1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
# mypy: allow-untyped-defs
import copy
from typing import Any, cast, List, Optional, Tuple
import torch
import torch.distributed as dist
import torch.distributed._shard.sharding_spec as shard_spec
import torch.distributed.distributed_c10d as c10d
from torch.distributed._shard.sharded_tensor import (
Shard,
ShardedTensor,
ShardedTensorMetadata,
TensorProperties,
)
from torch.distributed._shard.sharding_spec import ShardMetadata
from torch.distributed._shard.sharding_spec.chunk_sharding_spec import ChunkShardingSpec
from torch.distributed.device_mesh import _mesh_resources
from torch.distributed.fsdp._common_utils import _set_fsdp_flattened
from torch.distributed.fsdp._fsdp_extensions import FSDPExtensions
from torch.distributed.fsdp._shard_utils import _create_chunk_sharded_tensor
from torch.distributed.remote_device import _remote_device
from torch.distributed.tensor import DeviceMesh, DTensor, Replicate, Shard as DShard
from torch.distributed.tensor.parallel._data_parallel_utils import (
_flatten_tensor,
_unflatten_tensor,
)
__all__ = ["DTensorExtensions"]
def _get_box(tensor: DTensor) -> Tuple[torch.Size, torch.Size]:
device_mesh = tensor.device_mesh
assert device_mesh.ndim == 1, "Only 1D DeviceMeshes currently handled"
placement = tensor.placements[0]
offsets = [0] * len(tensor.size())
num_chunks = device_mesh.size(mesh_dim=0)
if tensor.placements[0].is_shard():
shard_dim = cast(DShard, placement).dim
chunk_size = tensor.size(shard_dim) // num_chunks
offsets[shard_dim] = chunk_size
return (torch.Size(offsets), tensor._local_tensor.size())
def _get_box_for(tensor: DTensor, idx: int) -> Tuple[torch.Size, torch.Size]:
offsets, size = _get_box(tensor)
return (torch.Size([val * idx for val in offsets]), size)
def _get_local_box(tensor: DTensor) -> Tuple[torch.Size, torch.Size]:
device_mesh = tensor.device_mesh
coord = device_mesh.get_coordinate()
assert coord is not None
return _get_box_for(tensor, coord[0])
def _create_shard_md_from_dt(dt: DTensor, current_rank: int) -> ShardMetadata:
mesh = dt.device_mesh
assert mesh.ndim == 1, "Only 1D DeviceMeshes currently handled"
offsets, sizes = _get_local_box(dt)
return ShardMetadata(
shard_offsets=list(offsets),
shard_sizes=list(sizes),
placement=f"rank:{current_rank}/{dt._local_tensor.device}",
)
def _create_sharded_tensor_md_from_dt(
dt: DTensor, dt_pg: c10d.ProcessGroup
) -> ShardedTensorMetadata:
# This is where it gets tricky, we have to produce a ShardedTensor that has full coverage
# and yet has only one valid shard for the current rank.
shards_md = []
my_rank = dist.get_rank(dt_pg)
scapegoat_rank = 0 if my_rank > 0 else 1
if dt.placements[0].is_shard():
shard_count = dt_pg.size()
else:
shard_count = 1
for i in range(shard_count):
offsets, sizes = _get_box_for(dt, i)
shards_md.append(
ShardMetadata(
shard_offsets=list(offsets),
shard_sizes=list(sizes),
placement=(
f"rank:{scapegoat_rank if i > 0 else my_rank}/{dt._local_tensor.device}"
),
)
)
return ShardedTensorMetadata(
shards_metadata=shards_md,
size=dt.size(),
tensor_properties=TensorProperties(
dtype=dt.dtype,
layout=dt.layout,
requires_grad=dt.requires_grad,
# ignore memory_format and pin_memory as those are not supported by DT
),
)
def _get_dt_pg(dt: DTensor) -> c10d.ProcessGroup:
mesh = dt.device_mesh
assert mesh.ndim == 1, "Only 1D DeviceMeshes currently handled"
return mesh.get_group()
def _rewrite_spec_if_needed(
spec: shard_spec.ShardingSpec, tensor: torch.Tensor, rank: int
) -> shard_spec.ShardingSpec:
"""
Rewrite ``spec`` to match the device of ``tensor``.
FSDP.sharded_optim_state_dict sneakly ships optimizer state to CPU so if the original ShardingSpec
produces CUDA metadata, ST construction bombs.
