File: _trace.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (2049 lines) | stat: -rw-r--r-- 78,208 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import dataclasses
import functools
import inspect
import logging
import re
import time
import warnings
from contextlib import contextmanager, nullcontext
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union

import torch
import torch._dynamo
import torch.fx
import torch.utils._pytree as pytree
from torch._dispatch.python import enable_python_dispatcher
from torch._dynamo.exc import UserError, UserErrorType
from torch._export.db.logging import (
    exportdb_error_message,
    get_class_if_classified_error,
)
from torch._export.non_strict_utils import (
    _fakify_script_objects,
    _gather_constant_attrs,
    _NonStrictTorchFunctionHandler,
    make_constraints,
    make_fake_inputs,
    produce_guards_and_solve_constraints,
)
from torch._export.passes.collect_tracepoints_pass import CollectTracepointsPass
from torch._export.passes.lift_constants_pass import (
    ConstantAttrMap,
    lift_constants_pass,
    rewrite_script_object_meta,
)
from torch._export.utils import (
    _collect_param_buffer_metadata,
    _populate_param_buffer_metadata_to_new_gm,
    _update_gm_meta_if_possible,
    apply_runtime_assertion_pass,
    placeholder_naming_pass,
    placeholder_prefixes,
)
from torch._export.verifier import SpecViolationError
from torch._export.wrappers import _wrap_submodules
from torch._functorch._aot_autograd.input_output_analysis import (
    _graph_input_names,
    _graph_output_names,
)
from torch._functorch._aot_autograd.traced_function_transforms import (
    create_functional_call,
)
from torch._functorch._aot_autograd.utils import (
    create_tree_flattened_fn,
    register_buffer_assignment_hook,
)
from torch._functorch.aot_autograd import (
    _detect_attribute_assignment,
    aot_export_module,
)
from torch._guards import detect_fake_mode
from torch._library.fake_class_registry import FakeScriptObject
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
from torch._utils_internal import log_export_usage
from torch.export._unlift import _check_input_constraints_pre_hook
from torch.export.dynamic_shapes import _check_dynamic_shapes, _combine_args
from torch.export.exported_program import OutputKind
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.experimental.symbolic_shapes import (
    ConstraintViolationError,
    free_unbacked_symbols,
    GuardOnDataDependentSymNode,
    ShapeEnv,
)
from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo
from torch.fx.graph_module import _get_attr
from torch.utils._pytree import TreeSpec
from torch.utils._sympy.value_ranges import ValueRangeError

from ._safeguard import AutogradStateOpsFailSafeguard
from .exported_program import (
    _disable_prexisiting_fake_mode,
    ExportedProgram,
    InputKind,
    ModuleCallEntry,
    ModuleCallSignature,
)
from .graph_signature import _convert_to_export_graph_signature, ExportGraphSignature


log = logging.getLogger(__name__)


@dataclasses.dataclass
class ExportDynamoConfig:
    """
    Manage Export-specific configurations of Dynamo.
    """

    allow_rnn: bool = True
    reorderable_logging_functions: Set[Callable] = dataclasses.field(
        default_factory=set
    )
    # Emit runtime asserts after AOTAutograd instead.
    # This isn't really necessary, and isn't much more efficient since the runtime asserts pass does CSE,
    # but if we want to reason more about what guards/runtime asserts to emit,
    # this makes it a bit cleaner to do from the export side. Also no real point in running this twice.
    do_not_emit_runtime_asserts = True


@dataclasses.dataclass
class ATenExportArtifact:
    gm: torch.fx.GraphModule
    sig: ExportGraphSignature
    constants: Dict[
        str,
        Union[
            torch.Tensor,
            FakeScriptObject,
            torch.ScriptObject,
        ],
    ]


@dataclasses.dataclass(frozen=True)
class ExportArtifact:
    aten: ATenExportArtifact
    out_spec: TreeSpec
    fake_mode: FakeTensorMode
    module_call_specs: Dict[str, Dict[str, pytree.TreeSpec]]


DEFAULT_EXPORT_DYNAMO_CONFIG = ExportDynamoConfig()
DEFAULT_EXPORT_DYNAMO_CONFIG.reorderable_logging_functions = {
    logging.critical,
    logging.debug,
    logging.error,
    logging.exception,
    logging.info,
    logging.log,
    logging.warning,
    print,
    warnings.warn,
}


@contextmanager
def _ignore_backend_decomps():
    orig_mkldnn_flag = torch.backends.mkldnn.set_flags(False)
    orig_nnpack_flag = torch.backends.nnpack.set_flags(False)
    try:
        yield
    finally:
        torch.backends.mkldnn.set_flags(*orig_mkldnn_flag)
        torch.backends.nnpack.set_flags(*orig_nnpack_flag)


def _fixup_key(x):
    return "L__self__" + _strip_root(x)


def _strip_root(x):
    if isinstance(x, str) and x.startswith("_export_root"):
        stripped = x[len("_export_root") :]
        return stripped[1:] if stripped.startswith(".") else stripped
    return x


def _rewrite_tracepoint_node(gm: torch.fx.GraphModule):
    """
    In-place modifiy input graph module by replacing the export tracepoint with a new node
    that has the same target and args, but with the _export_root stripped from path.
    """
    for node in gm.graph.nodes:
        if node.target == torch.ops.higher_order._export_tracepoint:
            if "path" in node.kwargs:
                path = _strip_root(node.kwargs["path"])
                with gm.graph.inserting_before(node):
                    new_node = gm.graph.create_node(
                        "call_function",
                        torch.ops.higher_order._export_tracepoint,
                        args=node.args,
                        kwargs={
                            "path": path,
                            "kind": node.kwargs["kind"],
                        },
                    )
                    new_node.meta = node.meta
                    node.replace_all_uses_with(new_node)
                    gm.graph.erase_node(node)


def _extract_fake_inputs(gm, args, kwargs):
    """
    Given a graph module, extract fakified input tensors from the metadata of
    its placeholders, and map them to the structure of given args and kwargs.
    Also return the fake mode used to fakify those inputs.
    """

    fake_inps: List[torch.Tensor] = []
    fake_vals: List[torch.Tensor] = []
    for node in gm.graph.nodes:
        if node.op == "placeholder" and "val" in node.meta:
            fake_val = node.meta["val"]
            if fake_val is not None and isinstance(fake_val, torch.Tensor):
                fake_inps.append(fake_val)
        elif "example_value" in node.meta:
            fake_val = node.meta["example_value"]
            if fake_val is not None and isinstance(fake_val, torch.Tensor):
                fake_vals.append(fake_val)

    if detected_fake_mode := detect_fake_mode(fake_inps + fake_vals):
        fake_mode = detected_fake_mode
    else:
        fake_mode = FakeTensorMode(shape_env=ShapeEnv(), export=True)

    count = 0

    def lookup_fake(x):
        nonlocal count
        val = fake_inps[count]
        count += 1
        return val

    fake_args = pytree.tree_map_only(torch.Tensor, lookup_fake, args)
    fake_kwargs = pytree.tree_map_only(torch.Tensor, lookup_fake, kwargs)

    return fake_args, fake_kwargs, fake_mode


def _replace_param_buffer_names(param_buffer_table, sig):
    for spec in sig.input_specs:
        if spec.kind in (
            InputKind.PARAMETER,
            InputKind.BUFFER,
        ):
            spec.target = param_buffer_table[spec.target]
    for spec in sig.output_specs:
        if spec.kind in (
            OutputKind.BUFFER_MUTATION,
            OutputKind.GRADIENT_TO_PARAMETER,
        ):
            spec.target = param_buffer_table[spec.target]


def _convert_to_positional_args(orig_arg_names, args, kwargs):
    assert len(orig_arg_names) == len(args) + len(kwargs), (
        f"Total number of arg names is expected to be {len(orig_arg_names)} "
        f"but got {len(args)} positional args, {len(kwargs)} kwargs."
    )
    reordered_kwargs = [kwargs[kw_name] for kw_name in orig_arg_names[len(args) :]]
    return (
        *args,
        *reordered_kwargs,
    )


def _normalize_nn_module_stack(gm_torch_level, root_cls):
    # Append a root module to every nn_module_stack.
    root = "L['self']"
    root_key = re.sub(r"[^a-zA-Z0-9]", "_", root)
    for gm in gm_torch_level.modules():
        if not isinstance(gm, torch.fx.GraphModule):
            continue
        for node in gm.graph.nodes:
            if node.op in ["placeholder", "output"]:
                continue
            add_root = True
            if nn_module_stack := node.meta.get("nn_module_stack", {}):
                path, ty = next(iter(nn_module_stack.values()))
                # After deserializing the class `ty` might not exist anymore so
                # it could be a string
                if inspect.isclass(ty) and issubclass(ty, torch.nn.Module):
                    # TODO Figure out why sometimes we have root sometimes we don't.
                    if path == root and ty is root_cls:
                        add_root = False
                else:
                    assert isinstance(ty, str)
            if add_root:

                def normalize_path(path):
                    try:
                        parts = []

                        class Path:
                            def __getattr__(self, name):
                                parts.append(name)
                                return self

                            def __getitem__(self, idx):
                                parts.append(str(idx))
                                return self

