1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates
import contextlib
from typing import cast, Dict, Optional, Tuple
import torch
import torch._prims_common as utils
import torch.distributed._functional_collectives as funcol
import torch.distributed.distributed_c10d as c10d
from torch import Tensor
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.tensor import DTensor, Replicate, Shard
from torch.distributed.tensor._dtensor_spec import DTensorSpec, TensorMeta
from torch.distributed.tensor._ops._embedding_ops import _MaskPartial
from torch.distributed.tensor._ops._math_ops import (
_skip_dim,
Reduction,
replicate_reduction_dims,
)
from torch.distributed.tensor.placement_types import Placement
aten = torch.ops.aten
__all__ = ["loss_parallel"]
@contextlib.contextmanager
def loss_parallel():
"""
A context manager that enables loss parallelism, where efficient parallelized loss computation
can be performed when the input is sharded on the class dimension. Currently only the cross-entropy
loss is supported.
Within this context manager, one can use :func:`~torch.nn.functional.cross_entropy` or
:class:`~torch.nn.CrossEntropyLoss` as usual, with the following assumptions on the input parameters.
The corresponding ``backward()`` call, if any, also needs to happen under this context manager.
Args:
input (:class:`DTensor`):
Input logits. Assumed to be sharded on the class dimension.
target (Union[:class:`torch.Tensor`, :class:`DTensor`]):
Must be ground truth class indices (class probabilities currently not supported).
Assumed to be replicated across the ``DeviceMesh``.
weight (Union[:class:`torch.Tensor`, :class:`DTensor`], optional):
If given, assumed to be replicated across the ``DeviceMesh``.
label_smoothing:
Currently not supported.
Returns:
A replicated :class:`DTensor`.
Example:
A sharded DTensor is manually created here to showcase the usage.
In practice, it is usually the output of a TP module.
>>> # xdoctest: +SKIP("distributed")
>>> from torch.distributed.tensor.parallel import loss_parallel
>>> from torch.distributed.device_mesh import init_device_mesh
>>> ...
>>> device_mesh = init_device_mesh("cuda", (8,))
>>> input = torch.randn(4, 16, device="cuda", requires_grad=True)
>>> dist_input = distribute_tensor(input, device_mesh, placements=[Shard(1)])
>>> target = torch.randint(16, (4,), device="cuda")
>>> with loss_parallel():
>>> loss = F.cross_entropy(dist_input, target, reduction="mean")
>>> loss.backward()
>>> ...
"""
_enable_custom_loss_ops()
yield
_disable_custom_loss_ops()
# Currently only needs to support one dimensional DeviceMesh; in general return
# the mesh_dim with placements[mesh_dim].is_shard(dim)
def _find_all_reduce_mesh_dim(placements: Tuple[Placement, ...], dim: int) -> int:
if not len(placements) == 1:
raise ValueError(
"Currently loss_parallel() only supports input on one-dimensional DeviceMesh."
)
if not placements[0].is_shard(dim):
raise ValueError(
f"loss_parallel() should be enabled only when the input tensor is sharded on dimension {dim}."
)
return 0
def _cast_to_dtensor(
tensor, placements: Tuple[Placement, ...], mesh: DeviceMesh
) -> DTensor:
if isinstance(tensor, DTensor):
if tensor.placements == placements:
return tensor
else:
raise RuntimeError(f"Expected {placements} but got {tensor.placements}.")
elif isinstance(tensor, torch.Tensor):
return DTensor.from_local(
tensor, device_mesh=mesh, placements=placements, run_check=False
)
else:
raise TypeError(f"Unsupported type {type(tensor)}")
def _propagate_tensor_meta(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> TensorMeta:
op_info = DTensor._op_dispatcher.unwrap_to_op_info(op_call, args, kwargs)
tensor_meta = DTensor._op_dispatcher.sharding_propagator._propagate_tensor_meta(
op_info.schema
)
if isinstance(tensor_meta, TensorMeta):
return tensor_meta
elif isinstance(tensor_meta, tuple):
return tensor_meta[0]
else:
raise RuntimeError(f"Unexpected tensor meta type: {type(tensor_meta)}.")
