1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
|
# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates
from abc import ABC, abstractmethod
from functools import partial
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.distributed.tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.distributed.tensor.placement_types import Placement
__all__ = [
"ParallelStyle",
"RowwiseParallel",
"SequenceParallel",
"ColwiseParallel",
"PrepareModuleInput",
"PrepareModuleOutput",
]
class ParallelStyle(ABC):
"""
The parallel style contract defines how the module or submodule should be parallelized.
It only defines the ``apply`` method for ``parallelize_module`` to use, this allows maximum
flexibility for different kind of style implementations.
"""
@abstractmethod
def _apply(self, module: nn.Module, device_mesh: DeviceMesh) -> nn.Module:
...
class ColwiseParallel(ParallelStyle):
"""
Partition a compatible nn.Module in a column-wise fashion. Currently supports nn.Linear and nn.Embedding.
Users can compose it together with RowwiseParallel to achieve the sharding of more complicated modules.
(i.e. MLP, Attention)
Keyword Args:
input_layouts (Placement, optional):
The DTensor layout of input tensor for the nn.Module, this is used to annotate the input tensor to
become a DTensor. If not specified, we assume the input tensor to be replicated.
output_layouts (Placement, optional):
The DTensor layout of the output for the nn.Module, this is used to ensure the output of the nn.Module
with the user desired layout. If not specified, the output tensor is sharded on the last dimension.
use_local_output (bool, optional):
Whether to use local :class:`torch.Tensor` instead of :class:`DTensor` for the module output, default: True.
Returns:
A :class:`ParallelStyle` object that represents Colwise sharding of the nn.Module.
Example::
>>> # xdoctest: +SKIP(failing)
>>> from torch.distributed.tensor.parallel import parallelize_module, ColwiseParallel
>>> from torch.distributed.device_mesh import init_device_mesh
>>> ...
>>> m = Model(...) # m is a nn.Module that contains a "w1" nn.Linear submodule
>>> tp_mesh = init_device_mesh("cuda", (8,))
>>>
>>> # By default, the input of the "w1" Linear will be converted to Replicated DTensor
>>> # and the output of "w1" will return :class:`torch.Tensor` that shards on the last dim.
>>>
>>> sharded_mod = parallelize_module(m, tp_mesh, {"w1": ColwiseParallel()})
>>> ...
.. note:: By default ``ColwiseParallel`` output is sharded on the last dimension if the ``output_layouts`` not
specified, if there're operators that require specific tensor shape (i.e. before the paired ``RowwiseParallel``),
keep in mind that if the output is sharded the operator might need to be adjusted to the sharded size.
"""
def __init__(
self,
*,
input_layouts: Optional[Placement] = None,
output_layouts: Optional[Placement] = None,
use_local_output: bool = True,
):
super().__init__()
self.input_layouts = (input_layouts or Replicate(),)
self.output_layouts = (output_layouts or Shard(-1),)
# colwise linear runtime sharding (desired sharding):
# 1. requires replicate input
# 2. shard output on last dim
self.desired_input_layouts = (Replicate(),)
self.use_local_output = use_local_output
@staticmethod
def _prepare_input_fn(
input_layouts, desired_input_layouts, mod, inputs, device_mesh
):
# TODO: figure out dynamo support for instance method and switch this to instance method
# annotate module input placements/sharding with input_layouts
input_tensor = inputs[0]
if not isinstance(input_tensor, DTensor):
input_tensor = DTensor.from_local(
input_tensor, device_mesh, input_layouts, run_check=False
)
# transform the input layouts to the desired layouts of ColwiseParallel
if input_layouts != desired_input_layouts:
input_tensor = input_tensor.redistribute(
placements=desired_input_layouts, async_op=True
)
return input_tensor
def _partition_linear_fn(self, name, module, device_mesh):
# colwise shard weight/bias to Shard(0), weight be Shard(0)
# means Colwise as Linear is input * weight^T + bias, where
# weight would become Shard(1)
for name, param in module.named_parameters():
dist_param = nn.Parameter(distribute_tensor(param, device_mesh, [Shard(0)]))
module.register_parameter(name, dist_param)
def _partition_embedding_fn(self, name, module, device_mesh):
# colwise shard embedding.weight is straight forward as Shard(1)
for name, param in module.named_parameters():
dist_param = nn.Parameter(distribute_tensor(param, device_mesh, [Shard(1)]))
module.register_parameter(name, dist_param)
@staticmethod
def _prepare_output_fn(output_layouts, use_local_output, mod, outputs, device_mesh):
# outputs is a shard on last dimension DTensor, i.e. Shard(-1)
if outputs.placements != output_layouts:
outputs = outputs.redistribute(placements=output_layouts, async_op=True)
# back to local tensor
return outputs.to_local() if use_local_output else outputs
def _apply(self, module: nn.Module, device_mesh: DeviceMesh) -> nn.Module:
if isinstance(module, nn.Linear):
partition_fn = self._partition_linear_fn
elif isinstance(module, nn.Embedding):
partition_fn = self._partition_embedding_fn
else:
raise NotImplementedError(
"ColwiseParallel currently only support nn.Linear and nn.Embedding!"
