1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
# mypy: allow-untyped-defs
import copy
import warnings
from itertools import chain
from typing import Any, Dict, List, Optional, Sequence, Tuple
import torch
import torch.utils._pytree as pytree
from torch._export.utils import _check_input_constraints_for_graph
from torch.export.unflatten import _assign_attr, _AttrKind
from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo
from ._remove_effect_tokens_pass import _remove_effect_tokens
from ._tree_utils import reorder_kwargs
from .exported_program import (
ExportedProgram,
ExportGraphSignature,
InputKind,
OutputKind,
)
def _check_inputs_match(args, kwargs, in_spec: pytree.TreeSpec) -> List:
reordered_kwargs = reorder_kwargs(kwargs, in_spec)
flat_args_with_path, received_spec = pytree.tree_flatten_with_path(
(args, reordered_kwargs)
)
if received_spec != in_spec:
raise ValueError( # noqa: B904
"Trying to flatten user inputs with exported input tree spec: \n"
f"{in_spec}\n"
"but actually got inputs with tree spec of: \n"
f"{received_spec}.\n"
"Please check that the inputs have the same number of args "
"and kwargs as the ones you used when tracing."
)
return flat_args_with_path
@torch._dynamo.disable
def _check_input_constraints_pre_hook(self, args, kwargs):
if not self.validate_inputs:
return
flat_args_with_path = _check_inputs_match(args, kwargs, self._in_spec)
_check_input_constraints_for_graph(
[node for node in self.graph.nodes if node.op == "placeholder"],
flat_args_with_path,
self.range_constraints,
)
def _unlift_inputs_as_getattr(
gm: torch.fx.GraphModule,
lifted_inputs: Sequence[Optional[str]],
) -> Tuple[Dict[str, torch.fx.Node], Dict[str, torch.fx.Node]]:
"""
Unlift inputs referring to params/buffers/constants as getattr nodes in the
graph
"""
unlifted_name_to_node = {}
input_name_to_node = {}
placeholder_nodes = [node for node in gm.graph.nodes if node.op == "placeholder"]
assert len(lifted_inputs) == len(placeholder_nodes)
for input_node, lifted_node in zip(placeholder_nodes, lifted_inputs):
if lifted_node is None:
input_name_to_node[input_node.name] = input_node
else:
with gm.graph.inserting_after(input_node):
getattr_node = gm.graph.get_attr(lifted_node)
input_node.replace_all_uses_with(getattr_node)
metadata = input_node.meta
gm.graph.erase_node(input_node)
getattr_node.meta = metadata
unlifted_name_to_node[lifted_node] = getattr_node
return unlifted_name_to_node, input_name_to_node
def _insert_copy_for_mutations(
gm: torch.fx.GraphModule,
mutated_outputs: Sequence[Optional[str]],
unlifted_name_to_node: Dict[str, torch.fx.Node],
input_name_to_node: Dict[str, torch.fx.Node],
) -> None:
"""
Find the all the buffers and inputs that were mutated and insert copy_
operators to reflect mutations.
"""
output_node = None
for node in gm.graph.nodes:
if node.op == "output":
output_node = node
break
assert output_node is not None
outputs = pytree.tree_flatten(output_node.args)[0]
assert len(outputs) == len(mutated_outputs)
user_output_nodes = []
return_nodes_to_copy = {}
for return_node, mutated_node_name in zip(outputs, mutated_outputs):
if mutated_node_name is None:
user_output_nodes.append(return_node)
continue
if mutated_node_name in unlifted_name_to_node:
mutated_node = unlifted_name_to_node[mutated_node_name]
elif mutated_node_name in input_name_to_node:
mutated_node = input_name_to_node[mutated_node_name]
else:
raise RuntimeError(
f"Could not find {mutated_node_name} in either buffer or input nodes"
)
with gm.graph.inserting_before(output_node):
copy_node = gm.graph.call_function(
torch.ops.aten.copy_.default, (mutated_node, return_node)
)
return_nodes_to_copy[return_node] = copy_node
output_args = [
return_nodes_to_copy[node] if node in return_nodes_to_copy else node
for node in user_output_nodes
]
with gm.graph.inserting_before(output_node):
# Only return user outputs
new_output = gm.graph.output(tuple(output_args))
output_node.replace_all_uses_with(new_output)
gm.graph.erase_node(output_node)
new_output.name = output_node.name
new_output.meta.update(output_node.meta)
def _get_codegen(
in_spec: pytree.TreeSpec,