                        eval(path, {"L": {"self": Path()}})
                        return ".".join(parts)
                    except Exception:  # TODO(zhxchen17) Remove this.
                        return path

                nn_module_stack = {
                    root_key: (root, root_cls.__module__ + "." + root_cls.__qualname__),
                    **nn_module_stack,
                }
                node.meta["nn_module_stack"] = {
                    key: (normalize_path(path), ty)
                    for key, (path, ty) in nn_module_stack.items()
                }


def _get_param_buffer_mapping(
    original_module: torch.nn.Module,
    traced_module: torch.nn.Module,
) -> Dict[str, str]:
    """
    Returns a mapping of parameter/buffer names from the new module to the
    original model. This is to help with restoring the FQN for parameter/buffers
    of a traced module to what the original module contains.
    """

    param_lookup: Dict[int, str] = {}
    buffer_lookup: Dict[int, str] = {}
    for name, param in original_module.named_parameters(remove_duplicate=False):
        param_lookup[id(param)] = name
    for name, buffer in original_module.named_buffers(remove_duplicate=False):
        buffer_lookup[id(buffer)] = name

    param_buffer_table: Dict[str, str] = {}
    for dynamo_name, dynamo_param in traced_module.named_parameters(
        remove_duplicate=False
    ):
        assert dynamo_name not in param_buffer_table
        if id(dynamo_param) in param_lookup:
            param_buffer_table[dynamo_name] = param_lookup[id(dynamo_param)]

    for dynamo_name, dynamo_buffer in traced_module.named_buffers(
        remove_duplicate=False
    ):
        assert dynamo_name not in param_buffer_table
        if id(dynamo_buffer) in buffer_lookup:
            param_buffer_table[dynamo_name] = buffer_lookup[id(dynamo_buffer)]

    return param_buffer_table


def _preserve_requires_grad_pass(
    gm: torch.fx.GraphModule,
    sig: ExportGraphSignature,
    fake_params_buffers: Dict[str, torch.Tensor],
    constants: Dict[str, Union[torch.Tensor, FakeScriptObject, torch.ScriptObject]],
    flat_fake_args: List[Any],
):
    placeholders = [node for node in gm.graph.nodes if node.op == "placeholder"]
    assert len(sig.input_specs) == len(placeholders)
    i = 0
    for node, spec in zip(placeholders, sig.input_specs):
        if spec.kind in (
            InputKind.PARAMETER,
            InputKind.BUFFER,
        ):
            assert spec.target is not None
            node.meta["val"].requires_grad = fake_params_buffers[
                spec.target
            ].requires_grad
        elif spec.kind == InputKind.USER_INPUT:
            fake_arg = flat_fake_args[i]
            if isinstance(fake_arg, torch.Tensor):
                node.meta["val"].requires_grad = fake_arg.requires_grad
            i += 1
        elif spec.kind == InputKind.CONSTANT_TENSOR:
            assert spec.target is not None
            constant = constants[spec.target]
            if isinstance(constant, torch.Tensor):
                # If the tensor is not leaf, it should already have a correct requires grad field
                if node.meta["val"].is_leaf:
                    node.meta["val"].requires_grad = constant.requires_grad
                else:
                    assert node.meta["val"].requires_grad == constant.requires_grad
        elif spec.kind in (InputKind.CUSTOM_OBJ, InputKind.TOKEN):
            continue
        else:
            raise AssertionError(spec.kind)


def _remap_constants(
    orig_constant_attrs: ConstantAttrMap,
    graph_signature: ExportGraphSignature,
    constants: Dict[str, Union[torch.Tensor, FakeScriptObject, torch.ScriptObject]],
) -> None:
    """Rewrite the graph signature and constants table to use the FQN from the original module."""
    remap_table: Dict[str, List[str]] = {}
    for name, value in constants.items():
        if value in orig_constant_attrs:
            remap_table[name] = orig_constant_attrs[value]

    for spec in graph_signature.input_specs:
        if spec.kind in (
            InputKind.CONSTANT_TENSOR,
            InputKind.CUSTOM_OBJ,
        ):
            orig_target = spec.target
            assert orig_target is not None
            targets = remap_table.get(orig_target, [orig_target])
            spec.target = targets[0]

            constant = constants[orig_target]
            del constants[orig_target]
            for target in targets:
                constants[target] = constant


def _produce_aten_artifact(
    *,
    gm: torch.fx.GraphModule,
    mod,
    constant_attrs,
    graph_signature,
    pre_dispatch,
    fake_args,
    fake_kwargs,
    fake_params_buffers,
) -> ATenExportArtifact:
    """
    This is a helper function that is shared between export_to_aten_ir and export_to_aten_ir_make_fx
    to produce the aten artifact. (export compatible graph module + signature)

    It does:
    1. Applies runtime assertion pass
    2. Populate meta val when missing
    3. Lift constants as placeholders
    4. Replace raw autograd and autocast ops with HOPs
    5. Prettify names for placeholders
    6. Preserve requires_grad value on node meta val
    """
    # Run runtime asserts pass before creating input/output specs, since size-related CSE/DCE might affect output signature.
    # Overwrite output specs afterwards.
    flat_fake_args = pytree.tree_leaves((fake_args, fake_kwargs))
    gm, graph_signature = apply_runtime_assertion_pass(gm, graph_signature)

    total_non_user_inputs = (
        len(graph_signature.parameters)
        + len(graph_signature.buffers)
        + len(graph_signature.input_tokens)
    )
    set_missing_meta_vals(gm, flat_fake_args, total_non_user_inputs)

    export_graph_signature: Optional[ExportGraphSignature]
    export_graph_signature = _convert_to_export_graph_signature(
        graph_signature, gm, _get_non_persistent_buffers(mod)
    )

    # script objects are always stored in constants no matter whether they're initial inputs or
    # they're lifted in aot" before rewrite_script_object_meta
    constants = rewrite_script_object_meta(gm)
    constants.update(lift_constants_pass(gm, export_graph_signature, constant_attrs))

    if pre_dispatch:
        from torch._export.passes.replace_autocast_with_hop_pass import (
            replace_autocast_with_hop_pass,
        )
        from torch._export.passes.replace_set_grad_with_hop_pass import (
            replace_set_grad_with_hop_pass,
        )

        # Note: replace_set_grad_with_hop_pass need to be after lift_constant_pass because
        # a getattr of a constant tensor doesn't have meta["val"] until after lift_constant_pass.
        # If replace_set_grad_with_hop_pass is before lift_constant_pass,
        # and the constant_tensor is passed as input of the set grad hop, the placeholder's
        # meta["val"] will be None and fails our verifier for placeholder.
        gm, export_graph_signature = replace_set_grad_with_hop_pass(
            gm, export_graph_signature
        )

        gm, export_graph_signature = replace_autocast_with_hop_pass(
            gm, export_graph_signature
        )

    # Remove nn_module_stack, stack_trace metadata from all placeholders/inputs nodes.
    for _mod in gm.modules():
        if not isinstance(_mod, torch.fx.GraphModule):
            continue
        for node in _mod.graph.nodes:
            if node.op in ["placeholder", "output"]:
                node.meta.pop("nn_module_stack", None)
                node.meta.pop("stack_trace", None)

    # Prettify names for placeholder nodes.
    assert export_graph_signature is not None
    placeholder_naming_pass(
        gm,
        export_graph_signature,
        mod,
        fake_args,
        fake_kwargs,
        fake_params_buffers,
        constants,
    )

    _preserve_requires_grad_pass(
        gm, export_graph_signature, fake_params_buffers, constants, flat_fake_args
    )

    return ATenExportArtifact(
        gm,
        export_graph_signature,
        constants,
    )


def _rename_constants_nodes(
    gm: torch.fx.GraphModule,
    graph_signature: ExportGraphSignature,
) -> None:
    """
    For strict mode, rename constants nodes that were previously annotated as buffers.
    """
    # handle name collisions with existing constants
    node_names = {node.name for node in gm.graph.nodes}

    def rename_constant(name):
        if name in node_names:
            n = 1
            while (dup_name := f"{name}_{n}") in node_names:
                n += 1
            name = dup_name
        node_names.add(name)
        return name

    # use input specs to map names from buffers to constants
    buffer_prefix = placeholder_prefixes[InputKind.BUFFER]
    const_prefix = placeholder_prefixes[InputKind.CONSTANT_TENSOR]
    buffer_to_constant = {}
    for spec in graph_signature.input_specs:
        if spec.kind == InputKind.CONSTANT_TENSOR and not spec.arg.name.startswith(
            const_prefix
        ):
            if spec.arg.name.startswith(buffer_prefix):  # map from buffer to constants
                c_name = rename_constant(
                    const_prefix + spec.arg.name[len(buffer_prefix) :]
                )
            else:  # lifted constant
                c_name = rename_constant(const_prefix + spec.arg.name)
            buffer_to_constant[spec.arg.name] = c_name
            spec.arg.name = c_name
    for spec in graph_signature.output_specs:
        if spec.arg.name in buffer_to_constant:
            spec.arg.name = buffer_to_constant[spec.arg.name]