)
return distribute_module(
module,
device_mesh,
partition_fn,
partial(
self._prepare_input_fn, self.input_layouts, self.desired_input_layouts
),
partial(
self._prepare_output_fn, self.output_layouts, self.use_local_output
),
)
class RowwiseParallel(ParallelStyle):
"""
Partition a compatible nn.Module in a row-wise fashion. Currently supports nn.Linear and nn.Embedding.
Users can compose it with ColwiseParallel to achieve the sharding of more complicated modules.
(i.e. MLP, Attention)
Keyword Args:
input_layouts (Placement, optional):
The DTensor layout of input tensor for the nn.Module, this is used to annotate the input tensor to
become a DTensor. If not specified, we assume the input tensor to be sharded on the last dimension.
output_layouts (Placement, optional):
The DTensor layout of the output for the nn.Module, this is used to ensure the output of the nn.Module
with the user desired layout. If not specified, the output tensor is replicated.
use_local_output (bool, optional):
Whether to use local :class:`torch.Tensor` instead of :class:`DTensor` for the module output, default: True.
Returns:
A :class:`ParallelStyle` object that represents Rowwise sharding of the nn.Module.
Example::
>>> # xdoctest: +SKIP(failing)
>>> from torch.distributed.tensor.parallel import parallelize_module, RowwiseParallel
>>> from torch.distributed.device_mesh import init_device_mesh
>>> ...
>>> m = Model(...) # m is a nn.Module that contains a "w2" nn.Linear submodule
>>> tp_mesh = init_device_mesh("cuda", (8,))
>>>
>>> # By default, the input of the "w2" Linear will be converted to DTensor that shards on the last dim
>>> # and the output of "w2" will return a replicated :class:`torch.Tensor`.
>>>
>>> sharded_mod = parallelize_module(m, tp_mesh, {"w2": RowwiseParallel()}),
>>> ...
