1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
|
# mypy: allow-untyped-defs
import copy
import operator
from typing import Any, cast, Dict, List, Optional, Sequence, Tuple
import torch
from torch._subclasses.fake_tensor import FakeTensor
from torch.distributed.tensor import DeviceMesh, distribute_tensor, DTensor
from torch.distributed.tensor._dtensor_spec import DTensorSpec, TensorMeta
from torch.distributed.tensor._op_schema import (
OpSchema,
OutputSharding,
OutputSpecType,
PlacementStrategy,
)
from torch.distributed.tensor._redistribute import redistribute_local_tensor
from torch.distributed.tensor.parallel.style import ColwiseParallel, ParallelStyle
from torch.distributed.tensor.placement_types import Placement, Replicate, Shard
from torch.export import ExportedProgram
from torch.export.exported_program import ExportGraphSignature
from torch.fx import GraphModule
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.node import Node
from torch.fx.passes.infra.pass_base import PassBase, PassResult
from torch.fx.passes.shape_prop import _extract_tensor_metadata
from torch.utils import _pytree as pytree
__all__ = ["tensor_parallel_transformation"]
aten = torch.ops.aten
def tensor_parallel_transformation(
exported_program: ExportedProgram,
rank: int,
world_size: int,
device_type: str,
parallel_strategies: Dict[str, ParallelStyle],
) -> ExportedProgram:
"""
The entry point function to perform graph transformations on an exported program
to transform a single-device graph into a tensor parallel graph.
.. warning::
This API is experimental and subject to change.
"""
gm = exported_program.graph_module
sig = copy.deepcopy(exported_program.graph_signature)
state_dict = copy.copy(exported_program.state_dict)
with gm._set_replace_hook(sig.get_replace_hook()):
res = _TensorParallelTransformPass(
rank,
world_size,
device_type,
state_dict,
exported_program.graph_signature,
parallel_strategies,
)(gm)
assert res is not None
gm = res.graph_module
return exported_program._update(gm, sig, state_dict=state_dict)
class _TensorParallelTransformPass(PassBase):
"""
This pass is responsible for transforming a single-device graph into a tensor parallel
graph. It will mark the placement strategy of each node in the graph,
partition the graph into distributed graph, then shard the parameters/buffers accordingly.
"""
def __init__(
self,
rank: int,
world_size: int,
device_type: str,
state_dict: Dict[str, torch.Tensor],
graph_signature: ExportGraphSignature,
parallel_strategies: Dict[str, ParallelStyle],
) -> None:
super().__init__()
self.rank = rank
self.mesh = DeviceMesh(device_type, torch.arange(world_size))
self.state_dict: Dict[str, torch.Tensor] = state_dict
self.graph_signature = graph_signature
self.parallel_strategies = parallel_strategies
def call(self, graph_module) -> PassResult:
gm = copy.deepcopy(graph_module)
parameter_placements = _generate_parameter_and_buffer_placements(
list(self.state_dict.keys()), self.parallel_strategies
)
placement_strategies = _mark_sharding(
gm, self.graph_signature, self.mesh, parameter_placements
)
_partitioner(gm)
_shard_state_dict(
self.state_dict, placement_strategies, self.graph_signature, self.mesh
)
return PassResult(gm, True)
def _generate_parameter_and_buffer_placements(
params_and_buffers: List[str],
parallel_strategies: Dict[str, ParallelStyle],
) -> Dict[str, Placement]:
"""
Build parameter placements based on the give parallel style of linear layers.
"""
parameter_placements: Dict[str, Placement] = {}
for linear_fqn, parallel_style in parallel_strategies.items():
weight_fqn = f"{linear_fqn}.weight"
bias_fqn = f"{linear_fqn}.bias"
assert weight_fqn in params_and_buffers
parameter_placements[weight_fqn] = (
Shard(0) if parallel_style == ColwiseParallel else Shard(1)
)
if bias_fqn in params_and_buffers:
parameter_placements[bias_fqn] = (
Shard(0) if parallel_style == ColwiseParallel else Replicate()
)
return parameter_placements
def _mark_tensor_parallel_shardings(
gm: GraphModule,
graph_signature: ExportGraphSignature,
mesh: DeviceMesh,
parameter_placements: Dict[str, Placement],
) -> Dict[Node, PlacementStrategy]:
"""
Mark the placement strategies of the parameter and buffer placeholder nodes.