    # Rename constants nodes for all modules
    for mod in gm.modules():
        if not isinstance(mod, torch.fx.GraphModule):
            continue
        for node in mod.graph.nodes:
            if node.name in buffer_to_constant:
                node.name = node.target = buffer_to_constant[node.name]
        mod.recompile()


def _restore_state_dict(
    original_module: torch.nn.Module, traced_module: torch.fx.GraphModule
) -> None:
    """
    Restores the state dict of the traced module to that of the original module.
    """
    param_buffer_table = _get_param_buffer_mapping(original_module, traced_module)
    # Since the graph module is flattened (no module heirarchy), we
    # need to noramlize the module by replacing "." with "_". If we
    # don't, it will try to save the weight to a submodule which no
    # longer exists.
    for name, fqn in param_buffer_table.items():
        param_buffer_table[name] = fqn.replace(".", "_")

    # Replace state dict attr names with the fqn
    for name, fqn in param_buffer_table.items():
        if not hasattr(traced_module, name):
            continue

        attr = getattr(traced_module, name)
        if isinstance(attr, torch.Tensor) and not isinstance(attr, torch.nn.Parameter):
            traced_module.register_buffer(fqn, attr)
        else:
            setattr(traced_module, fqn, attr)
        delattr(traced_module, name)

    # Replace graph getattr nodes with the correct name
    for node in traced_module.graph.nodes:
        if node.op == "get_attr":
            attr_name = node.target
            if attr_name in param_buffer_table:
                node.target = param_buffer_table[attr_name]

    traced_module.recompile()


def _get_module_hierarchy(mod: torch.nn.Module) -> Dict[str, str]:
    return {
        name: type(m).__name__ for name, m in mod.named_modules(remove_duplicate=False)
    }


def _make_module_call_graph(
    in_spec: TreeSpec,
    out_spec: TreeSpec,
    module_call_signatures: Dict[str, ModuleCallSignature],
    forward_arg_names: Optional[List[str]] = None,
) -> List[ModuleCallEntry]:
    original = [
        ModuleCallEntry(fqn=fqn, signature=module_call_signatures.get(fqn))
        for fqn in _EXPORT_MODULE_HIERARCHY  # type: ignore[union-attr]
    ]
    assert original[0].fqn == ""
    original[0].signature = ModuleCallSignature(
        inputs=[],
        outputs=[],
        in_spec=in_spec,
        out_spec=out_spec,
        forward_arg_names=forward_arg_names,
    )
    additional = [
        ModuleCallEntry(fqn=fqn, signature=signature)
        for fqn, signature in module_call_signatures.items()
        if fqn not in _EXPORT_MODULE_HIERARCHY  # type: ignore[operator]
    ]
    return [*original, *additional]


def _export_to_torch_ir(
    f: Callable,
    args: Tuple[Any, ...],
    kwargs: Optional[Dict[str, Any]] = None,
    dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any], List[Any]]] = None,
    *,
    preserve_module_call_signature: Tuple[str, ...] = (),
    disable_constraint_solver: bool = False,
    allow_complex_guards_as_runtime_asserts: bool = False,
    restore_fqn: bool = True,
    _log_export_usage: bool = True,
    same_signature: bool = True,
) -> torch.fx.GraphModule:
    """
    Traces either an nn.Module's forward function or just a callable with PyTorch
    operations inside and produce a torch.fx.GraphModule in torch IR.
    """

    if _log_export_usage:
        log_export_usage(event="export.private_api", flags={"_export_to_torch_ir"})

    if not isinstance(args, tuple):
        raise UserError(
            UserErrorType.INVALID_INPUT,
            f"Expecting `args` to be a tuple of example positional inputs, got {type(args)}",
        )

    kwargs = kwargs or {}
    combined_args = _combine_args(f, args, kwargs)
    _check_dynamic_shapes(combined_args, dynamic_shapes)
    with torch._dynamo.config.patch(dataclasses.asdict(DEFAULT_EXPORT_DYNAMO_CONFIG)):
        try:
            module_call_specs: Dict[str, Dict[str, pytree.TreeSpec]] = {}
            with _wrap_submodules(
                f, preserve_module_call_signature, module_call_specs
            ), _ignore_backend_decomps():
                gm_torch_level, _ = torch._dynamo.export(
                    f,
                    dynamic_shapes=dynamic_shapes,  # type: ignore[arg-type]
                    assume_static_by_default=True,
                    tracing_mode="symbolic",
                    disable_constraint_solver=disable_constraint_solver,
                    # currently the following 2 flags are tied together for export purposes,
                    # but untangle for sake of dynamo export api
                    prefer_deferred_runtime_asserts_over_guards=True,
                    allow_complex_guards_as_runtime_asserts=allow_complex_guards_as_runtime_asserts,
                    _log_export_usage=_log_export_usage,
                    same_signature=same_signature,
                )(
                    *args,
                    **kwargs,
                )
        except (ConstraintViolationError, ValueRangeError) as e:
            raise UserError(UserErrorType.CONSTRAINT_VIOLATION, str(e))  # noqa: B904
        except GuardOnDataDependentSymNode as e:
            raise UserError(  # noqa: B904
                UserErrorType.ANTI_PATTERN,
                f"Consider annotating your code using torch._check*(). {str(e)}",
                case_name="constrain_as_size_example",
            )

    gm_torch_level.meta["module_call_specs"] = module_call_specs

    if isinstance(f, torch.nn.Module) and restore_fqn:
        _restore_state_dict(f, gm_torch_level)

    return gm_torch_level


def _export_to_aten_ir(
    mod: torch.nn.Module,
    fake_args,
    fake_kwargs,
    fake_params_buffers,
    constant_attrs: ConstantAttrMap,
    produce_guards_callback=None,
    *,
    transform=lambda x: x,  # TODO(zhxchen17) Revisit if this is needed later.
    pre_dispatch=False,
    decomp_table=None,
    _check_autograd_state: bool = True,
    _is_torch_jit_trace: bool = False,
) -> ATenExportArtifact:
    # [NOTE] If the user is exporting under training mode, we want to detect if there is any
    # state change in the autograd global state and error. If the user is exporting under inference
    # mode, we don't care. At predispatch level, we don't care about the state change.
    is_grad_enabled = torch._C.is_grad_enabled()
    grad_safe_guard = nullcontext()
    # export_to_aten_ir is called when we decompose the ep into inference IR
    # In that setting, we actually shouldn't check the state change as at this point,
    # because the intention is specalizing to inference.
    if _check_autograd_state:
        if not pre_dispatch and is_grad_enabled:
            grad_safe_guard = AutogradStateOpsFailSafeguard()  # type: ignore[assignment]

    @contextmanager
    def _compiling_state_context():
        old_value = torch.compiler._is_compiling_flag
        try:
            torch.compiler._is_compiling_flag = True
            yield
        finally:
            torch.compiler._is_compiling_flag = old_value

    # This _reparametrize_module makes sure inputs and module.params/buffers have the same fake_mode,
    # otherwise aot_export_module will error out because it sees a mix of fake_modes.
    # And we want aot_export_module to use the fake_tensor mode in dynamo to keep the pipeline easy to reason about.
    with torch.nn.utils.stateless._reparametrize_module(
        mod,
        fake_params_buffers,
        tie_weights=True,
        strict=True,
        stack_weights=True,
    ), grad_safe_guard, _ignore_backend_decomps(), _compiling_state_context():  # type: ignore[attr-defined]
        gm, graph_signature = transform(aot_export_module)(
            mod,
            fake_args,
            trace_joint=False,
            pre_dispatch=pre_dispatch,
            decompositions=decomp_table,
            kwargs=fake_kwargs,
        )

    def _maybe_fixup_gm_and_output_node_meta(old_gm, new_gm):
        if isinstance(old_gm, torch.fx.GraphModule):
            if hasattr(old_gm, "meta"):
                new_gm.meta.update(old_gm.meta)
            old_output_node = list(old_gm.graph.nodes)[-1]
            new_output_node = list(new_gm.graph.nodes)[-1]
            assert old_output_node.op == "output" and new_output_node.op == "output"
            # make sure we don't override any meta
            assert len(new_output_node.meta) == 0
            new_output_node.meta.update(old_output_node.meta)

    # TODO unfortunately preserving graph-level metadata and output node's meta
    # is not working well with aot_export. So we manually copy it.
    # (The node-level meta is addressed above.)
    _maybe_fixup_gm_and_output_node_meta(mod, gm)