"""
def __init__(
self,
*,
input_layouts: Optional[Placement] = None,
output_layouts: Optional[Placement] = None,
use_local_output: bool = True,
):
super().__init__()
self.input_layouts = (input_layouts or Shard(-1),)
self.output_layouts = (output_layouts or Replicate(),)
self.use_local_output = use_local_output
@staticmethod
def _prepare_input_fn(
input_layouts, desired_input_layouts, mod, inputs, device_mesh
):
input_tensor = inputs[0]
if not isinstance(input_tensor, DTensor):
input_tensor = DTensor.from_local(
input_tensor, device_mesh, input_layouts, run_check=False
)
if input_layouts != desired_input_layouts:
input_tensor = input_tensor.redistribute(
placements=desired_input_layouts, async_op=True
)
return input_tensor
def _partition_linear_fn(self, name, module, device_mesh):
# Rowwise shard weight to Shard(1), bias to Replicate(), weight be Shard(1)
# means Rowwise as nn.Linear is input * weight^T + bias, where
# weight would become Shard(0)
module.register_parameter(
"weight",
nn.Parameter(distribute_tensor(module.weight, device_mesh, [Shard(1)])),
)
if getattr(module, "bias", None) is not None:
# The Linear module has bias
module.register_parameter(
"bias",
nn.Parameter(
distribute_tensor(module.bias, device_mesh, [Replicate()])
),
)
def _partition_embedding_fn(self, name, module, device_mesh):
# rowwise shard embedding.weight is Shard(0)
for name, param in module.named_parameters():
dist_param = nn.Parameter(distribute_tensor(param, device_mesh, [Shard(0)]))
module.register_parameter(name, dist_param)
@staticmethod
def _prepare_output_fn(output_layouts, use_local_output, mod, outputs, device_mesh):
# Rowwise sharding produces partial output, depending on output layouts:
# 1. to replicate -> allreduce
# 2. to shard -> reduce_scatter
if outputs.placements != output_layouts:
outputs = outputs.redistribute(placements=output_layouts, async_op=True)
# back to local tensor if use_local_output is True
return outputs.to_local() if use_local_output else outputs
def _apply(self, module: nn.Module, device_mesh: DeviceMesh) -> nn.Module:
if isinstance(module, nn.Linear):
partition_fn = self._partition_linear_fn
# rowwise linear runtime sharding requires input tensor shard on last dim
self.desired_input_layouts: Tuple[Placement, ...] = (Shard(-1),)
elif isinstance(module, nn.Embedding):
partition_fn = self._partition_embedding_fn
# rowwise embedding runtime sharding requires input tensor replicated
self.desired_input_layouts = (Replicate(),)
else:
raise NotImplementedError(
"RowwiseParallel currently only support nn.Linear and nn.Embedding!"
)
return distribute_module(
module,
device_mesh,
partition_fn,
partial(
self._prepare_input_fn, self.input_layouts, self.desired_input_layouts
),
partial(
self._prepare_output_fn, self.output_layouts, self.use_local_output
),
)
class SequenceParallel(ParallelStyle):
"""
SequenceParallel replicates a compatible ``nn.Module`` parameters and runs the sharded computation with
input sharded on the sequence dimension. This currently supports ``nn.LayerNorm``, ``nn.Dropout``, and the
`RMSNorm python implementation <https://github.com/facebookresearch/llama/blob/main/llama/model.py#L34>`__
This style implements the operation that is described in the paper
`Reducing Activation Recomputation in Large Transformer Models <https://arxiv.org/abs/2205.05198>`__
If the input passed in to this ``nn.Module`` is a :class:`torch.Tensor`, it assumes that the input is already sharded
on the sequence dimension and converts the input to a :class:`DTensor` sharded on the sequence dimension. If the input
passed in to this ``nn.Module`` is already a :class:`DTensor` but is not sharded on the sequence dimension, it would
redistribute the input to be sharded on the sequence dimension.
The output of the ``nn.Module`` will be sharded on the sequence dimension.
Keyword Args:
sequence_dim (int, optional):
The sequence dimension of the input tensor for the ``nn.Module``, this is used to annotate the input tensor to
become a DTensor that is sharded on the sequence dimension, default: 1.
use_local_output (bool, optional):
Whether to use local :class:`torch.Tensor` instead of :class:`DTensor` for the module output, default: False.
Returns:
A :class:`ParallelStyle` object that represents Sequence Parallel of the ``nn.Module``.
Example::
>>> # xdoctest: +SKIP(failing)
>>> from torch.distributed.tensor.parallel import parallelize_module, SequenceParallel
>>> from torch.distributed.device_mesh import init_device_mesh
>>> ...
>>> m = Model(...) # m is a nn.Module that contains a "norm" nn.LayerNorm submodule
>>> tp_mesh = init_device_mesh("cuda", (8,))
>>>
>>> # By default, the input of the "norm" will be converted to DTensor that shards on the sequence dim
>>> # and the output of "norm" will return a sharded on sequence dimension :class:`DTensor`.
>>>
>>> sharded_mod = parallelize_module(m, tp_mesh, {"norm": SequenceParallel()}),
>>> ...
