File: torchrec_sharding_example.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (407 lines) | stat: -rw-r--r-- 16,487 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# mypy: allow-untyped-defs
"""
The following example demonstrates how to represent torchrec's embedding
sharding with the DTensor API.
"""
import argparse
import os
from functools import cached_property
from typing import List, TYPE_CHECKING

import torch
from torch.distributed.checkpoint.metadata import (
    ChunkStorageMetadata,
    TensorProperties,
    TensorStorageMetadata,
)
from torch.distributed.tensor import (
    DeviceMesh,
    DTensor,
    init_device_mesh,
    Replicate,
    Shard,
)
from torch.distributed.tensor.debug import visualize_sharding


if TYPE_CHECKING:
    from torch.distributed.tensor.placement_types import Placement


def get_device_type():
    return (
        "cuda"
        if torch.cuda.is_available() and torch.cuda.device_count() >= 4
        else "cpu"
    )


aten = torch.ops.aten
supported_ops = [aten.view.default, aten._to_copy.default]


# this torch.Tensor subclass is a wrapper around all local shards associated
# with a single sharded embedding table.
class LocalShardsWrapper(torch.Tensor):
    local_shards: List[torch.Tensor]
    storage_meta: TensorStorageMetadata

    @staticmethod
    def __new__(
        cls, local_shards: List[torch.Tensor], offsets: List[torch.Size]
    ) -> "LocalShardsWrapper":
        assert len(local_shards) > 0
        assert len(local_shards) == len(offsets)
        assert local_shards[0].ndim == 2
        # we calculate the total tensor size by "concat" on second tensor dimension
        cat_tensor_shape = list(local_shards[0].shape)
        if len(local_shards) > 1:  # column-wise sharding
            for shard_size in [s.shape for s in local_shards[1:]]:
                cat_tensor_shape[1] += shard_size[1]

        # according to DCP, each chunk is expected to have the same properties of the
        # TensorStorageMetadata that includes it. Vice versa, the wrapper's properties
        # should also be the same with that of its first chunk.
        wrapper_properties = TensorProperties.create_from_tensor(local_shards[0])
        wrapper_shape = torch.Size(cat_tensor_shape)
        chunks_meta = [
            ChunkStorageMetadata(o, s.shape) for s, o in zip(local_shards, offsets)
        ]

        r = torch.Tensor._make_wrapper_subclass(  # type: ignore[attr-defined]
            cls,
            wrapper_shape,
        )
        r.shards = local_shards
        r.storage_meta = TensorStorageMetadata(
            properties=wrapper_properties,
            size=wrapper_shape,
            chunks=chunks_meta,
        )

        return r

    # necessary for ops dispatching from this subclass to its local shards
    @classmethod
    def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
        kwargs = kwargs or {}

        # TODO: we shall continually extend this function to support more ops if needed
        if func in supported_ops:
            res_shards_list = [
                func(shard, *args[1:], **kwargs) for shard in args[0].shards
            ]
            return LocalShardsWrapper(res_shards_list, args[0].shard_offsets)
        else:
            raise NotImplementedError(
                f"{func} is not supported for LocalShardsWrapper!"
            )

    @property
    def shards(self) -> List[torch.Tensor]:
        return self.local_shards

    @shards.setter
    def shards(self, local_shards: List[torch.Tensor]):
        self.local_shards = local_shards

    @cached_property
    def shard_sizes(self) -> List[torch.Size]:
        return [chunk.sizes for chunk in self.storage_meta.chunks]

    @cached_property
    def shard_offsets(self) -> List[torch.Size]:
        return [chunk.offsets for chunk in self.storage_meta.chunks]


def run_torchrec_row_wise_even_sharding_example(rank, world_size):
    # row-wise even sharding example:
    #   One table is evenly sharded by rows within the global ProcessGroup.
    #   In our example, the table's num_embedding is 8, and the embedding dim is 16
    #   The global ProcessGroup has 4 ranks, so each rank will have one 2 by 16 local
    #   shard.