    # Run produce guards before we handle runtime asserts.
    # This means we run the export solver before the runtime asserts pass.
    # Right now this doesn't mean much - the export solver is only there for suggested fixes,
    # and we won't even get to constraint solving if that's needed.
    # But if in future we want to control what runtime asserts are emitted for export,
    # or rely on produce_guards + solver for some simplification on runtime asserts, this probably makes sense.
    if produce_guards_callback:
        try:
            produce_guards_callback(gm)
        except (ConstraintViolationError, ValueRangeError) as e:
            raise UserError(UserErrorType.CONSTRAINT_VIOLATION, str(e))  # noqa: B904

    return _produce_aten_artifact(
        gm=gm,
        mod=mod,
        constant_attrs=constant_attrs,
        graph_signature=graph_signature,
        pre_dispatch=pre_dispatch,
        fake_args=fake_args,
        fake_kwargs=fake_kwargs,
        fake_params_buffers=fake_params_buffers,
    )


def _fakify_params_buffers(
    fake_mode: FakeTensorMode,
    mod: torch.nn.Module,
) -> Dict[str, Union[torch.Tensor, torch.nn.Parameter]]:
    params_buffers = {
        **dict(mod.named_parameters(remove_duplicate=False)),
        **dict(mod.named_buffers(remove_duplicate=False)),
    }

    faked_params_buffers = {}
    memo: Dict[int, FakeTensor] = {}
    for key, value in params_buffers.items():
        if id(value) in memo:
            fake_tensor = memo[id(value)]
        else:
            fake_tensor = fake_mode.from_tensor(value, static_shapes=True)
            memo[id(value)] = fake_tensor
        faked_params_buffers[key] = fake_tensor
    return faked_params_buffers  # type: ignore[return-value]


def _get_forward_arg_names(
    mod: torch.nn.Module,
    args: Tuple[Any, ...],
    kwargs: Optional[Dict[str, Any]] = None,
) -> List[str]:
    """
    Gets the argument names to forward that are used, for restoring the
    original signature when unlifting the exported program module.
    - Positional args: retain the original argument names, and enumerate
        *args as args_0, args_1, ...
    - Keyword args: retain the original kwarg names in the order specified
        by the user. This order seems to matter for the current state of
        export lifted modules.
    """
    sig = inspect.signature(mod.forward)
    _args = sig.bind_partial(*args).arguments

    names: List[str] = []
    for name, value in _args.items():
        # handle variable number of positional args
        if sig.parameters[name].kind == inspect._ParameterKind.VAR_POSITIONAL:
            names.extend([f"{name}_{i}" for i, _ in enumerate(value)])
        else:
            names.append(name)
    # order of kwargs matters for input spec
    if kwargs:
        names.extend([kwarg for kwarg, _ in kwargs.items()])

    return names


def _get_non_persistent_buffers(mod: torch.nn.Module) -> Set[str]:
    """
    Returns set of non-persistent buffers in a module and its submodules.
    """
    result = set()
    for name, m in mod.named_modules(remove_duplicate=False):
        for b in m._non_persistent_buffers_set:
            result.add(f"{name}.{b}" if name else b)
    return result


def _rewrite_dynamo_tensor_constants(
    orig_mod_buffers: Set[torch.Tensor],
    traced_mod_buffers: Dict[str, torch.Tensor],
    graph_signature: ExportGraphSignature,
    constants: Dict[str, Union[torch.Tensor, FakeScriptObject, torch.ScriptObject]],
) -> None:
    """
    Dynamo erroneously marks tensor attributes on modules as buffers.
    Rewrite them to be tensor constants.
    """
    for spec in graph_signature.input_specs:
        if spec.kind == InputKind.BUFFER:
            assert spec.target is not None
            value = traced_mod_buffers[spec.target]
            if value not in orig_mod_buffers:
                # This was a tensor constant erroneously marked as a buffer.
                # Convert it into a constant in the graph signature, and add its
                # value to the constants table.
                spec.kind = InputKind.CONSTANT_TENSOR
                constants[spec.target] = value  # type: ignore[arg-type]


def _move_non_persistent_buffers_to_tensor_constants(
    orig_mod: torch.nn.Module,
    graph_signature: ExportGraphSignature,
    constants: Dict[str, Union[torch.Tensor, FakeScriptObject, torch.ScriptObject]],
) -> None:
    """
    Moves non-persistent buffers to tensor constants.
    """
    for spec in graph_signature.input_specs:
        if spec.kind == InputKind.BUFFER and not spec.persistent:
            assert spec.target is not None
            assert spec.target not in constants
            constants[spec.target] = orig_mod.get_buffer(spec.target)  # type: ignore[arg-type]


def _verify_nn_module_stack(graph_module: torch.fx.GraphModule) -> None:
    """
    Perform nn_module_stack checks on the graph.
    Current constraints:
        For the top level graph:
        - populated for 'call_function', 'get_attr'
        - None for 'placeholder', 'output'
        For submodule graphs:
        - None for 'placeholder', output'

    TODO(pianpwk): make this a consistent node-level check once nn_module_stack is populated for cond submodules.
    """
    # Check top-level graph for all nodes, all graphs for placeholder & output nodes
    for i, mod in enumerate([graph_module] + list(graph_module.modules())):
        if not isinstance(mod, torch.fx.GraphModule):
            continue
        for node in mod.graph.nodes:
            if node.op in ["call_function", "get_attr"]:
                if i == 0:
                    if (
                        nn_module_stack := node.meta.get("nn_module_stack", None)
                    ) is None:
                        raise SpecViolationError(
                            f"Node {node} of type {node.op} is missing nn_module_stack metadata"
                        )
                    if not all(
                        isinstance(k, str)
                        and isinstance(v, tuple)
                        and len(v) == 2
                        and all(isinstance(x, str) for x in v)
                        for k, v in nn_module_stack.items()
                    ):
                        raise SpecViolationError(
                            f"Node {node} of type {node.op} has incorrect nn_module_stack metadata format"
                            f"expected Dict[str, Tuple[str, str]], but got {nn_module_stack}"
                        )
            elif node.op in ["placeholder", "output"]:
                if node.meta.get("nn_module_stack", None):
                    raise SpecViolationError(
                        f"Node {node} of type {node.op} contains nn_module_stack metadata, this should be None"
                    )


def _verify_stack_trace(graph_module: torch.fx.GraphModule) -> None:
    """
    Perform stack trace checks on the graph.
    Constraints:
        - None or non-empty str for 'call_function', 'get_attr'
        - None for 'placeholder', 'output'
    """
    for mod in [graph_module, *graph_module.modules()]:
        if not isinstance(mod, torch.fx.GraphModule):
            continue
        for node in graph_module.graph.nodes:
            stack_trace = node.meta.get("stack_trace", None)
            if node.op in ["call_function", "get_attr"]:
                if not (stack_trace is None or isinstance(stack_trace, str)):
                    raise SpecViolationError(
                        f"Node {node} of type {node.op} has invalid stack_trace metadata, "
                        f"expected a string or None but instead found: {stack_trace}"
                    )
            elif node.op in ["placeholder", "output"]:
                if stack_trace:
                    raise SpecViolationError(
                        f"Node {node} of type {node.op} contains stack_trace metadata, "
                        f"expected None but instead found: {stack_trace}"
                    )


def _verify_placeholder_names(
    gm: torch.fx.GraphModule, sig: ExportGraphSignature
) -> None:
    """
    Performs a sanity check on the placeholder node names.
    - User input nodes: no restrictions, should match the original forward() signature
    - Params/buffers/constants/custom_obj/token nodes: should start with prefixes defined in <placeholder_prefixes>
    """
    name_to_kind = {spec.arg.name: spec.kind for spec in sig.input_specs}
    for mod in gm.modules():
        if not isinstance(mod, torch.fx.GraphModule):
            continue
        for node in mod.graph.nodes:
            if node.op == "placeholder":
                if node.name not in name_to_kind:
                    continue
                node_kind = name_to_kind[node.name]
                prefix = placeholder_prefixes[node_kind]
                if not node.name.startswith(prefix):
                    raise SpecViolationError(
                        f"Placeholder node name {node.name} does not follow spec for {node_kind}, name should have prefix: {prefix}"
                    )


def get_ep_stats(ep: ExportedProgram) -> Dict[str, Any]:
    op_count = 0
    op_set = set()
    for m in ep.graph_module.modules():
        if not isinstance(m, torch.fx.GraphModule):
            continue
        for node in m.graph.nodes:
            if node.op != "call_function":
                continue
            op_count += 1
            assert hasattr(node.target, "__module__")
            assert hasattr(node.target, "__name__")
            op_set.add(f"{node.target.__module__}.{node.target.__name__}")
    return {"op_count": op_count, "op_set": op_set}