.. note:: SequenceParallel style assumes ones initialization if there are weights in the nn.Module (i.e.
``nn.LayerNorm`` or ``RMSNorm``, and they by default have ones initialization). If you have custom
inits for the weights on those modules, you need to broadcast the weights before/after parallelizing
to ensure that they are replicated.
"""
def __init__(self, *, sequence_dim: int = 1, use_local_output: bool = False):
super().__init__()
self.sequence_sharding = (Shard(sequence_dim),)
self.use_local_output = use_local_output
def _replicate_module_fn(
self, name: str, module: nn.Module, device_mesh: DeviceMesh
):
for p_name, param in module.named_parameters():
# simple replication with fixed ones_ init from LayerNorm/RMSNorm, which allow
# us to simply just use from_local
replicated_param = torch.nn.Parameter(
DTensor.from_local(param, device_mesh, [Replicate()], run_check=False)
)
module.register_parameter(p_name, replicated_param)
@staticmethod
def _prepare_input_fn(sequence_sharding, mod, inputs, device_mesh):
input_tensor = inputs[0]
if isinstance(input_tensor, DTensor):
# if the passed in input DTensor is not sharded on the sequence dim, we need to redistribute it
if input_tensor.placements != sequence_sharding:
input_tensor = input_tensor.redistribute(
placements=sequence_sharding, async_op=True
)
return input_tensor
elif isinstance(input_tensor, torch.Tensor):
# assume the input passed in already sharded on the sequence dim and create the DTensor
return DTensor.from_local(
input_tensor, device_mesh, sequence_sharding, run_check=False
)
else:
raise ValueError(
f"expecting input of {mod} to be a torch.Tensor or DTensor, but got {input_tensor}"
)
@staticmethod
def _prepare_output_fn(use_local_output, mod, outputs, device_mesh):
return outputs.to_local() if use_local_output else outputs
def _apply(self, module: nn.Module, device_mesh: DeviceMesh) -> nn.Module:
return distribute_module(
module,
device_mesh,
self._replicate_module_fn,
partial(self._prepare_input_fn, self.sequence_sharding),
partial(self._prepare_output_fn, self.use_local_output),
)
class PrepareModuleInput(ParallelStyle):
"""
Configure the nn.Module's inputs to convert the input tensors of the nn.Module to DTensors at runtime according to
``input_layouts``, and perform layout redistribution according to the ``desired_input_layouts``.
Keyword Args:
input_layouts (Union[Placement, Tuple[Optional[Placement]]]):
The DTensor layouts of input tensors for the nn.Module, this is used to convert the input tensors to
DTensors. If some inputs are not torch.Tensor or no need to convert to DTensors, ``None`` need to be specified
as a placeholder. default: None.
desired_input_layouts (Union[Placement, Tuple[Optional[Placement]]]):
The desired DTensor layout of input tensors for the nn.Module, this is used to ensure the inputs of the nn.Module
have the desired DTensor layouts. This argument needs to have the same length with ``input_layouts``. default: None.
input_kwarg_layouts (Dict[str, Placement]):
The DTensor layouts of input kwargs for the nn.Module, this is used to convert the input kwarg tensors to DTensors.
default: None
desired_input_kwarg_layouts: (Dict[str, Placement]):
The desired DTensor layout of input kwargs for the nn.Module, this is used to ensure the inputs of the nn.Module
have the desired DTensor layouts. default: None.
use_local_output (bool, optional):
Whether to use local :class:`torch.Tensor` instead of :class:`DTensor` for the module inputs, default: False.
Returns:
A :class:`ParallelStyle` object that prepares the sharding layouts of the nn.Module's inputs.
Example::
>>> # xdoctest: +SKIP(failing)
>>> from torch.distributed.tensor.parallel import parallelize_module, PrepareModuleInput
>>> from torch.distributed.device_mesh import init_device_mesh
>>> ...
>>> block = TransformerBlock(...) # block is a nn.Module that contains an "attn" Attention submodule
>>> tp_mesh = init_device_mesh("cuda", (8,))
>>>
>>> # According to the style specified below, the first input of attn will be annotated to Sharded DTensor
>>> # and then redistributed to Replicated DTensor.
