1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
|
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import contextlib
import copy
import dataclasses
import functools
import operator
import types
import warnings
from collections import namedtuple
from contextlib import contextmanager
from typing import (
Any,
Callable,
Dict,
final,
Iterator,
List,
Optional,
Tuple,
Type,
TYPE_CHECKING,
Union,
)
from torch._higher_order_ops.utils import autograd_not_implemented
from torch._library.fake_class_registry import FakeScriptObject
from torch._subclasses.fake_impls import (
_deregister_op_impl,
_is_op_registered_to_fake_rule,
register_op_impl,
)
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx._utils import first_call_function_nn_module_stack
from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo
from torch.fx.immutable_collections import immutable_dict, immutable_list
from torch.fx.passes.runtime_assert import insert_deferred_runtime_asserts
if TYPE_CHECKING:
# Import the following modules during type checking to enable code intelligence features,
# such as auto-completion in tools like pylance, even when these modules are not explicitly
# imported in user code.
import sympy
from torch.utils._sympy.value_ranges import ValueRanges
import torch
import torch.utils._pytree as pytree
from torch._export.utils import (
_collect_all_valid_cia_ops,
_collect_and_set_constant_attrs,
_collect_param_buffer_metadata,
_detect_fake_mode_from_gm,
_get_decomp_for_cia,
_is_preservable_cia_op,
_name_hoo_subgraph_placeholders,
_overwrite_signature_for_non_persistent_buffers,
_populate_param_buffer_metadata_to_new_gm,
_rename_without_collisions,
_special_op_to_preserve_cia,
)
from torch._export.verifier import Verifier
from torch._guards import detect_fake_mode
from torch._subclasses.fake_tensor import unset_fake_temporarily
from torch.export._tree_utils import is_equivalent, reorder_kwargs
from torch.export.decomp_utils import CustomDecompTable
from torch.fx._compatibility import compatibility
from torch.fx.passes.infra.pass_base import PassResult
from torch.fx.passes.infra.pass_manager import PassManager
from .graph_signature import ( # noqa: F401
ArgumentSpec,
ConstantArgument,
CustomObjArgument,
ExportGraphSignature,
InputKind,
InputSpec,
OutputKind,
OutputSpec,
SymBoolArgument,
SymFloatArgument,
SymIntArgument,
TensorArgument,
TokenArgument,
)
__all__ = [
"ExportedProgram",
"ModuleCallEntry",
"ModuleCallSignature",
"default_decompositions",
]
PassType = Callable[[torch.fx.GraphModule], Optional[PassResult]]
@dataclasses.dataclass
class ModuleCallSignature:
inputs: List[ArgumentSpec]
outputs: List[ArgumentSpec]
in_spec: pytree.TreeSpec
out_spec: pytree.TreeSpec
forward_arg_names: Optional[List[str]] = None
def replace_all_uses_with(self, original_node, new_node):
for i in self.inputs:
if i.name == original_node.name:
i.name = new_node.name
for o in self.outputs:
if o.name == original_node.name:
o.name = new_node.name
@dataclasses.dataclass
class ModuleCallEntry:
fqn: str
signature: Optional[ModuleCallSignature] = None
def _disable_prexisiting_fake_mode(fn):
@functools.wraps(fn)
def wrapper(*args, **kwargs):
with unset_fake_temporarily():
return fn(*args, **kwargs)
return wrapper
def _fx_collection_equivalence_fn(
spec1_type: Optional[type],
spec1_context: pytree.Context,
spec2_type: Optional[type],
spec2_context: pytree.Context,
) -> bool:
"""Treat containers and their immutable variants as the same type. Otherwise
compare as normal.
"""
if spec1_type is None or spec2_type is None:
return spec1_type is spec2_type and spec1_context == spec2_context
if issubclass(spec1_type, (dict, immutable_dict)) and issubclass(
spec2_type, (dict, immutable_dict)
):
return spec1_context == spec2_context
if issubclass(spec1_type, (list, immutable_list)) and issubclass(
spec2_type, (list, immutable_list)
):