_EXPORT_FLAGS: Optional[Set[str]] = None
_EXPORT_MODULE_HIERARCHY: Optional[Dict[str, str]] = None


def _log_export_wrapper(fn):
    @functools.wraps(fn)
    def wrapper(*args, **kwargs):
        global _EXPORT_FLAGS, _EXPORT_MODULE_HIERARCHY
        try:
            start = time.time()
            ep = fn(*args, **kwargs)
            end = time.time()
            log_export_usage(
                event="export.time",
                metrics=end - start,
                flags=_EXPORT_FLAGS,
                **get_ep_stats(ep),
            )
        except Exception as e:
            t = type(e)
            error_type = t.__module__ + "." + t.__qualname__
            case_name = get_class_if_classified_error(e)
            if case_name is not None:
                log.error(exportdb_error_message(case_name))
                log_export_usage(
                    event="export.error.classified",
                    type=error_type,
                    message=str(e),
                    flags=_EXPORT_FLAGS,
                )
            else:
                log_export_usage(
                    event="export.error.unclassified",
                    type=error_type,
                    message=str(e),
                    flags=_EXPORT_FLAGS,
                )
            raise e
        finally:
            _EXPORT_FLAGS = None
            _EXPORT_MODULE_HIERARCHY = None

        return ep

    return wrapper


def _process_jit_trace_inputs_for_export(example_inputs, example_kwarg_inputs):
    if not isinstance(example_inputs, (tuple, list, dict)):
        example_inputs = (example_inputs,)

    elif isinstance(example_inputs, list):
        example_inputs = tuple(example_inputs)

    elif (
        isinstance(example_inputs, (torch.Tensor, dict))
        and example_kwarg_inputs is None
    ):
        example_inputs = (example_inputs,)

    if example_kwarg_inputs is None:
        example_kwarg_inputs = {}
    return example_inputs, example_kwarg_inputs


def _process_export_inputs(mod, args, kwargs, dynamic_shapes):
    # Explicitly not calling mode.state_dict() as we do not want the module state for serialization
    # but the running module state so we can always match by id() the entries here with the graph inputs
    named_parameters = dict(mod.named_parameters(remove_duplicate=False))
    named_buffers = dict(mod.named_buffers(remove_duplicate=False))
    original_state_dict = named_parameters | named_buffers

    non_persistent_buffers = _get_non_persistent_buffers(mod)
    for k in non_persistent_buffers:
        original_state_dict.pop(k, None)

    if not isinstance(args, tuple):
        raise UserError(
            UserErrorType.INVALID_INPUT,
            f"Expecting `args` to be a tuple of example positional inputs, got {type(args)}",
        )
    kwargs = kwargs if kwargs is not None else {}
    _, original_in_spec = pytree.tree_flatten((args, kwargs))

    if isinstance(dynamic_shapes, torch.export.ShapesCollection):
        dynamic_shapes = dynamic_shapes.dynamic_shapes(mod, args, kwargs)

    return args, kwargs, original_in_spec, original_state_dict, dynamic_shapes


def _get_module_call_graph(
    export_artifact: ExportArtifact,
    original_in_spec: TreeSpec,
    preserve_module_call_signature: Tuple[str, ...],
    strict_mode_export: bool,
    forward_arg_names: Optional[List[str]] = None,
) -> Tuple[torch.fx.GraphModule, List[ModuleCallEntry]]:
    """
    In-place modify the graph module in export_artifact, remove _export_tracepoint nodes and
    return module_call_graph.
    """
    gm: torch.fx.GraphModule = export_artifact.aten.gm
    export_graph_signature: ExportGraphSignature = export_artifact.aten.sig
    module_call_specs: Dict[
        str, Dict[str, TreeSpec]
    ] = export_artifact.module_call_specs
    out_spec: TreeSpec = export_artifact.out_spec

    # Make module signatures.
    module_call_signatures: Dict[str, ModuleCallSignature] = {}
    for fqn, specs in module_call_specs.items():
        mod_fqn = _strip_root(fqn) if not strict_mode_export else fqn
        module_call_signatures[mod_fqn] = ModuleCallSignature(
            inputs=[],
            outputs=[],
            in_spec=specs["in_spec"],
            out_spec=specs["out_spec"],
            forward_arg_names=None,  # we only propage forward_arg_names for the top level module
        )

    if len(preserve_module_call_signature) > 0:
        if not strict_mode_export:
            _rewrite_tracepoint_node(gm)
        res = CollectTracepointsPass(module_call_signatures, export_graph_signature)(gm)
        assert res is not None
        gm = res.graph_module

    assert _EXPORT_MODULE_HIERARCHY is not None
    module_call_graph = _make_module_call_graph(
        original_in_spec,
        out_spec,
        module_call_signatures,
        forward_arg_names,
    )
    return gm, module_call_graph


def _get_range_constraints(
    export_artifact: ExportArtifact, combined_args: Dict[str, Any], dynamic_shapes
):
    gm: torch.fx.GraphModule = export_artifact.aten.gm
    export_graph_signature: ExportGraphSignature = export_artifact.aten.sig
    fake_mode: FakeTensorMode = export_artifact.fake_mode
    num_lifted = next(
        (
            i
            for i, s in enumerate(export_graph_signature.input_specs)
            if s.kind == InputKind.USER_INPUT
        ),
        len(export_graph_signature.input_specs),
    )
    range_constraints = make_constraints(
        fake_mode,
        gm,
        combined_args,
        dynamic_shapes,
        num_lifted,
    )
    return range_constraints


def _get_inline_constraints(fake_mode: FakeTensorMode):
    assert fake_mode.shape_env is not None
    return {
        k: v
        for k, v in fake_mode.shape_env.var_to_range.items()
        if free_unbacked_symbols(k)
    }


@contextmanager
def patch_forward(obj: torch.nn.Module, new_method):
    """Helper method to make it easier to cleanly torch.export() a method on a
    module that is not `forward`.
    """
    # Save the original method
    original_method = obj.forward

    # Patch the method
    obj.forward = new_method.__get__(obj, obj.__class__)

    try:
        yield
    finally:
        # Restore the original method
        obj.forward = original_method


@contextmanager
def _temp_disable_texpr_fuser():
    original_state = torch._C._jit_texpr_fuser_enabled()
    torch._C._jit_set_texpr_fuser_enabled(False)
    try:
        yield
    finally:
        torch._C._jit_set_texpr_fuser_enabled(original_state)


class _WrapperModule(torch.nn.Module):
    def __init__(self, f):
        super().__init__()
        self.f = f

    def forward(self, *args, **kwargs):
        return self.f(*args, **kwargs)


def _convert_ts_to_export_experimental(traced_callable, args, kwargs=None):
    with _temp_disable_texpr_fuser():
        from torch.jit._trace import TopLevelTracedModule

        export_args, export_kwargs = _process_jit_trace_inputs_for_export(args, kwargs)

        if isinstance(traced_callable, (TopLevelTracedModule, torch._C.ScriptModule)):  # type: ignore[operator]
            return _export(
                traced_callable,
                export_args,
                export_kwargs,
                strict=False,
                _is_torch_jit_trace=True,
            ).module()

        elif isinstance(traced_callable, torch.ScriptMethod) and isinstance(
            traced_callable.owner(), (torch._C.ScriptModule, torch.nn.Module)  # type: ignore[operator]
        ):
            with patch_forward(traced_callable.owner(), traced_callable):  # type: ignore[operator]
                return _export(
                    traced_callable.owner(),  # type: ignore[operator]
                    export_args,
                    export_kwargs,
                    strict=False,
                    _is_torch_jit_trace=True,
                ).module()

        else:
            return _export(
                _WrapperModule(traced_callable),
                export_args,
                export_kwargs,
                strict=False,
                _is_torch_jit_trace=True,
            ).module()


def _strict_export(
    mod: torch.nn.Module,
    args: Tuple[Any, ...],
    kwargs: Dict[str, Any],
    dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any], List[Any]]],
    preserve_module_call_signature: Tuple[str, ...],
    pre_dispatch: bool,
    original_state_dict: Dict[str, Any],
    orig_in_spec: TreeSpec,
    allow_complex_guards_as_runtime_asserts: bool,
    _is_torch_jit_trace: bool,
) -> ExportArtifact:
    lower_to_aten = functools.partial(_export_to_aten_ir, pre_dispatch=pre_dispatch)
    return _strict_export_lower_to_aten_ir(
        mod=mod,
        args=args,
        kwargs=kwargs,
        dynamic_shapes=dynamic_shapes,
        preserve_module_call_signature=preserve_module_call_signature,
        pre_dispatch=pre_dispatch,
        original_state_dict=original_state_dict,
        orig_in_spec=orig_in_spec,
        allow_complex_guards_as_runtime_asserts=allow_complex_guards_as_runtime_asserts,
        _is_torch_jit_trace=_is_torch_jit_trace,
        lower_to_aten_callback=lower_to_aten,
    )


def _strict_export_lower_to_aten_ir(
    mod: torch.nn.Module,
    args: Tuple[Any, ...],
    kwargs: Dict[str, Any],
    dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any], List[Any]]],
    preserve_module_call_signature: Tuple[str, ...],
    pre_dispatch: bool,
    original_state_dict: Dict[str, Any],
    orig_in_spec: TreeSpec,
    allow_complex_guards_as_runtime_asserts: bool,
    _is_torch_jit_trace: bool,
    lower_to_aten_callback: Callable,
) -> ExportArtifact:
    gm_torch_level = _export_to_torch_ir(
        mod,
        args,
        kwargs,
        dynamic_shapes,
        preserve_module_call_signature=preserve_module_call_signature,
        restore_fqn=False,  # don't need to restore because we will do it later
        allow_complex_guards_as_runtime_asserts=allow_complex_guards_as_runtime_asserts,
        _log_export_usage=False,
    )

    # We detect the fake_mode by looking at gm_torch_level's placeholders, this is the fake_mode created in dynamo.
    (
        fake_args,
        fake_kwargs,
        dynamo_fake_mode,
    ) = _extract_fake_inputs(gm_torch_level, args, kwargs)

    fake_params_buffers = _fakify_params_buffers(dynamo_fake_mode, gm_torch_level)