"""
placement_strategies: Dict[Node, PlacementStrategy] = {}
num_params_and_buffers = len(graph_signature.inputs_to_parameters) + len(
graph_signature.inputs_to_buffers
)
placeholder_idx: int = 0
for node in gm.graph.nodes:
if node.op == "placeholder":
if placeholder_idx < num_params_and_buffers:
fqn: str = _get_input_node_fqn(node.name, graph_signature)
placement: Placement = (
parameter_placements[fqn]
if fqn in parameter_placements
else Replicate()
)
placement_strategies[node] = _create_placement_strategy(
node,
mesh,
placements=(placement,),
)
placeholder_idx += 1
else:
placement_strategies[node] = _create_placement_strategy(
node,
mesh,
placements=(Replicate(),),
)
return placement_strategies
def _get_input_node_fqn(input_name: str, graph_signature: ExportGraphSignature) -> str:
"""
Return the FQN of an input node.
"""
if input_name in graph_signature.inputs_to_parameters:
return graph_signature.inputs_to_parameters[input_name]
elif input_name in graph_signature.inputs_to_buffers:
return graph_signature.inputs_to_buffers[input_name]
else:
raise ValueError(
f"{input_name} not found in inputs_to_parameters or inputs_to_buffers"
)
def _mark_sharding(
gm: GraphModule,
graph_signature: ExportGraphSignature,
mesh: DeviceMesh,
parameter_placements: Dict[str, Placement],
) -> Dict[Node, PlacementStrategy]:
"""
Mark the sharding strategy for each node in the graph module.
"""
placement_strategies: Dict[
Node, PlacementStrategy
] = _mark_tensor_parallel_shardings(gm, graph_signature, mesh, parameter_placements)
for node in gm.graph.nodes:
if node.op == "placeholder":
if node not in placement_strategies:
placement_strategies[node] = _create_placement_strategy(
node, mesh, placements=(Replicate(),)
)
node.meta["sharding"] = placement_strategies[node]
elif node.op == "call_function":
if node.target == operator.getitem:
input_nodes = node.all_input_nodes
assert (
len(input_nodes) == 1
), f"non-compute op only support one input now, found node: {node} with length of inputs: {len(node.args)}"
arg_strategy = placement_strategies[input_nodes[0]]
placement_strategies[node] = _create_placement_strategy(
node,
mesh,
placements=arg_strategy.output_spec.placements,
input_specs=_get_input_node_specs(node, placement_strategies),
)
node.meta["sharding"] = placement_strategies[node]
else:
op_schema = _get_op_schema(node, placement_strategies)
# get DTensor specs for inputs and outputs
if (
op_schema.op
not in DTensor._op_dispatcher.sharding_propagator.op_strategy_funcs
and op_schema.op
not in DTensor._op_dispatcher.sharding_propagator.op_to_rules
):
# Mark all as replicated
output_sharding = _generate_default_output_sharding(
node,
mesh,
op_schema,
)
else:
output_sharding = DTensor._op_dispatcher.sharding_propagator.propagate_op_sharding(
op_schema,
)
placement_strategies[node] = PlacementStrategy(
output_specs=_get_output_spec_from_output_sharding(output_sharding),
input_specs=output_sharding.redistribute_schema.args_spec
if output_sharding.redistribute_schema is not None
else _get_input_node_specs(node, placement_strategies),
)
node.meta["sharding"] = placement_strategies[node]
elif node.op == "output":
node.meta["sharding"] = None
else:
raise RuntimeError(f"op code {node.op} not supported")
return placement_strategies
def _get_output_spec_from_output_sharding(
output_sharding: OutputSharding,
) -> DTensorSpec:
"""
Util function to extract output spec from output sharding.
"""
if isinstance(output_sharding.output_spec, DTensorSpec):
return output_sharding.output_spec
else:
# For ops that return multiple outputs, the outputs should have the same output spec
assert isinstance(output_sharding.output_spec, Sequence)
assert output_sharding.output_spec[0] is not None
output_sharding.output_spec[0].tensor_meta = None
return output_sharding.output_spec[0]
def _create_placement_strategy(
node: Node,
mesh: DeviceMesh,
placements: Tuple[Placement, ...],
input_specs: Optional[Sequence[DTensorSpec]] = None,
) -> PlacementStrategy:
"""
Util function to construct a placement strategy for a given node.
