File: chi2.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (35 lines) | stat: -rw-r--r-- 1,002 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# mypy: allow-untyped-defs
from torch.distributions import constraints
from torch.distributions.gamma import Gamma


__all__ = ["Chi2"]


class Chi2(Gamma):
    r"""
    Creates a Chi-squared distribution parameterized by shape parameter :attr:`df`.
    This is exactly equivalent to ``Gamma(alpha=0.5*df, beta=0.5)``

    Example::

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> m = Chi2(torch.tensor([1.0]))
        >>> m.sample()  # Chi2 distributed with shape df=1
        tensor([ 0.1046])

    Args:
        df (float or Tensor): shape parameter of the distribution
    """
    arg_constraints = {"df": constraints.positive}

    def __init__(self, df, validate_args=None):
        super().__init__(0.5 * df, 0.5, validate_args=validate_args)

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(Chi2, _instance)
        return super().expand(batch_shape, new)

    @property
    def df(self):
        return self.concentration * 2