    # First, we want to pass through the graph to try populating
    # val field for getattr if there is anything missing.
    # This can happen when quantization adds extra params and forgets
    # to update "val"
    for node in gm_torch_level.graph.nodes:
        if node.op == "get_attr" and "val" not in node.meta:
            attr = getattr(gm_torch_level, node.target)
            # Checks if it is not a HigherOrderOp branch or a module
            if not isinstance(attr, torch.nn.Module):
                assert (
                    dynamo_fake_mode is not None
                ), "Cannot find dynamo_fake_mode. This could be due to the exported graph module have no placeholders."
                node.meta["val"] = dynamo_fake_mode.from_tensor(
                    attr, static_shapes=True
                )

    # Fix the graph output signature to be tuple if scalar

    # gm_torch_level.graph._codegen is made a _PyTreeCodeGen in rewrite_signature in eval_frame.py
    assert isinstance(gm_torch_level.graph._codegen, torch.fx.graph._PyTreeCodeGen)

    # Calling gm_torch_level._out_spec is not safe because gm_torch_level might be
    # a _LazyGraphModule, which does not populate _out_spec when calling recompile().
    # TODO: Fix recompile() in  _LazyGraphModule. T207713214
    out_spec = orig_out_spec = gm_torch_level.graph._codegen.pytree_info.out_spec

    # Used to get rid of lint type error.
    assert out_spec is not None
    assert orig_out_spec is not None

    # aot_export expect the return type to always be a tuple.
    if out_spec.type not in (list, tuple):
        out_spec = pytree.TreeSpec(tuple, None, [out_spec])

    orig_arg_names = gm_torch_level.graph._codegen.pytree_info.orig_args  # type: ignore[attr-defined]

    gm_torch_level.graph._codegen = _PyTreeCodeGen(
        _PyTreeInfo(
            orig_arg_names,
            gm_torch_level._in_spec,
            out_spec,
        )
    )
    gm_torch_level.recompile()

    _normalize_nn_module_stack(gm_torch_level, type(mod))

    params_buffers_to_node_meta = _collect_param_buffer_metadata(gm_torch_level)

    # When aot_export lifts the params, we lose metadata (e.g. source_fn_stack, stack_trace)
    # from the param nodes as they are treated as fresh inputs
    # Therefore, we manually extract them before calling into aot_export
    # params_buffers_to_node_meta = _collect_param_buffer_metadata(gm_torch_level)

    constant_attrs = _gather_constant_attrs(mod)
    param_buffer_table: Dict[str, str] = _get_param_buffer_mapping(mod, gm_torch_level)

    # Dynamo does not track which buffers were registered as non-persistent. This info
    # is available in the original module, so we transfer it to the traced module. Also,
    # since we didn't restore original param/buffer names yet, we must use traced names.
    non_persistent_buffers = _get_non_persistent_buffers(mod)
    reverse_name_lookup = {orig: traced for traced, orig in param_buffer_table.items()}
    gm_torch_level._non_persistent_buffers_set = {
        reverse_name_lookup[name]
        for name in non_persistent_buffers
        if name in reverse_name_lookup
    }
    with dynamo_fake_mode:
        aten_export_artifact = lower_to_aten_callback(
            gm_torch_level,
            # NOTE: graph module expects only positional args
            _convert_to_positional_args(orig_arg_names, fake_args, fake_kwargs),
            {},
            fake_params_buffers,
            constant_attrs,
        )

    # Decompose for readability.
    gm = aten_export_artifact.gm
    export_graph_signature = aten_export_artifact.sig
    constants = aten_export_artifact.constants

    _populate_param_buffer_metadata_to_new_gm(
        params_buffers_to_node_meta, gm, export_graph_signature
    )

    # Do some cleanups on the graph module to restore the state dict to the
    # expected form. Each of these steps should probably get fixed upstream.
    # 1. Remove tensor constants that were added as buffers.
    _rewrite_dynamo_tensor_constants(
        orig_mod_buffers=set(mod.buffers()),
        traced_mod_buffers=dict(gm_torch_level.named_buffers()),
        graph_signature=export_graph_signature,
        constants=constants,
    )
    # 2. Restore FQN of param/buffers
    _replace_param_buffer_names(param_buffer_table, export_graph_signature)

    # 3. Move non-persistent buffers to tensor constants
    _move_non_persistent_buffers_to_tensor_constants(
        mod, export_graph_signature, constants
    )

    # 4. Rewrite constants to have the same FQN as the original module.
    _remap_constants(constant_attrs, export_graph_signature, constants)

    # 5. Rename constants nodes in graph module from buffers to constants
    _rename_constants_nodes(gm, export_graph_signature)

    return ExportArtifact(
        aten=aten_export_artifact,
        out_spec=orig_out_spec,
        fake_mode=dynamo_fake_mode,
        module_call_specs=gm_torch_level.meta["module_call_specs"],
    )


def _export_to_aten_ir_make_fx(
    mod: torch.nn.Module,
    fake_args,
    fake_kwargs,
    fake_params_buffers,
    constant_attrs: ConstantAttrMap,
    produce_guards_callback=None,
    transform=lambda x: x,
) -> ATenExportArtifact:
    @contextmanager
    def _compiling_state_context():
        old_value = torch.compiler._is_compiling_flag
        try:
            torch.compiler._is_compiling_flag = True
            yield
        finally:
            torch.compiler._is_compiling_flag = old_value

    def _make_fx_helper(mod, args, kwargs, **flags):
        from torch._functorch._aot_autograd.schemas import GraphSignature

        kwargs = kwargs or {}

        named_parameters = dict(mod.named_parameters(remove_duplicate=False))
        named_buffers = dict(mod.named_buffers(remove_duplicate=False))

        params_and_buffers = {**named_parameters, **named_buffers}
        params_and_buffers_flat, params_spec = pytree.tree_flatten(params_and_buffers)
        params_and_buffers_flat = tuple(params_and_buffers_flat)

        param_len = len(named_parameters)
        buffer_len = len(named_buffers)
        params_len = len(params_and_buffers)

        functional_call = create_functional_call(
            mod, params_spec, params_len, store_orig_mod=True
        )

        params_buffers_args: List[Any] = []
        params_buffers_args.extend(params_and_buffers_flat)
        params_buffers_args.extend(args)

        flat_fn, out_spec = create_tree_flattened_fn(
            functional_call, params_buffers_args, kwargs
        )
        flat_args, in_spec = pytree.tree_flatten((params_buffers_args, kwargs))

        @functools.wraps(flat_fn)
        def wrapped_fn(*args):
            return tuple(flat_fn(*args))

        with enable_python_dispatcher():
            ctx = nullcontext()
            non_strict_root = getattr(mod, "_export_root", None)
            if non_strict_root is not None:
                ctx = _detect_attribute_assignment(non_strict_root)  # type: ignore[assignment]

                # For any buffer that is assigned, we want to associate it to the final proxy node
                # that it is assigned to. This node can then be copied into the buffer.
                assigned_buffers: Dict[str, str] = {}
                hook = register_buffer_assignment_hook(
                    non_strict_root, assigned_buffers
                )

            with ctx:
                gm = make_fx(
                    wrapped_fn,
                    record_module_stack=True,
                    pre_dispatch=True,
                )(*flat_args)

            if non_strict_root is not None:
                input_names = _graph_input_names(gm)
                buffer_input_names = {
                    buf: input_names[param_len + i]
                    for i, buf in enumerate(non_strict_root._buffers)
                }
                output_node = list(gm.graph.nodes)[-1]
                # We copy nodes corresponding to buffer assignments to buffers in the graph.
                for buf, name in assigned_buffers.items():  # type: ignore[possibly-undefined]
                    buf_node = _find_node(gm, buffer_input_names[buf])
                    name_node = _find_node(gm, name)
                    with gm.graph.inserting_before(output_node):
                        new_node = gm.graph.create_node(
                            "call_function",
                            torch.ops.aten.copy_.default,
                            args=(buf_node, name_node),
                        )
                        new_node.meta = name_node.meta

                hook.remove()  # type: ignore[possibly-undefined]

            # In export, we ignore any op that is related to
            # eager mode profiling call. The expectation is
            # that either runtimes provide their own profiling
            # OR user wrap the compiled region on a profiling in
            # later stage.
            def _is_impure(node):
                if node.op == "call_function" and node.target in (
                    torch.ops.profiler._record_function_enter.default,
                    torch.ops.profiler._record_function_enter_new.default,
                    torch.ops.profiler._record_function_exit._RecordFunction,
                ):
                    return False
                return True

            gm.graph.eliminate_dead_code(_is_impure)

        # create graph signature
        input_names = _graph_input_names(gm)
        output_names = _graph_output_names(gm)
        sig = GraphSignature(
            parameters=list(named_parameters),
            buffers=list(named_buffers),
            user_inputs=input_names[params_len:],
            user_outputs=output_names,
            inputs_to_parameters=dict(zip(input_names[0:param_len], named_parameters)),
            inputs_to_buffers=dict(
                zip(input_names[param_len : param_len + buffer_len], named_buffers)
            ),
            buffers_to_mutate={},
            user_inputs_to_mutate={},
            in_spec=in_spec,
            out_spec=out_spec,  # type: ignore[arg-type]
            backward_signature=None,
            input_tokens=[],
            output_tokens=[],
        )
        return gm, sig