# NOTE: The implementation follows torch._decomp.decomposition._log_softmax,
# with all_reduce manually inserted to perform distributed computation.
def _log_softmax(x, dim, half_to_float, mesh, mesh_dim):
x = x.contiguous()
if half_to_float:
assert x.dtype == torch.half
computation_dtype, result_dtype = utils.elementwise_dtypes(
x, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
)
x = x.to(computation_dtype)
if x.numel() == 0:
shifted = x
else:
x_max = torch.amax(x, dim, keepdim=True)
x_max = funcol.all_reduce(
x_max, reduceOp=c10d.ReduceOp.MAX.name, group=(mesh, mesh_dim)
)
shifted = x - x_max
shifted_sumexp = torch.sum(torch.exp(shifted), dim, keepdim=True)
shifted_sumexp = funcol.all_reduce(
shifted_sumexp, reduceOp=c10d.ReduceOp.SUM.name, group=(mesh, mesh_dim)
)
shifted_logsumexp = torch.log(shifted_sumexp)
result = shifted - shifted_logsumexp
if not half_to_float:
result = result.to(result_dtype)
return result
def _log_softmax_handler(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
x = cast(DTensor, args[0])
dim = cast(int, args[1])
half_to_float = cast(bool, args[2])
spec = x._spec
mesh_dim = _find_all_reduce_mesh_dim(spec.placements, dim)
output_tensor_meta = _propagate_tensor_meta(op_call, args, kwargs)
res = _log_softmax(x._local_tensor, dim, half_to_float, spec.mesh, mesh_dim)
res_spec = DTensorSpec(
spec.mesh,
spec.placements,
tensor_meta=output_tensor_meta,
)
return DTensor(
res,
res_spec,
requires_grad=res.requires_grad,
)
# NOTE: As explained below at _nll_loss_and_log_softmax_backward, the
# _log_softmax_backward_handler does not actually do any computation.
def _log_softmax_backward_handler(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
grad_output = cast(DTensor, args[0])
input_dtype = cast(torch.dtype, args[3])
return grad_output.to(input_dtype)
# NOTE: The implementation follows torch._decomp.decomposition._nll_loss_forward,
# with customized communication inserted to perform distributed computation.
def _nll_loss_forward(
x: Tensor,
target: Tensor,
weight: Optional[Tensor],
local_weight: Optional[Tensor],
reduction: int,
ignore_index: int,
input_shape: torch.Size,
channel_dim: int,
mesh: DeviceMesh,
mesh_dim: int,
) -> Tuple[Tensor, Tensor]:
n_dims = x.dim()
channel_dim = 1
if n_dims < 2:
channel_dim = 0
def _weight_view(weight: Tensor) -> Tensor:
if n_dims > 1:
shape = [
1,
] * n_dims
shape[channel_dim] = weight.shape[0]
w = weight.view(shape)
else:
w = weight
return w
if weight is not None:
w = _weight_view(weight)
assert local_weight is not None
local_w = _weight_view(local_weight)
x = x * local_w
safe_target = torch.where(target != ignore_index, target, 0)
safe_target_ = safe_target.unsqueeze(channel_dim)
# The following code block is a distributed version of
# result = -torch.gather(self, channel_dim, safe_target_).squeeze(channel_dim)
partial_placement = _MaskPartial(offset_shape=input_shape, offset_dim=channel_dim)
safe_target_partial_ = partial_placement._partition_value(
safe_target_, mesh, mesh_dim
)
result_partial = torch.gather(x, channel_dim, safe_target_partial_)
# an all_reduce happens here
result_reduced = partial_placement._reduce_value(result_partial, mesh, mesh_dim)
result = -result_reduced.squeeze(channel_dim)
result = torch.where(target != ignore_index, result, 0)
if reduction == Reduction.NONE.value and n_dims > 1:
total_weight = x.new_full((), 0.0)
return result, total_weight
if weight is not None:
new_shape = list(x.shape)
new_shape[channel_dim] = -1
w = w.expand(new_shape)
wsum = torch.gather(w, channel_dim, safe_target_).squeeze(channel_dim)
wsum = torch.where(target != ignore_index, wsum, 0)
total_weight = wsum.sum()
else:
total_weight = (target != ignore_index).sum().to(x)
# NOTE: this is correct only on 1D DeviceMesh; o/w additional
# all-reduce on result and total_weight is needed
if reduction == Reduction.SUM.value:
result = result.sum()
elif reduction == Reduction.MEAN.value:
result = result.sum() / total_weight
return result, total_weight
def _nll_loss_forward_handler(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
x = cast(DTensor, args[0])
target = args[1]
weight = args[2]
reduction = cast(int, args[3])
ignore_index = cast(int, args[4])
channel_dim = 1 if x.dim() >= 2 else 0
spec = x._spec
mesh_dim = _find_all_reduce_mesh_dim(spec.placements, channel_dim)
