcol
# ops until the migration finishes.
if func_packet in self.comm_registry or func_packet in c10d_collective_ops:
if func_packet in NATIVE_TO_PY_MAPPING:
func_packet = NATIVE_TO_PY_MAPPING[func_packet]
self.comm_counts[func_packet] += 1
key = "forward"
if self.advanced_module_tracker.is_bw:
key = "backward"
# adds collective count to current module
if self.advanced_module_tracker.name not in self.comm_module_counts:
self.comm_module_counts[self.advanced_module_tracker.name] = {}
self.comm_module_counts[self.advanced_module_tracker.name][
"forward"
] = defaultdict(int)
self.comm_module_counts[self.advanced_module_tracker.name][
"backward"
] = defaultdict(int)
self.comm_module_counts[self.advanced_module_tracker.name][key][
func_packet
] += 1
# adds collective count to parent modules
for par in self.advanced_module_tracker.module_parents_dict[
self.advanced_module_tracker.name
]:
# makes sure we aren't double counting when current sub-module hasn't been removed from parents
if par != self.advanced_module_tracker.name:
if par not in self.comm_module_counts:
self.comm_module_counts[par] = {}
self.comm_module_counts[par]["forward"] = defaultdict(int)
self.comm_module_counts[par]["backward"] = defaultdict(int)
self.comm_module_counts[par][key][func_packet] += 1
# if tensor op uses fake tensors, return
if detect_fake_mode(args):
return out
# add tensor operation to module operation list
self.comm_module_operation_counts[self.advanced_module_tracker.name][
"operations_list"
].append(operation_dict)
return out
|