    # This _reparametrize_module makes sure inputs and module.params/buffers have the same fake_mode,
    # otherwise aot_export_module will error out because it sees a mix of fake_modes.
    # And we want aot_export_module to use the fake_tensor mode in dynamo to keep the pipeline easy to reason about.
    with torch.nn.utils.stateless._reparametrize_module(
        mod,
        fake_params_buffers,
        tie_weights=True,
        strict=True,
        stack_weights=True,
    ), _ignore_backend_decomps(), _compiling_state_context():  # type: ignore[attr-defined]
        param_len = len(dict(mod.named_parameters(remove_duplicate=False)))
        buffer_len = len(dict(mod.named_buffers(remove_duplicate=False)))
        params_len = param_len + buffer_len

        gm, graph_signature = transform(_make_fx_helper)(
            mod,
            fake_args,
            trace_joint=False,
            kwargs=fake_kwargs,
        )

        # [NOTE] In training IR, we don't run
        # any DCE as a result we preserve constant
        # nodes in the graph. make_fx invariant is that
        # they don't guarantee every node gets a meta['val']
        # field. Since the actual value is already hardcoded in
        # graph, the node.meta here actually doesn't matter. But
        # we do this to make spec verifier happy.
        for node in gm.graph.nodes:
            if (
                node.op == "call_function"
                and len(node.users) == 0
                and "val" not in node.meta
            ):
                node.meta["val"] = None

        if isinstance(mod, torch.fx.GraphModule) and hasattr(mod, "meta"):
            gm.meta.update(mod.meta)

    # See comment in _export_to_aten_ir()
    if produce_guards_callback:
        try:
            produce_guards_callback(gm)
        except (ConstraintViolationError, ValueRangeError) as e:
            raise UserError(UserErrorType.CONSTRAINT_VIOLATION, str(e))  # noqa: B904

    return _produce_aten_artifact(
        gm=gm,
        mod=mod,
        constant_attrs=constant_attrs,
        graph_signature=graph_signature,
        pre_dispatch=True,
        fake_args=fake_args,
        fake_kwargs=fake_kwargs,
        fake_params_buffers=fake_params_buffers,
    )


def set_missing_meta_vals(gm, flat_args, num_params_buffers):
    # Sets missing metadata to address two problems:
    # 1. aot_export adds symint metadata for placeholders with int values; since
    #    these become specialized, we replace such metadata with the original values.
    # 2. any tensor attributes that are not params / buffers, i.e., are constants
    #    need to have their metadata set before lifting them because it is needed
    #    for computing the exported program's signature.
    index = 0
    fake_mode = detect_fake_mode(flat_args)
    for node in gm.graph.nodes:
        if node.op == "placeholder":
            if index >= num_params_buffers:
                user_arg = flat_args[index - num_params_buffers]
                if not isinstance(user_arg, torch.Tensor):
                    node.meta["val"] = user_arg
            index += 1
        if node.op == "get_attr":
            val = _get_attr(gm, node.target)
            if isinstance(val, torch.Tensor):
                assert "val" not in node.meta, (
                    f"Found attribute {node.target} that has already been fakified "
                    "but not yet lifted as an input. This should be impossible because "
                    "(1) we should have already fakified AND lifted params/buffers "
                    "(2) we should have NOT yet fakified OR lifted tensor constants. "
                )
                node.meta["val"] = fake_mode.from_tensor(val, static_shapes=True)


def _find_node(gm: torch.fx.GraphModule, name: str) -> torch.fx.Node:
    return next(iter(node for node in gm.graph.nodes if node.name == name))


def _non_strict_export(
    mod: torch.nn.Module,
    args: Tuple[Any, ...],
    kwargs: Dict[str, Any],
    dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any], List[Any]]],
    preserve_module_call_signature: Tuple[str, ...],
    pre_dispatch: bool,
    original_state_dict: Dict[str, Any],
    orig_in_spec: TreeSpec,
    allow_complex_guards_as_runtime_asserts: bool,
    _is_torch_jit_trace: bool,
    dispatch_tracing_mode: str = "aot_export",
) -> ExportArtifact:
    """
    ``dispatch_tracing_mode`` can be either "make_fx” or “aot_export”, corresponding to
    _export_to_aten_ir_make_fx and _export_to_aten_ir, respectively.
    """
    assert dispatch_tracing_mode in ["make_fx", "aot_export"]
    out_spec: Optional[TreeSpec] = None

    module_call_specs: Dict[str, Dict[str, pytree.TreeSpec]] = {}

    def _tuplify_outputs(aot_export):
        def _aot_export_non_strict(mod, args, kwargs=None, **flags):
            kwargs = kwargs or {}

            class Wrapper(torch.nn.Module):
                def __init__(self, mod):
                    super().__init__()
                    self._export_root = mod

                def forward(self, *args, **kwargs):
                    nonlocal out_spec
                    mod = self._export_root
                    if isinstance(mod, torch.fx.GraphModule):
                        # NOTE: We're going to run this graph module with an fx interpreter,
                        # which will not run any forward hooks. Thus, ideally, we should run
                        # all forward hooks here. But the general logic for running them is
                        # complicated (see nn/module.py), and probably not worth duplicating.
                        # Instead we only look for, and run, an export-specific forward hook.
                        if (
                            _check_input_constraints_pre_hook
                            in mod._forward_pre_hooks.values()
                        ):
                            _check_input_constraints_pre_hook(mod, args, kwargs)
                        with torch.fx.traceback.preserve_node_meta():
                            args = (*args, *kwargs.values())
                            tree_out = torch.fx.Interpreter(mod).run(*args)
                    else:
                        tree_out = mod(*args, **kwargs)
                    flat_outs, out_spec = pytree.tree_flatten(tree_out)
                    return tuple(flat_outs)

            wrapped_mod = Wrapper(mod)
            # Patch export_root to the signatures so that wrapper module correctly populates the
            # in/out spec
            new_preserved_call_signatures = [
                "_export_root." + i for i in preserve_module_call_signature
            ]
            with _wrap_submodules(
                wrapped_mod, new_preserved_call_signatures, module_call_specs
            ):
                gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags)
                log.debug("Exported program from AOTAutograd:\n%s", gm)

            sig.parameters = pytree.tree_map(_strip_root, sig.parameters)
            sig.buffers = pytree.tree_map(_strip_root, sig.buffers)
            sig.inputs_to_buffers = pytree.tree_map(_strip_root, sig.inputs_to_buffers)
            sig.inputs_to_parameters = pytree.tree_map(
                _strip_root, sig.inputs_to_parameters
            )
            sig.buffers_to_mutate = pytree.tree_map(_strip_root, sig.buffers_to_mutate)

            for node in gm.graph.nodes:
                if "nn_module_stack" in node.meta:
                    nn_module_stack = node.meta["nn_module_stack"]
                    node.meta["nn_module_stack"] = {
                        _fixup_key(key): val
                        for key, val in pytree.tree_map(
                            _strip_root, nn_module_stack
                        ).items()
                    }

            return gm, sig

        return _aot_export_non_strict

    (
        fake_mode,
        fake_args,
        fake_kwargs,
        equalities_inputs,
        original_signature,
        dynamic_shapes,
    ) = make_fake_inputs(
        mod,
        args,
        kwargs,
        dynamic_shapes,
        _is_torch_jit_trace=_is_torch_jit_trace,
        allow_complex_guards_as_runtime_asserts=allow_complex_guards_as_runtime_asserts,  # for shape env initialization
    )

    fake_params_buffers = _fakify_params_buffers(fake_mode, mod)

    def _produce_guards_callback(gm):
        return produce_guards_and_solve_constraints(
            fake_mode=fake_mode,
            gm=gm,
            dynamic_shapes=dynamic_shapes,
            equalities_inputs=equalities_inputs,
            original_signature=original_signature,
            _is_torch_jit_trace=_is_torch_jit_trace,
        )

    with fake_mode, _NonStrictTorchFunctionHandler():
        with _fakify_script_objects(mod, fake_args, fake_kwargs, fake_mode) as (
            patched_mod,
            new_fake_args,
            new_fake_kwargs,
            new_fake_constant_attrs,
            map_fake_to_real,
        ):
            _to_aten_func = (
                _export_to_aten_ir_make_fx
                if dispatch_tracing_mode == "make_fx"
                else functools.partial(
                    _export_to_aten_ir,
                    pre_dispatch=pre_dispatch,
                    _is_torch_jit_trace=_is_torch_jit_trace,
                )
            )
            aten_export_artifact = _to_aten_func(  # type: ignore[operator]
                patched_mod,
                new_fake_args,
                new_fake_kwargs,
                fake_params_buffers,
                new_fake_constant_attrs,
                produce_guards_callback=_produce_guards_callback,
                transform=_tuplify_outputs,
            )
            # aten_export_artifact.constants contains only fake script objects, we need to map them back
            aten_export_artifact.constants = {
                fqn: map_fake_to_real[obj] if isinstance(obj, FakeScriptObject) else obj
                for fqn, obj in aten_export_artifact.constants.items()
            }