>>> parallelize_module(
>>> block, # this can be a submodule or module
>>> tp_mesh,
>>> parallelize_plan={
>>> "attn": PrepareModuleInput(
>>> input_layouts=(Shard(0), None, None, ...),
>>> desired_input_layouts=(Replicate(), None, None, ...)
>>> ),
>>> }
>>> )
"""
def __init__(
self,
*,
input_layouts: Optional[Union[Placement, Tuple[Optional[Placement]]]] = None,
desired_input_layouts: Optional[
Union[Placement, Tuple[Optional[Placement]]]
] = None,
input_kwarg_layouts: Optional[Dict[str, Placement]] = None,
desired_input_kwarg_layouts: Optional[Dict[str, Placement]] = None,
use_local_output: bool = False,
):
self.input_layouts = (
(input_layouts,) if isinstance(input_layouts, Placement) else input_layouts
)
self.desired_input_layouts = (
(desired_input_layouts,)
if isinstance(desired_input_layouts, Placement)
else desired_input_layouts
)
self.use_local_output = use_local_output
if self.input_layouts is not None:
assert (
self.desired_input_layouts is not None
), "desired module inputs should not be None!"
assert len(self.input_layouts) == len(
self.desired_input_layouts
), "input_layouts and desired_input_layouts should have same length!"
self.with_kwargs = input_kwarg_layouts is not None
self.input_kwarg_layouts = input_kwarg_layouts or {}
self.desired_input_kwarg_layouts = desired_input_kwarg_layouts or {}
if self.with_kwargs:
assert len(self.input_kwarg_layouts) == len(
self.desired_input_kwarg_layouts
), "input_kwarg_layouts and desired_input_kwarg_layouts should have same length!"
def _prepare_input_arg(
self,
input: Any,
mesh: DeviceMesh,
input_layout: Optional[Placement],
desired_layout: Optional[Placement],
):
if input_layout is not None:
if isinstance(input, DTensor):
# TODO: re-enable the check once we fix the compile path
# assert inp.placements[0] == input_layout
dt_inp = input
else:
assert isinstance(
input, torch.Tensor
), "expecting input to be a torch.Tensor!"
dt_inp = DTensor.from_local(
input, mesh, (input_layout,), run_check=False
)
if desired_layout is not None and input_layout != desired_layout:
dt_inp = dt_inp.redistribute(placements=(desired_layout,))
return dt_inp.to_local() if self.use_local_output else dt_inp
else:
return input
def _prepare_input_fn(self, inputs, device_mesh):
if self.input_layouts is None:
return inputs
prepared_inputs = []
if not isinstance(inputs, tuple):
inputs = (inputs,)
if len(inputs) != len(self.input_layouts):
raise ValueError("module inputs and input_layouts should have same length!")
assert (
self.desired_input_layouts is not None
), "desired module inputs should not be None!"
for inp, input_layout, desired_layout in zip(
inputs, self.input_layouts, self.desired_input_layouts
):
prepared_inputs.append(
self._prepare_input_arg(inp, device_mesh, input_layout, desired_layout)
)
return tuple(prepared_inputs)
def _prepare_input_kwarg_fn(self, inputs, kwarg_inputs, device_mesh):
prepared_arg_inputs = self._prepare_input_fn(inputs, device_mesh)
prepared_kwarg_inputs = {}
for kwarg_key in kwarg_inputs.keys():
kwarg_val = kwarg_inputs[kwarg_key]
input_layout = self.input_kwarg_layouts.get(kwarg_key)
desired_input_layout = self.desired_input_kwarg_layouts.get(kwarg_key)
prepared_kwarg_inputs[kwarg_key] = self._prepare_input_arg(
kwarg_val, device_mesh, input_layout, desired_input_layout
)
return (prepared_arg_inputs, prepared_kwarg_inputs)
def _apply(self, module: nn.Module, device_mesh: DeviceMesh) -> nn.Module:
if self.with_kwargs:
module.register_forward_pre_hook(
lambda _, inputs, kwargs: self._prepare_input_kwarg_fn(
inputs, kwargs, device_mesh
),
with_kwargs=True,
) # type: ignore[misc]
else:
module.register_forward_pre_hook(lambda _, inputs: self._prepare_input_fn(inputs, device_mesh)) # type: ignore[misc, call-arg]
return module
class PrepareModuleOutput(ParallelStyle):
"""
Configure the nn.Module's outputs to convert the output tensors of the nn.Module to DTensors at runtime according to
``output_layouts``, and perform layout redistribution according to the ``desired_output_layouts``.