"""
if not isinstance(spec, ChunkShardingSpec):
return spec
# let's see if we need
rewrite = False
for p in spec.placements:
p = cast(_remote_device, p)
if p.rank() == rank and p.device() != tensor.device:
rewrite = True
break
if rewrite:
spec = copy.deepcopy(spec)
for i, placement in enumerate(spec.placements):
placement = cast(_remote_device, placement)
if placement.rank() == rank and placement.device() != tensor.device:
spec.placements[i] = _remote_device(f"rank:{rank}/{tensor.device}")
return spec
def _chunk_tensor(
tensor: torch.Tensor,
rank: int,
world_size: int,
num_devices_per_node: int,
pg: dist.ProcessGroup,
) -> torch.Tensor:
if type(tensor) is ShardedTensor:
assert len(tensor.local_shards()) == 1
inner_param = tensor.local_tensor()
inner_st = _create_chunk_sharded_tensor(
inner_param,
rank,
world_size,
num_devices_per_node,
pg,
)
outer_local_shard = tensor.local_shards()[0]
shards: List[Shard] = [
Shard(inner_st, copy.deepcopy(outer_local_shard.metadata))
]
st_meta = copy.deepcopy(tensor.metadata())
st_meta.tensor_properties.requires_grad = False
st_outer = ShardedTensor._init_from_local_shards_and_global_metadata(
shards,
sharded_tensor_metadata=st_meta,
process_group=tensor._process_group,
init_rrefs=False,
)
return st_outer
elif type(tensor) is DTensor:
device_mesh = tensor.device_mesh
assert device_mesh.ndim == 1, "Only 1D DeviceMeshes currently handled"
inner_param = tensor._local_tensor
inner_st = _create_chunk_sharded_tensor(
inner_param,
rank,
world_size,
torch.cuda.device_count(),
pg,
)
dt_pg = _get_dt_pg(tensor)
# We do this differently here, we create a ST with no local shards then patch it
shards = [
Shard(inner_st, _create_shard_md_from_dt(tensor, dist.get_rank(dt_pg)))
]
st_meta = _create_sharded_tensor_md_from_dt(tensor, dt_pg)
st_meta.tensor_properties.requires_grad = False
st_outer = ShardedTensor._init_from_local_shards_and_global_metadata(
shards,
sharded_tensor_metadata=st_meta,
process_group=dt_pg,
init_rrefs=False,
)
return st_outer
else:
return _create_chunk_sharded_tensor(
tensor,
rank,
world_size,
num_devices_per_node,
pg,
)
def _chunk_dtensor(
tensor: torch.Tensor,
rank: int,
device_mesh: DeviceMesh,
) -> DTensor:
"""
Shard a tensor to chunks along the first dimension.
The local rank will gets its corresponding chunk as the local tensor to create a DTensor.
"""
root_mesh = _mesh_resources.get_root_mesh(device_mesh)
if root_mesh is None:
raise RuntimeError("No parent device_mesh is found for FSDP device_mesh.")
if root_mesh.ndim < 2:
raise RuntimeError(
f"Found parent device_mesh of ndim={root_mesh.ndim},",
"but meshes must be at least 2D.",
)
# We need to explicitly call .detach() to return a new tensor detached from the current graph.
tensor = tensor.detach().clone()
# When a layer is not involved in TP, then the tensor will not be a DTensor.
# e.g. When a layer is not sppecified in the parallelize_plan, TP will have no effect on the layer.
# e.g. When you do PairwiseParallel on a 3 layer model, TP will have no effect on the third layer.
if isinstance(tensor, torch.Tensor) and not isinstance(tensor, DTensor):
# For tensors, it is replicated across tp dimension and sharded across FSDP dimension.
# TP is the inner dimension and FSDP is the outer dimension.
# Therefore, shard placements for tensor is (Shard(0), Replicate()).
replicate_placements = [Replicate() for _ in range(root_mesh.ndim)]
shard_placements = [Replicate() for _ in range(root_mesh.ndim)]
shard_placements[0] = DShard(0) # type: ignore[call-overload]
return DTensor.from_local(
tensor, root_mesh, replicate_placements, run_check=False
).redistribute(
device_mesh=root_mesh,
placements=shard_placements,
)
else:
tp_placements = tensor.placements
tp_placement = tp_placements[0]
tensor = tensor.to_local()