"""
placement = PlacementStrategy(
input_specs=input_specs,
output_specs=DTensorSpec(
mesh=mesh,
placements=placements,
),
)
_populate_tensor_meta(node, placement.output_specs)
return placement
def _populate_tensor_meta(node: Node, output_spec: OutputSpecType) -> None:
"""
Util function to populate tensor meta of output_spec based on node metadata.
"""
if isinstance(node.meta["val"], Sequence):
assert isinstance(output_spec, Sequence)
for spec, fake_tensor in zip(output_spec, node.meta["val"]):
assert spec is not None
spec.tensor_meta = TensorMeta(
shape=fake_tensor.shape,
stride=fake_tensor.stride(),
dtype=fake_tensor.dtype,
)
else:
assert isinstance(output_spec, DTensorSpec)
output_spec.tensor_meta = TensorMeta(
shape=node.meta["val"].shape,
stride=node.meta["val"].stride(),
dtype=node.meta["val"].dtype,
)
def _generate_default_output_sharding(
node: Node,
mesh: DeviceMesh,
op_schema: OpSchema,
) -> OutputSharding:
"""
Util function to create a default output sharding that suggests Replicate placement for both args and outputs.
"""
def update_arg_spec(arg_spec: DTensorSpec) -> DTensorSpec:
return DTensorSpec(
mesh=arg_spec.mesh,
placements=(Replicate(),),
tensor_meta=arg_spec.tensor_meta,
)
new_op_schema = OpSchema(
op=op_schema.op,
args_schema=pytree.tree_map_only(
DTensorSpec, update_arg_spec, op_schema.args_schema
),
kwargs_schema=op_schema.kwargs_schema,
)
def create_output_spec(tensor: FakeTensor) -> DTensorSpec:
return DTensorSpec(
mesh=mesh,
placements=(Replicate(),),
tensor_meta=TensorMeta(
shape=tensor.shape,
stride=tensor.stride(),
dtype=tensor.dtype,
),
)
return OutputSharding(
output_spec=pytree.tree_map_only(
FakeTensor, create_output_spec, node.meta["val"]
),
redistribute_schema=new_op_schema,
needs_redistribute=True,
)
def _partitioner(gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
"""
Graph partitioner that partitions the single device graph
to distributed graph
"""
for node in gm.graph.nodes:
node_sharding = node.meta["sharding"]
if node.op == "placeholder":
out_spec = node_sharding.output_spec
local_val = _partition_val(node.meta["val"], out_spec)
# update node value
node.meta["val"] = local_val
elif node.op == "call_function":
out_spec = node_sharding.output_spec
# check if there's misaligned sharding, insert reshard if there is
expected_input_specs = node_sharding.input_specs
for idx, input_arg in enumerate(node.all_input_nodes):
input_arg_sharding = input_arg.meta["sharding"]
input_arg_spec = input_arg_sharding.output_spec
desired_spec = (
out_spec
if expected_input_specs is None
else expected_input_specs[idx]
)
if input_arg_spec != desired_spec:
_insert_reshard_gm(
gm, node, input_arg, input_arg_spec, desired_spec
)
# convert output val to its local component
output_val = node.meta["val"]
node.meta["val"] = _partition_val(output_val, out_spec)
elif node.op == "output":
for input_arg in node.all_input_nodes:
# input args of output should be Replicate, otherwise redistribution is needed.
input_args_to_check: Sequence[Node] = (
input_arg if isinstance(input_arg, Sequence) else [input_arg]
)
for arg in input_args_to_check:
arg_sharding = arg.meta["sharding"]
arg_spec = arg_sharding.output_spec
desired_spec = copy.copy(arg_spec)
desired_spec.placements = (Replicate(),)
if arg_spec != desired_spec:
_insert_reshard_gm(gm, node, arg, arg_spec, desired_spec)
else:
raise RuntimeError(f"op code {node} not supported")
_clean_up_graph_metadata(gm)
gm.graph.lint()
gm.recompile()
return gm
def _partition_val(val: Any, spec: DTensorSpec) -> Any:
"""
util function to convert a full tensor val to its local component
"""
if isinstance(val, torch.Tensor):
local_shard = val
if val.ndim == 0:
# If it's already a scalar tensor, it is already local, we don't
# need to do anything
return local_shard
for idx, placement in enumerate(spec.placements):
if placement.is_shard():
placement = cast(Shard, placement)
num_chunks = spec.mesh.size(mesh_dim=idx)
my_coord = spec.mesh.get_coordinate()
assert my_coord is not None, "current rank not in mesh!"
my_coord_on_mesh_dim = my_coord[idx]
local_shard = placement._split_tensor(
local_shard, num_chunks, with_padding=False, contiguous=True
)[0][my_coord_on_mesh_dim]
return local_shard
elif isinstance(val, (list, tuple)):
return val.__class__(_partition_val(v, spec) for v in val)
else:
raise RuntimeError(f"val type {type(val)} not supported")
def _insert_reshard_gm(
gm: torch.fx.GraphModule,
node: Node,
input_arg: Node,
input_arg_spec: DTensorSpec,
desired_spec: DTensorSpec,
) -> None:
"""
Transform the graph for tensor redistribution.