Keyword Args:
output_layouts (Union[Placement, Tuple[Placement]]):
The DTensor layouts of output tensors for the nn.Module, this is used to convert the output tensors to
DTensors if they are :class:`torch.Tensor`. If some outputs are not torch.Tensor or no need to convert to DTensors,
``None`` need to be specified as a placeholder.
desired_output_layouts (Union[Placement, Tuple[Placement]]):
The desired DTensor layouts of output tensors for the nn.Module, this is used to ensure the outputs of the nn.Module
have the desired DTensor layouts.
use_local_output (bool, optional):
Whether to use local :class:`torch.Tensor` instead of :class:`DTensor` for the module outputs, default: True.
Returns:
A ParallelStyle object that prepares the sharding layouts of the nn.Module's outputs.
Example::
>>> # xdoctest: +SKIP(failing)
>>> from torch.distributed.tensor.parallel import parallelize_module, PrepareModuleOutput
>>> from torch.distributed.device_mesh import init_device_mesh
>>> ...
>>> block = TransformerBlock(...) # block is a nn.Module that contains an "attn" Attention submodule
>>> tp_mesh = init_device_mesh("cuda", (8,))
>>>
>>> # According to the style specified below, the output of the TransformerBlock will be converted to Replicated DTensor
>>> # and then redistributed to Sharded DTensor.
>>> parallelize_module(
>>> block, # this can be a submodule or module
>>> tp_mesh,
>>> parallelize_plan = PrepareModuleOutput(
>>> output_layouts=Replicate(),
>>> desired_output_layouts=Shard(0)
>>> )
>>> )
"""
def __init__(
self,
*,
output_layouts: Union[Placement, Tuple[Placement]],
desired_output_layouts: Union[Placement, Tuple[Placement]],
use_local_output: bool = True,
):
self.output_layouts = (
(output_layouts,)
if isinstance(output_layouts, Placement)
else output_layouts
)
self.desired_output_layouts = (
(desired_output_layouts,)
if isinstance(desired_output_layouts, Placement)
else desired_output_layouts
)
self.use_local_output = use_local_output
assert len(self.output_layouts) == len(
self.desired_output_layouts
), "output_layouts and desired_output_layouts should have same length!"
def _prepare_out_fn(self, outputs, device_mesh):
prepared_outputs = []
if not isinstance(outputs, tuple):
outputs = (outputs,)
if len(outputs) != len(self.output_layouts):
raise ValueError(
"module outputs and output_layouts should have same length!"
)
for out, out_layout, desired_out_layout in zip(
outputs, self.output_layouts, self.desired_output_layouts
):
if out_layout is not None:
if isinstance(out, DTensor):
# TODO: re-enable the check once we fix the compile path
# assert out.placements[0] == out_layout
dt_out = out
else:
dt_out = DTensor.from_local(
out, device_mesh, (out_layout,), run_check=False
)
if out_layout != desired_out_layout:
dt_out = dt_out.redistribute(placements=(desired_out_layout,))
prepared_outputs.append(
dt_out.to_local() if self.use_local_output else dt_out
)
else:
prepared_outputs.append(out)
if len(prepared_outputs) == 1:
return prepared_outputs[0]
else:
return tuple(prepared_outputs)
def _apply(self, module: nn.Module, device_mesh: DeviceMesh) -> nn.Module:
module.register_forward_hook(lambda _, inputs, outputs: self._prepare_out_fn(outputs, device_mesh)) # type: ignore[misc, call-arg]
return module
|