# For DTensors, it is sharded across tp dimension first and then sharded across FSDP dimension.
# TP is the inner dimension and FSDP is the outer dimension.
# Therefore, shard placements for tensor is (Shard(0), tp_placement).
# For higher dimensional meshes, it is replicated across other dimensions. For example, with
# HSDP the shard placements for tensor is (Replicate, Shard(0), tp_placement).
replicate_placements = [Replicate() for _ in range(root_mesh.ndim)]
replicate_placements[-1] = tp_placement # type: ignore[call-overload]
shard_placements = [Replicate() for i in range(root_mesh.ndim)] # type: ignore[misc]
shard_placements[-2] = DShard(0) # type: ignore[call-overload]
shard_placements[-1] = tp_placement # type: ignore[call-overload]
return DTensor.from_local(
tensor, root_mesh, replicate_placements, run_check=False
).redistribute(
device_mesh=root_mesh,
placements=shard_placements,
)
def _pre_load_state_dict(
tensor: torch.Tensor,
) -> Tuple[torch.Tensor, List[Shard]]:
shards = cast(ShardedTensor, tensor).local_shards()
if len(shards) == 1 and type(shards[0].tensor) is ShardedTensor:
inner_tensor = shards[0].tensor
shards = inner_tensor.local_shards() # pyre-ignore[16]
tensor = inner_tensor
return (tensor, shards if len(shards) > 0 else [])
def _all_gather_dtensor(
tensor: DTensor,
parent_mesh: Optional[DeviceMesh],
) -> torch.Tensor:
"""All gather a DTensor in its FSDP dimension and return the local tensor."""
assert parent_mesh == tensor.device_mesh
placements = list(copy.deepcopy(tensor.placements))
# FSDP + TP: [Shard(0), tp_placement] -> [Replicate(), tp_placement]
# HSDP + TP: [Replicate(), Shard(0), tp_placement] -> [Replicate(), Replicate(), tp_placement]
for i in range(0, len(placements) - 1):
placements[i] = Replicate()
tensor = tensor.redistribute(
device_mesh=tensor.device_mesh,
placements=placements,
)
return tensor.to_local()
class DTensorExtensions(FSDPExtensions):
"""
DTensorExtension is the TensorFlattener extension needed for 2D FSDP + TP.
This is the implementation for FSDPExtensions defined in
https://github.com/pytorch/pytorch/blob/main/torch/distributed/fsdp/_fsdp_extensions.py
"""
def __init__(self, device_handle) -> None:
super().__init__()
self.compute_stream = None
self.device_handle = device_handle
# we have to use the dynamo disable this way to disable dynamo as the decorater way would
# trigger build failure with torch deploy...
self.post_unflatten_transform = torch._dynamo.disable(self.post_unflatten_transform) # type: ignore[method-assign]
def pre_flatten_transform(
self,
tensor: torch.Tensor,
) -> Tuple[torch.Tensor, Optional[Any]]:
return _flatten_tensor(tensor)
def post_unflatten_transform(
self, tensor: torch.Tensor, param_extension: Any
) -> torch.Tensor:
stream = self.compute_stream or self.device_handle.current_stream()
with self.device_handle.stream(stream):
# runtime we put the unflattened tensor call on the compute stream since
# the unflattened tensor might contain computations in fwd/bwd where we
# need to sync properly.
# TODO: this is a short term fix and we should make the get_unflat_views
# directly happen in the compute stream.
result = _unflatten_tensor(
tensor,
param_extension,
device_handle=self.device_handle,
compute_stream=self.compute_stream,
)
_set_fsdp_flattened(result)
return result
def chunk_tensor(
self,
tensor: torch.Tensor,
rank: int,
world_size: int,
num_devices_per_node: int,
pg: dist.ProcessGroup,
device: Optional[torch.device] = None,
) -> torch.Tensor:
return _chunk_tensor(tensor, rank, world_size, num_devices_per_node, pg)
def chunk_dtensor(
self,
tensor: torch.Tensor,
rank: int,
device_mesh: DeviceMesh,
) -> torch.Tensor:
return _chunk_dtensor(tensor, rank, device_mesh)
def pre_load_state_dict_transform(
self,
tensor: torch.Tensor,
) -> Tuple[torch.Tensor, List[Shard]]:
return _pre_load_state_dict(tensor)
def all_gather_dtensor(
self,
tensor: DTensor,
parent_mesh: Optional[DeviceMesh],
) -> torch.Tensor:
return _all_gather_dtensor(tensor, parent_mesh)
|