    # device mesh is a representation of the worker ranks
    # create a 1-D device mesh that includes every rank
    device_type = get_device_type()
    device = torch.device(device_type)
    device_mesh = init_device_mesh(device_type=device_type, mesh_shape=(world_size,))

    # manually create the embedding table's local shards
    num_embeddings = 8
    embedding_dim = 16
    # tensor shape
    local_shard_shape = torch.Size(
        [num_embeddings // world_size, embedding_dim]  # (local_rows, local_cols)
    )
    # tensor offset
    local_shard_offset = torch.Size((rank * 2, embedding_dim))
    # tensor
    local_tensor = torch.randn(local_shard_shape, device=device)
    # row-wise sharding: one shard per rank
    # create the local shards wrapper
    local_shards_wrapper = LocalShardsWrapper(
        local_shards=[local_tensor],
        offsets=[local_shard_offset],
    )

    ###########################################################################
    # example 1: transform local_shards into DTensor
    # usage in TorchRec:
    #   ShardedEmbeddingCollection stores model parallel params in
    #   _model_parallel_name_to_sharded_tensor which is initialized in
    #   _initialize_torch_state() and torch.Tensor params are transformed
    #   into ShardedTensor by ShardedTensor._init_from_local_shards().
    #
    #   This allows state_dict() to always return ShardedTensor objects.

    # this is the sharding placement we use in DTensor to represent row-wise sharding
    # row_wise_sharding_placements means that the global tensor is sharded by first dim
    # over the 1-d mesh.
    row_wise_sharding_placements: List[Placement] = [Shard(0)]

    # create a DTensor from the local shard
    dtensor = DTensor.from_local(
        local_shards_wrapper, device_mesh, row_wise_sharding_placements, run_check=False
    )

    # display the DTensor's sharding
    visualize_sharding(dtensor, header="Row-wise even sharding example in DTensor")

    ###########################################################################
    # example 2: transform DTensor into local_shards
    # usage in TorchRec:
    #   In ShardedEmbeddingCollection's load_state_dict pre hook
    #   _pre_load_state_dict_hook, if the source param is a ShardedTensor
    #   then we need to transform it into its local_shards.

    # transform DTensor into LocalShardsWrapper
    dtensor_local_shards = dtensor.to_local()
    assert isinstance(dtensor_local_shards, LocalShardsWrapper)
    shard_tensor = dtensor_local_shards.shards[0]
    assert torch.equal(shard_tensor, local_tensor)
    assert dtensor_local_shards.shard_sizes[0] == local_shard_shape  # unwrap shape
    assert dtensor_local_shards.shard_offsets[0] == local_shard_offset  # unwrap offset


def run_torchrec_row_wise_uneven_sharding_example(rank, world_size):
    # row-wise uneven sharding example:
    #   One table is unevenly sharded by rows within the global ProcessGroup.
    #   In our example, the table's num_embedding is 8, and the embedding dim is 16
    #   The global ProcessGroup has 4 ranks, and each rank will have the local shard
    #   of shape:
    #       rank 0: [1, 16]
    #       rank 1: [3, 16]
    #       rank 2: [1, 16]
    #       rank 3: [3, 16]

    # device mesh is a representation of the worker ranks
    # create a 1-D device mesh that includes every rank
    device_type = get_device_type()
    device = torch.device(device_type)
    device_mesh = init_device_mesh(device_type=device_type, mesh_shape=(world_size,))

    # manually create the embedding table's local shards
    num_embeddings = 8
    embedding_dim = 16
    emb_table_shape = torch.Size([num_embeddings, embedding_dim])
    # tensor shape
    local_shard_shape = (
        torch.Size([1, embedding_dim])
        if rank % 2 == 0
        else torch.Size([3, embedding_dim])
    )
    # tensor offset
    local_shard_offset = torch.Size((rank // 2 * 4 + rank % 2 * 1, embedding_dim))
    # tensor
    local_tensor = torch.randn(local_shard_shape, device=device)
    # local shards
    # row-wise sharding: one shard per rank
    # create the local shards wrapper
    local_shards_wrapper = LocalShardsWrapper(
        local_shards=[local_tensor],
        offsets=[local_shard_offset],
    )