    _move_non_persistent_buffers_to_tensor_constants(
        mod, aten_export_artifact.sig, aten_export_artifact.constants
    )

    assert out_spec is not None

    return ExportArtifact(
        aten=aten_export_artifact,
        out_spec=out_spec,
        fake_mode=fake_mode,
        module_call_specs=module_call_specs,
    )


@_log_export_wrapper
@_disable_prexisiting_fake_mode
def _export_for_training(
    mod: torch.nn.Module,
    args: Tuple[Any, ...],
    kwargs: Optional[Dict[str, Any]] = None,
    dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any], List[Any]]] = None,
    *,
    strict: bool = True,
    preserve_module_call_signature: Tuple[str, ...] = (),
) -> ExportedProgram:
    global _EXPORT_MODULE_HIERARCHY
    _EXPORT_MODULE_HIERARCHY = _get_module_hierarchy(mod)

    (
        args,
        kwargs,
        orig_in_spec,
        original_state_dict,
        dynamic_shapes,
    ) = _process_export_inputs(mod, args, kwargs, dynamic_shapes)

    export_func = (
        functools.partial(
            _strict_export_lower_to_aten_ir,
            lower_to_aten_callback=_export_to_aten_ir_make_fx,
        )
        if strict
        else functools.partial(
            _non_strict_export,
            dispatch_tracing_mode="make_fx",
        )
    )
    export_artifact = export_func(  # type: ignore[operator]
        mod=mod,
        args=args,
        kwargs=kwargs,
        dynamic_shapes=dynamic_shapes,
        preserve_module_call_signature=preserve_module_call_signature,
        pre_dispatch=False,
        original_state_dict=original_state_dict,
        orig_in_spec=orig_in_spec,
        allow_complex_guards_as_runtime_asserts=False,
        _is_torch_jit_trace=False,
    )

    export_graph_signature = export_artifact.aten.sig

    forward_arg_names = _get_forward_arg_names(mod, args, kwargs)
    inline_constraints = _get_inline_constraints(export_artifact.fake_mode)
    # The unbacked symint symbols are updated in aot_export
    # so we serialize them here instead of inside dynamo.
    # Note: _get_range_constraints depends on "inline_constraints" to be set.
    export_artifact.aten.gm.meta["inline_constraints"] = inline_constraints
    range_constraints = _get_range_constraints(
        export_artifact,
        _combine_args(mod, args, kwargs, _is_torch_jit_trace=False),
        dynamic_shapes,
    )
    # The returned the gm is in-place modified
    gm, module_call_graph = _get_module_call_graph(
        export_artifact,
        orig_in_spec,
        preserve_module_call_signature,
        strict,
        forward_arg_names,
    )

    _verify_nn_module_stack(gm)
    _verify_stack_trace(gm)
    _verify_placeholder_names(gm, export_graph_signature)

    _update_gm_meta_if_possible(gm, mod)

    from torch._export.verifier import TrainingIRVerifier

    exported_program = ExportedProgram(
        root=gm,
        graph=gm.graph,
        graph_signature=export_graph_signature,
        state_dict=original_state_dict,
        range_constraints=range_constraints,
        module_call_graph=module_call_graph,
        example_inputs=(args, kwargs),
        constants=export_artifact.aten.constants,
        verifiers=[TrainingIRVerifier],
    )

    return exported_program


@_log_export_wrapper
@_disable_prexisiting_fake_mode
def _export(
    mod: torch.nn.Module,
    args: Tuple[Any, ...],
    kwargs: Optional[Dict[str, Any]] = None,
    dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any], List[Any]]] = None,
    *,
    strict: bool = True,
    preserve_module_call_signature: Tuple[str, ...] = (),
    pre_dispatch: bool = False,
    allow_complex_guards_as_runtime_asserts: bool = False,
    _is_torch_jit_trace: bool = False,
) -> ExportedProgram:
    """
    Traces either an nn.Module's forward function or just a callable with PyTorch
    operations inside and produce a ExportedProgram.

    Args:
        f: the `nn.Module` to trace.

        args: example positional inputs.

        kwargs: optional example keyword inputs.

        dynamic_shapes:
         An optional argument where the type should either be:
         1) a dict from argument names of ``f`` to their dynamic shape specifications,
         2) a tuple that specifies dynamic shape specifications for each input in original order.
         If you are specifying dynamism on keyword args, you will need to pass them in the order that
         is defined in the original function signature.

         The dynamic shape of a tensor argument can be specified as either
         (1) a dict from dynamic dimension indices to :func:`Dim` types, where it is
         not required to include static dimension indices in this dict, but when they are,
         they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None,
         where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions
         are denoted by None. Arguments that are dicts or tuples / lists of tensors are
         recursively specified by using mappings or sequences of contained specifications.

        preserve_module_call_signature: A list of submodule paths for which the original
            calling conventions are preserved as metadata.

        allow_complex_guards_as_runtime_asserts:
         With the current dynamic shapes language for dims and derived dims, we can run into constraints
         that are not expressible with the language. For example, flattening a matrix and adding to a vector,
         both fully dynamic (i.e. x.reshape([-1]) + y) emits a guard s0 * s1 = s2, which is not expressible.
         By default, we either raise a constraint violation error or specialize to static values.
         If this flag is set to True, we avoid erroring out and instead allow complex constraints to exist as runtime
         assertions in the graph. The sympy interpreter (torch/utils/_sympy/interp.py) will produce the math ops
         required to compute and assert the value of the guard (e.g. sym_size_int, eq, _assert_scalar).
         Additionally, if TORCH_DYNAMO_DO_NOT_EMIT_RUNTIME_ASSERTS=1 is specified, we will allow complex constraints
         while not emitting runtime asserts, returning a cleaner graph with lesser guarantees around dynamic shapes.

    Returns:
        An ExportedProgram containing the traced method.
    """

    from torch._utils_internal import export_training_ir_rollout_check

    global _EXPORT_FLAGS, _EXPORT_MODULE_HIERARCHY
    _EXPORT_MODULE_HIERARCHY = _get_module_hierarchy(mod)

    flags = set()
    flags.add("strict" if strict else "non_strict")
    flags.add("pre_dispatch" if pre_dispatch else "aot_dispatch")
    _EXPORT_FLAGS = flags

    log_export_usage(event="export.enter", flags=_EXPORT_FLAGS)

    # NOTE Export training IR rollout
    # Old export calls export._trace(pre_dispatch=True)
    # and there are still lot of internal/OSS callsites that
    # use export._trace(pre_dispatch=True) directly. Therefore,
    # it makes more sense to do the switch here.
    # export_training_ir_rollout_check returns True in OSS
    # while internally it returns False UNLESS otherwise specified.
    if pre_dispatch and export_training_ir_rollout_check():
        return _export_for_training(
            mod,
            args,
            kwargs,
            dynamic_shapes,
            strict=strict,
            preserve_module_call_signature=preserve_module_call_signature,
        )

    (
        args,
        kwargs,
        original_in_spec,
        original_state_dict,
        dynamic_shapes,
    ) = _process_export_inputs(mod, args, kwargs, dynamic_shapes)

    # Call the appropriate export function based on the strictness of tracing.
    export_func = _strict_export if strict else _non_strict_export

    export_artifact = export_func(  # type: ignore[operator]
        mod,
        args,
        kwargs,
        dynamic_shapes,
        preserve_module_call_signature,
        pre_dispatch,
        original_state_dict,
        original_in_spec,
        allow_complex_guards_as_runtime_asserts,
        _is_torch_jit_trace,
    )
    export_graph_signature: ExportGraphSignature = export_artifact.aten.sig

    forward_arg_names = (
        _get_forward_arg_names(mod, args, kwargs) if not _is_torch_jit_trace else None
    )
    inline_constraints = _get_inline_constraints(export_artifact.fake_mode)
    # The unbacked symint symbols are updated in aot_export
    # so we serialize them here instead of inside dynamo.
    # Note: this step must be before _get_range_constraints.
    export_artifact.aten.gm.meta["inline_constraints"] = inline_constraints
    range_constraints = _get_range_constraints(
        export_artifact,
        _combine_args(mod, args, kwargs, _is_torch_jit_trace=_is_torch_jit_trace),
        dynamic_shapes,
    )
    gm, module_call_graph = _get_module_call_graph(
        export_artifact,
        original_in_spec,
        preserve_module_call_signature,
        strict,
        forward_arg_names,
    )

    _verify_nn_module_stack(gm)
    _verify_stack_trace(gm)
    if not _is_torch_jit_trace:
        _verify_placeholder_names(gm, export_graph_signature)

    # Remove Proxy because they cannot be deepcopied or pickled.
    torch._export.utils.remove_proxy_from_state_dict(original_state_dict, in_place=True)

    from torch._export.verifier import Verifier

    _update_gm_meta_if_possible(gm, mod)

    exported_program = ExportedProgram(
        root=gm,
        graph=gm.graph,
        graph_signature=export_graph_signature,
        state_dict=original_state_dict,
        range_constraints=range_constraints,
        module_call_graph=module_call_graph,
        example_inputs=(args, kwargs),
        constants=export_artifact.aten.constants,
        verifiers=[Verifier],
    )

    return exported_program