# Check user input: if target and weight are not DTensors, convert them to DTensors;
# if they are DTensors, check that they have the desired placements.
target_placements = _skip_dim(
replicate_reduction_dims(spec.placements, [channel_dim]), channel_dim
)
all_replicate_placements = (Replicate(),) * spec.mesh.ndim
target = _cast_to_dtensor(target, target_placements, spec.mesh)
local_weight = None
if weight is not None:
weight = _cast_to_dtensor(weight, all_replicate_placements, spec.mesh)
# For local computation, both (replicated) weight and (sharded) local_weight
# are needed in _nll_loss_forward(). local_weight is generated here using
# DTensor API, without incurring any communication.
sharded_placements = [
Shard(0) if i == mesh_dim else Replicate() for i in range(spec.mesh.ndim)
]
local_weight = weight.redistribute(spec.mesh, sharded_placements)._local_tensor
assert local_weight.shape[0] == x._local_tensor.shape[channel_dim]
if reduction == Reduction.NONE.value:
output_placements = target_placements
else:
output_placements = all_replicate_placements
# tensor inputs to _propagate_tensor_meta need to be DTensors
args = list(args)
args[1], args[2] = target, weight
output_tensor_meta = _propagate_tensor_meta(op_call, tuple(args), kwargs)
result, total_weight = _nll_loss_forward(
x._local_tensor,
target._local_tensor,
weight._local_tensor if weight is not None else None,
local_weight,
reduction,
ignore_index,
x.shape,
channel_dim,
spec.mesh,
mesh_dim,
)
out_spec = DTensorSpec(spec.mesh, output_placements, tensor_meta=output_tensor_meta)
return (
DTensor(
result,
out_spec,
requires_grad=result.requires_grad,
),
total_weight,
)
# NOTE: The backward computation of cross_entropy goes through two steps:
# backward for nll_loss and then backward for log_softmax. In loss parallel,
# the two steps are fused into the following function (called by _nll_loss_backward_handler)
# to avoid communication when target contains class indices not class probabilities.
# Also note that the _log_softmax_backward_handler does not perform computation.
# The implementation resembles _nll_loss_backward and _log_softmax_backward_data
# from torch._decomp.decomposition.
def _nll_loss_and_log_softmax_backward(
grad_output: Tensor,
x: Tensor,
target: Tensor,
weight: Optional[Tensor],
reduction: int,
ignore_index: int,
total_weight: Tensor,
input_shape: torch.Size,
channel_dim: int,
mesh: DeviceMesh,
mesh_dim: int,
) -> Tensor:
channel_dim = 0 if x.dim() < 2 else 1
if reduction == Reduction.MEAN.value:
grad_output = grad_output / total_weight
target = target.unsqueeze(channel_dim)
safe_target = torch.where(target != ignore_index, target, 0)
grad_input = torch.zeros_like(x)
# The following code block is a distributed version of
# grad_input = torch.scatter(grad_input, channel_dim, safe_target, -1.0)
partial_placement = _MaskPartial(offset_shape=input_shape, offset_dim=channel_dim)
safe_target = safe_target.squeeze(channel_dim).flatten()
masked_safe_target = partial_placement._partition_value(safe_target, mesh, mesh_dim)
# only update grad_input to -1 if not masked
assert partial_placement.mask_buffer.data is not None
grad_update = partial_placement.mask_buffer.data.to(grad_input.dtype) - 1.0
arange_1d = torch.arange(
masked_safe_target.shape[0], device=masked_safe_target.device
)