    ###########################################################################
    # example 1: transform local_shards into DTensor
    # create the DTensorMetadata which torchrec should provide
    row_wise_sharding_placements: List[Placement] = [Shard(0)]

    # note: for uneven sharding, we need to specify the shape and stride because
    # DTensor would assume even sharding and compute shape/stride based on the
    # assumption. Torchrec needs to pass in this information explicitely.
    # shape/stride are global tensor's shape and stride
    dtensor = DTensor.from_local(
        local_shards_wrapper,  # a torch.Tensor subclass
        device_mesh,  # DeviceMesh
        row_wise_sharding_placements,  # List[Placement]
        run_check=False,
        shape=emb_table_shape,  # this is required for uneven sharding
        stride=(embedding_dim, 1),
    )
    # so far visualize_sharding() cannot print correctly for unevenly sharded DTensor
    # because it relies on offset computation which assumes even sharding.
    visualize_sharding(dtensor, header="Row-wise uneven sharding example in DTensor")
    # check the dtensor has the correct shape and stride on all ranks
    assert dtensor.shape == emb_table_shape
    assert dtensor.stride() == (embedding_dim, 1)

    ###########################################################################
    # example 2: transform DTensor into local_shards
    # note: DTensor.to_local() always returns a LocalShardsWrapper
    dtensor_local_shards = dtensor.to_local()
    assert isinstance(dtensor_local_shards, LocalShardsWrapper)
    shard_tensor = dtensor_local_shards.shards[0]
    assert torch.equal(shard_tensor, local_tensor)
    assert dtensor_local_shards.shard_sizes[0] == local_shard_shape  # unwrap shape
    assert dtensor_local_shards.shard_offsets[0] == local_shard_offset  # unwrap offset


def run_torchrec_table_wise_sharding_example(rank, world_size):
    # table-wise example:
    #   each rank in the global ProcessGroup holds one different table.
    #   In our example, the table's num_embedding is 8, and the embedding dim is 16
    #   The global ProcessGroup has 4 ranks, so each rank will have one 8 by 16 complete
    #   table as its local shard.

    device_type = get_device_type()
    device = torch.device(device_type)
    # note: without initializing this mesh, the following local_tensor will be put on
    # device cuda:0.
    init_device_mesh(device_type=device_type, mesh_shape=(world_size,))

    # manually create the embedding table's local shards
    num_embeddings = 8
    embedding_dim = 16
    emb_table_shape = torch.Size([num_embeddings, embedding_dim])

    # for table i, if the current rank holds the table, then the local shard is
    # a LocalShardsWrapper containing the tensor; otherwise the local shard is
    # an empty torch.Tensor
    table_to_shards = {}  # map {table_id: local shard of table_id}
    table_to_local_tensor = {}  # map {table_id: local tensor of table_id}
    # create 4 embedding tables and place them on different ranks
    # each rank will hold one complete table, and the dict will store
    # the corresponding local shard.
    for i in range(world_size):
        # tensor
        local_tensor = (
            torch.randn(*emb_table_shape, device=device)
            if rank == i
            else torch.empty(0, device=device)
        )
        table_to_local_tensor[i] = local_tensor
        # tensor offset
        local_shard_offset = torch.Size((0, 0))
        # wrap local shards into a wrapper
        local_shards_wrapper = (
            LocalShardsWrapper(
                local_shards=[local_tensor],
                offsets=[local_shard_offset],
            )
            if rank == i
            else local_tensor
        )
        table_to_shards[i] = local_shards_wrapper