"""
input_arg_spec.tensor_meta = input_arg.meta["tensor_meta"]
desired_spec.tensor_meta = input_arg.meta["tensor_meta"]
input_arg_tensor = input_arg.meta["val"]
# insert reshard operation
def reshard_fn(local_tensor: torch.Tensor) -> torch.Tensor:
return redistribute_local_tensor(
local_tensor,
input_arg_spec,
desired_spec,
)
reshard_gm = make_fx(reshard_fn)(input_arg_tensor)
reshard_gm_nodes = list(reshard_gm.graph.nodes)
input_node = reshard_gm_nodes[0]
with gm.graph.inserting_before(node):
# copy nn_module_stack metadata for output, all-reduce nodes
for reshard_node in reshard_gm.graph.nodes:
if reshard_node.op not in ["placeholder", "output"]:
reshard_node.meta["nn_module_stack"] = (
copy.copy(input_arg.meta["nn_module_stack"])
if not input_arg.op == "placeholder"
else copy.copy(node.meta["nn_module_stack"])
)
output_node = gm.graph.graph_copy(
reshard_gm.graph,
val_map={
input_node: input_arg,
},
)
node.replace_input_with(input_arg, output_node) # type: ignore[arg-type]
def _clean_up_graph_metadata(gm: torch.fx.GraphModule) -> None:
"""
Clean up the graph by removing sharding and partitioning related metadata
"""
for node in gm.graph.nodes:
if "sharding" in node.meta:
del node.meta["sharding"]
if "val" in node.meta and isinstance(node.meta["val"], torch.Tensor):
local_tensor_meta = _extract_tensor_metadata(node.meta["val"])
node.meta["tensor_meta"] = local_tensor_meta
def _get_input_node_specs(
node: Node, placement_strategies: Dict[Node, PlacementStrategy]
) -> Tuple[DTensorSpec, ...]:
"""
Get the input specs of a node.
"""
input_specs_list: List[DTensorSpec] = []
for input_arg in node.all_input_nodes:
if input_arg in placement_strategies:
output_spec = placement_strategies[input_arg].output_specs
assert isinstance(output_spec, DTensorSpec)
input_specs_list.append(output_spec)
else:
raise ValueError(f"{input_arg} does not have output_spec populated.")
return tuple(input_specs_list)
def _get_op_schema(
node: Node, placement_strategies: Dict[Node, PlacementStrategy]
) -> OpSchema:
"""
Util function to construct the operator schema of a node.
"""
args_schema_list = pytree.tree_map_only(
Node, lambda arg: placement_strategies[arg].output_specs, node.args
)
op_schema = OpSchema(
op=cast(torch._ops.OpOverload, node.target),
args_schema=tuple(args_schema_list),
kwargs_schema=cast(Dict[str, object], node.kwargs),
)
return op_schema
def _shard_state_dict(
state_dict: Dict[str, torch.Tensor],
placement_strategies: Dict[Node, PlacementStrategy],
graph_signature: ExportGraphSignature,
mesh: DeviceMesh,
) -> None:
"""
Inplace partition the weights based on the placement strategy
"""
for node, placement_strategy in placement_strategies.items():
if node.op != "placeholder":
continue
if node.name in graph_signature.inputs_to_parameters:
fqn = graph_signature.inputs_to_parameters[node.name]
elif node.name in graph_signature.inputs_to_buffers:
fqn = graph_signature.inputs_to_buffers[node.name]
else:
continue
assert fqn in state_dict, f"{fqn} not found in state dict: {state_dict.keys()}"
original_param = state_dict[fqn]
dtensor_param = distribute_tensor(
original_param,
mesh,
placement_strategy.output_spec.placements,
)
local_param = dtensor_param.to_local()
state_dict[fqn] = (
torch.nn.Parameter(local_param)
if isinstance(original_param, torch.nn.Parameter)
else local_param
)
|