# The first two cases with x.dim() <= 2 are for aten.nll_loss_backward.default;
# the last case is for aten.nll_loss2d_backward.default.
if x.dim() == 1:
grad_input[masked_safe_target] = grad_update
elif x.dim() == 2:
grad_input[arange_1d, masked_safe_target] = grad_update
else:
grad_input_t = grad_input.transpose(channel_dim, -1)
intermidate_shape = grad_input_t.shape
grad_input_2d = grad_input_t.reshape(-1, x.shape[channel_dim])
grad_input_2d[arange_1d, masked_safe_target] = grad_update
grad_input = grad_input_2d.view(intermidate_shape).transpose(channel_dim, -1)
if grad_input.dim() > grad_output.dim() > 0:
grad_output = grad_output.unsqueeze(channel_dim)
if weight is not None:
new_shape = [1 for _ in range(x.dim())]
new_shape[channel_dim] = weight.shape[0]
weight = weight.reshape(new_shape)
# In order for fused computation to work, the following line is rewritten.
# grad_output = grad_output * weight
new_shape = list(x.shape)
new_shape[channel_dim] = -1
w = weight.expand(new_shape)
w_target = torch.gather(w, channel_dim, target)
grad_output = grad_output * w_target
grad_output = torch.where(target != ignore_index, grad_output, 0)
# NOTE: Instead of directly returning the grad_input as grad_output for log_softmax,
# here we perform backward computation for log_softmax altogether to avoid the
# otherwise extra all_gather communication.
# return grad_input * grad_output
return (grad_input + torch.exp(x)) * grad_output
def _nll_loss_backward_handler(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
grad_output = cast(DTensor, args[0])
x = cast(DTensor, args[1])
target = args[2]
weight = args[3]
reduction = cast(int, args[4])
ignore_index = cast(int, args[5])
total_weight = cast(Tensor, args[6])
channel_dim = 1 if x.dim() >= 2 else 0
spec = x._spec
mesh_dim = _find_all_reduce_mesh_dim(spec.placements, channel_dim)
# if target and weight are not DTensors, convert them to DTensors
target_placements = _skip_dim(
replicate_reduction_dims(spec.placements, [channel_dim]), channel_dim
)
all_replicate_placements = (Replicate(),) * spec.mesh.ndim
target = _cast_to_dtensor(target, target_placements, spec.mesh)
if weight is not None:
weight = _cast_to_dtensor(weight, all_replicate_placements, spec.mesh)
# tensor inputs to _propagate_tensor_meta need to be DTensors
args = list(args)
args[2], args[3] = target, weight
args[6] = _cast_to_dtensor(total_weight, all_replicate_placements, spec.mesh)
output_tensor_meta = _propagate_tensor_meta(op_call, tuple(args), kwargs)
result = _nll_loss_and_log_softmax_backward(
grad_output._local_tensor,
x._local_tensor,
target._local_tensor,
weight._local_tensor if weight is not None else None,
reduction,
ignore_index,
total_weight,
x.shape,
channel_dim,
spec.mesh,
mesh_dim,
)
# the output sharding is the same as input sharding: Shard(channel_dim) on mesh_dim
out_spec = DTensorSpec(
spec.mesh,
spec.placements,
tensor_meta=output_tensor_meta,
)
return DTensor(
result,
out_spec,
requires_grad=result.requires_grad,
)
customized_loss_ops = {
aten._log_softmax.default: _log_softmax_handler,
aten._log_softmax_backward_data.default: _log_softmax_backward_handler,
aten.nll_loss_forward.default: _nll_loss_forward_handler,
aten.nll_loss2d_forward.default: _nll_loss_forward_handler,
aten.nll_loss_backward.default: _nll_loss_backward_handler,
aten.nll_loss2d_backward.default: _nll_loss_backward_handler,
}
def _enable_custom_loss_ops():
DTensor._op_dispatcher._custom_op_handlers.update(customized_loss_ops)
def _disable_custom_loss_ops():
for custom_op in customized_loss_ops:
DTensor._op_dispatcher._custom_op_handlers.pop(custom_op)
|