out_spec: Optional[pytree.TreeSpec],
forward_arg_names: Optional[List[str]] = None,
) -> _PyTreeCodeGen:
"""
Create the codegen for the graph module based on the in/out specs
"""
if forward_arg_names:
names = forward_arg_names
else:
if (
in_spec.type == tuple
and in_spec.num_children == 2
and in_spec.children_specs[0].type == tuple
and in_spec.children_specs[1].type == dict
):
# if in_spec contains the args (tuple) and kwargs (dict)
names = [f"arg_{i}" for i in range(in_spec.children_specs[0].num_children)]
# add kwarg names
names.extend(in_spec.children_specs[1].context)
else:
names = [f"arg_{i}" for i in range(in_spec.num_children)]
return _PyTreeCodeGen(
_PyTreeInfo(
names,
in_spec,
out_spec,
)
)
def _unlift(
gm: torch.fx.GraphModule,
lifted_inputs: Sequence[Optional[str]],
mutated_outputs: Sequence[Optional[str]],
in_spec: pytree.TreeSpec,
out_spec: Optional[pytree.TreeSpec],
state_dict: Dict[str, Any],
constants: Dict[str, Any],
forward_arg_names: Optional[List[str]] = None,
):
"""
Args:
lifted_inputs: A list matching the graph module's input nodes. For
an input node that is referring to a lifted parameter/buffer, this
list will contain the fqn the corresponding attribute. Otherwise, this
list will contain None. This is used to unlift the lifted parameters as
get_attr nodes.
mutated_outputs: A list matching the graph module's output nodes. For
an output node that is referring to a mutated buffer or user input, this
list will contain the name of the corresponding buffer or user input
that needs to be mutated. Otherwise, this list will contain None. This
is used to re-insert an inplace copy_ operator to copy the mutated
values back to the original node.
"""
unlifted_name_to_node, input_name_to_node = _unlift_inputs_as_getattr(
gm, lifted_inputs
)
_insert_copy_for_mutations(
gm, mutated_outputs, unlifted_name_to_node, input_name_to_node
)
gm.graph._codegen = _get_codegen(in_spec, out_spec, forward_arg_names)
gm.graph.lint()
gm.recompile()
return gm
def _register_attrs_to_new_gm(
new_gm: torch.fx.GraphModule,
graph_signature: ExportGraphSignature,
state_dict: Dict[str, Any],
constants: Dict[str, Any],
) -> None:
non_persistent_buffers = set(graph_signature.non_persistent_buffers)
for name in graph_signature.buffers:
if name in non_persistent_buffers:
persistent = False
value = constants[name]
else:
persistent = True
value = state_dict[name]
_assign_attr(
value, new_gm, name, attr_kind=_AttrKind.BUFFER, persistent=persistent
)
for name in graph_signature.parameters:
value = state_dict[name]
_assign_attr(
value,
new_gm,
name,
attr_kind=_AttrKind.PARAMETER,
)
# Technically this doesn't account for the aliased multiple constants but
# it is ok because we have a seperate pass later in the stack that populates
# the final gm.
for name in chain(
graph_signature.lifted_custom_objs, graph_signature.lifted_tensor_constants
):
value = constants[name]
_assign_attr(
value,
new_gm,
name,
attr_kind=_AttrKind.CONSTANT,
)
class _StatefulGraphModuleFactory(type):
"""
Metaclass that ensures a private constructor for _StatefulGraphModule
"""
def __call__(cls, *args, **kwargs):
raise TypeError(
f"{cls.__module__}.{cls.__qualname__} has no public constructor. "
)
def _create(cls, root, graph, range_constraints=None):
return super().__call__(
root,
graph,
range_constraints=range_constraints,
)
class _StatefulGraphModule(torch.fx.GraphModule, metaclass=_StatefulGraphModuleFactory):
def __init__(self, root, graph, range_constraints=None):
super().__init__(root, graph)
# Need to fix up non-persistent buffers.
self.range_constraints = range_constraints or []
self.validate_inputs = True
def _create_stateful_graph_module(
plain_graph_module: torch.fx.GraphModule,
range_constraints,
# TODO(suo) this should not be optional, but is since we still have
# capture_pre_autograd_graph grr
ep: Optional[ExportedProgram] = None,
) -> _StatefulGraphModule:
stateful_gm = _StatefulGraphModule._create(
plain_graph_module,
plain_graph_module.graph,
range_constraints=range_constraints,
)
stateful_gm.register_forward_pre_hook(
_check_input_constraints_pre_hook, with_kwargs=True
)
if ep is None:
return stateful_gm
# When we have a constant that has requires_grad=True, we need to detach it
# when we unlift as the tensors that require gradients should be registered
# via parameters. But this is problematic when we have aliasing two constants
# because when we call detach, they will become different tensors. This dict
# keeps track of this logic.
original_tensor_to_detached_tensor = {}
# Fix up lifted tensor constants.
# fx.GraphModule() constructor silently turns a constant attribute of plain_graph_module
# into a buffer in stateful_gm and creates an inconsistency with graph_signature.
# We fix this by de-registering these buffers in lifted_tensor_constants
# and call _assign_attr(attr_kind=CONSTANT) to register them as constants.
for constant_fqn in ep.graph_signature.lifted_tensor_constants:
# Sometimes, the constant can require gradient, this is probably a bug in user code,
# e.g. `self.const = torch.randn(2, 2, requires_grad=True)`.
# We call detach on the constant_val since they're tensor contants and we don't need to
# compute their gradients anyway.
# Users should properly register it as parameter if they want it to require gradient.
buffer = stateful_gm.get_buffer(constant_fqn)
if buffer.requires_grad:
warnings.warn(
f"A model attribute `{constant_fqn}` requires gradient. "
f"but it's not properly registered as a parameter. "
f"torch.export will detach it and treat it as a constant tensor "
f"but please register it as parameter instead."
)
detached_buffer = buffer.detach()
original_tensor_to_detached_tensor[buffer] = detached_buffer
buffer = detached_buffer
*prefix, field = constant_fqn.rsplit(".")
submod = torch.fx.graph_module._get_attr_via_attr_list(stateful_gm, prefix)
delattr(submod, field)
_assign_attr(buffer, stateful_gm, constant_fqn, attr_kind=_AttrKind.CONSTANT)
# Constants are not preserved well when we create a new GraphModule unlike param/buffers
for const_name, value in ep.constants.items():
if not torch.fx.graph_module._has_attr(stateful_gm, const_name):
if isinstance(value, torch.Tensor):
if value.requires_grad:
warnings.warn(
f"A model attribute `{const_name}` requires gradient "
f"but it's not properly registered as a parameter. "
f"torch.export will detach it and treat it as a constant tensor "
f"but please register it as parameter instead."
)
if value in original_tensor_to_detached_tensor:
value = original_tensor_to_detached_tensor[value]
else:
detached_value = value.detach()
original_tensor_to_detached_tensor[value] = detached_value
value = detached_value
_assign_attr(
value,
stateful_gm,
const_name,
attr_kind=_AttrKind.CONSTANT,
)
# Fix up non-persistent buffers. torch.fx does not distinguish between
# persistent and non-persistent buffers, so we must restore that distinction
# here.
for buffer in ep.graph_signature.non_persistent_buffers:
_assign_attr(
plain_graph_module.get_buffer(buffer),
stateful_gm,
buffer,
attr_kind=_AttrKind.BUFFER,
persistent=False,
)
return stateful_gm
def _unlift_exported_program_lifted_states(ep: ExportedProgram) -> torch.nn.Module:
# TODO T206340015
if ep.verifiers[0].dialect != "TRAINING":
ep = _remove_effect_tokens(ep)
new_gm = torch.fx.GraphModule(ep.graph_module, copy.deepcopy(ep.graph))
_register_attrs_to_new_gm(new_gm, ep.graph_signature, ep.state_dict, ep.constants)
forward_arg_names = (
sig.forward_arg_names if (sig := ep.module_call_graph[0].signature) else None
)
lifted_inputs: List[Optional[str]] = [
(
in_spec.target
if in_spec.kind
in (
InputKind.BUFFER,
InputKind.CONSTANT_TENSOR,
InputKind.PARAMETER,
InputKind.CUSTOM_OBJ,
)
else None
)
for in_spec in ep.graph_signature.input_specs
]
mutated_outputs: List[Optional[str]] = [
(
out_spec.target
if out_spec.kind
in (OutputKind.BUFFER_MUTATION, OutputKind.USER_INPUT_MUTATION)
else None
)
for out_spec in ep.graph_signature.output_specs
]
new_gm = _unlift(
new_gm,
lifted_inputs,
mutated_outputs,
ep.call_spec.in_spec,
ep.call_spec.out_spec,
ep.state_dict,
ep.constants,
forward_arg_names=forward_arg_names,
)
unlift_gm = _create_stateful_graph_module(new_gm, ep.range_constraints, ep)
unlift_gm.meta.update(ep.graph_module.meta)
return unlift_gm
|