    ###########################################################################
    # example 1: transform local_shards into DTensor
    table_to_dtensor = {}  # same purpose as _model_parallel_name_to_sharded_tensor
    table_wise_sharding_placements = [Replicate()]  # table-wise sharding

    for table_id, local_shards in table_to_shards.items():
        # create a submesh that only contains the rank we place the table
        # note that we cannot use ``init_device_mesh'' to create a submesh
        # so we choose to use the `DeviceMesh` api to directly create a DeviceMesh
        device_submesh = DeviceMesh(
            device_type=device_type,
            mesh=torch.tensor(
                [table_id], dtype=torch.int64
            ),  # table ``table_id`` is placed on rank ``table_id``
        )
        # create a DTensor from the local shard for the current table
        # note: for uneven sharding, we need to specify the shape and stride because
        # DTensor would assume even sharding and compute shape/stride based on the
        # assumption. Torchrec needs to pass in this information explicitely.
        dtensor = DTensor.from_local(
            local_shards,
            device_submesh,
            table_wise_sharding_placements,
            run_check=False,
            shape=emb_table_shape,  # this is required for uneven sharding
            stride=(embedding_dim, 1),
        )
        table_to_dtensor[table_id] = dtensor

    # print each table's sharding
    for table_id, dtensor in table_to_dtensor.items():
        visualize_sharding(
            dtensor,
            header=f"Table-wise sharding example in DTensor for Table {table_id}",
        )
        # check the dtensor has the correct shape and stride on all ranks
        assert dtensor.shape == emb_table_shape
        assert dtensor.stride() == (embedding_dim, 1)

    ###########################################################################
    # example 2: transform DTensor into torch.Tensor
    for table_id, local_tensor in table_to_local_tensor.items():
        # important: note that DTensor.to_local() always returns an empty torch.Tensor
        # no matter what was passed to DTensor._local_tensor.
        dtensor_local_shards = table_to_dtensor[table_id].to_local()
        if rank == table_id:
            assert isinstance(dtensor_local_shards, LocalShardsWrapper)
            shard_tensor = dtensor_local_shards.shards[0]
            assert torch.equal(shard_tensor, local_tensor)  # unwrap tensor
            assert (
                dtensor_local_shards.shard_sizes[0] == emb_table_shape
            )  # unwrap shape
            assert dtensor_local_shards.shard_offsets[0] == torch.Size(
                (0, 0)
            )  # unwrap offset
        else:
            assert dtensor_local_shards.numel() == 0


def run_example(rank, world_size, example_name):
    # the dict that stores example code
    name_to_example_code = {
        "row-wise-even": run_torchrec_row_wise_even_sharding_example,
        "row-wise-uneven": run_torchrec_row_wise_uneven_sharding_example,
        "table-wise": run_torchrec_table_wise_sharding_example,
    }
    if example_name not in name_to_example_code:
        print(f"example for {example_name} does not exist!")
        return

    # the example to run
    example_func = name_to_example_code[example_name]

    # set manual seed
    torch.manual_seed(0)

    # run the example
    example_func(rank, world_size)


if __name__ == "__main__":
    # this script is launched via torchrun which automatically manages ProcessGroup
    rank = int(os.environ["RANK"])
    world_size = int(os.environ["WORLD_SIZE"])
    assert world_size == 4  # our example uses 4 worker ranks
    # parse the arguments
    parser = argparse.ArgumentParser(
        description="torchrec sharding examples",
        formatter_class=argparse.RawTextHelpFormatter,
    )
    example_prompt = (
        "choose one sharding example from below:\n"
        "\t1. row-wise-even;\n"
        "\t2. row-wise-uneven\n"
        "\t3. table-wise\n"
        "e.g. you want to try the row-wise even sharding example, please input 'row-wise-even'\n"
    )
    parser.add_argument("-e", "--example", help=example_prompt, required=True)
    args = parser.parse_args()
    run_example(rank, world_size, args.example)