return spec1_context == spec2_context
return spec1_type is spec2_type and spec1_context == spec2_context
# This list is compiled from DispatchKey.cpp.
# The idea is that we use these keys to override
# CIA decomp in export
_AUTOGRAD_ALIAS_BACKEND_KEYS_TO_OVERRIDE = [
torch._C.DispatchKey.AutogradCPU,
torch._C.DispatchKey.AutogradCUDA,
torch._C.DispatchKey.AutogradMeta,
torch._C.DispatchKey.AutogradXLA,
torch._C.DispatchKey.AutogradLazy,
torch._C.DispatchKey.AutogradIPU,
torch._C.DispatchKey.AutogradXPU,
torch._C.DispatchKey.AutogradMPS,
torch._C.DispatchKey.AutogradHPU,
torch._C.DispatchKey.AutogradPrivateUse1,
torch._C.DispatchKey.AutogradPrivateUse2,
torch._C.DispatchKey.AutogradPrivateUse3,
]
# This list is compiled from DispatchKey.cpp.
# The idea is that we use these keys to add
# python kernels that directly uses default
# CIA decomp
# See NOTE Registering old CIA to Backend kernel
_BACKEND_KEYS_TO_OVERRIDE = [
torch._C.DispatchKey.CPU,
torch._C.DispatchKey.CUDA,
torch._C.DispatchKey.Meta,
torch._C.DispatchKey.XLA,
torch._C.DispatchKey.Lazy,
torch._C.DispatchKey.IPU,
torch._C.DispatchKey.XPU,
torch._C.DispatchKey.MPS,
torch._C.DispatchKey.HPU,
]
@contextmanager
def _override_composite_implicit_decomp(cia_ops_to_callable, safe=True):
# This function overrides CompositeImplicitAutograd decomp for
# functional composite ops that user specified. Ideally we want to not-decompose
# ALL composite ops but today's C++ functinalization relies on
# the fact that it is working with the opset after decomp is run.
# Hence we can only do it for functional ops. One caveat is that
# there are some composite ops that lie about their schema (claimed to be
# functional but not really aka dropout), for these cases, we just decompose.
# When safe=False, we will assume that ops_to_preserve can be mutating/aliasing
# and their usual decompositions need to be shadowed rather than overridden.
# Thus we will avoid asserting that they are valid to preserve, and will not
# replace their CompositeImplicitAutograd kernels with NotImplemented.
# The only current users of this mode are variants of aten::to that we will
# replace with aten::_to_copy in FunctionalTensorMode.__torch_dispatch__.
saved_tables = {}
patched_ops = set()
for op_overload, decomp_callable in cia_ops_to_callable.items():
saved_tables[op_overload] = op_overload.py_kernels.copy()
patched_ops.add(op_overload)
for override_dispatch_key in _AUTOGRAD_ALIAS_BACKEND_KEYS_TO_OVERRIDE:
if override_dispatch_key not in op_overload.py_kernels:
# TODO (tmanlaibaatar)https://github.com/pytorch/pytorch/issues/129430
op_overload.py_impl(override_dispatch_key)(
autograd_not_implemented(op_overload, deferred_error=True)
)
# See NOTE: Registering old CIA to Backend kernel
# It is important that we cache this before we override py_kernels.
orig_cia_callable = _get_decomp_for_cia(op_overload)
if torch._C.DispatchKey.CompositeImplicitAutograd in op_overload.py_kernels:
del op_overload.py_kernels[torch._C.DispatchKey.CompositeImplicitAutograd]
if safe:
op_overload.py_impl(torch._C.DispatchKey.CompositeImplicitAutograd)(
decomp_callable
)
# [NOTE] Directly registering fake tensor rule to CIA ops
# The problem we are facing here is if your CIA custom rule
# says we want to preserve the op, we will return NotImplemented.
# Unfortunately, this will invoke meta device tracing in fake tensor
# resulting in divergent behaviour for CIA kernels that has device based
# branching (one case is torch.ops.aten.scaled_dot_product.attention)
# To get around this issue, we register direct fake impl so that we
# run the kernel before we actually try to decompose the op in FakeTensorMode.
# Note that is a no-op in most cases, because:
# 1) In post dispatch tracing, CIA would have already decomposed
# 2) Most CIA impl are device agnostic.
def _force_dispatch_to_orig_cia_callable(fake_tensor_mode, op, *args, **kwargs):
orig_cia_callable = kwargs["original_callable"]
del kwargs["original_callable"]
with fake_tensor_mode:
return orig_cia_callable(*args, **kwargs)
if not _is_op_registered_to_fake_rule(op_overload):
register_op_impl(op_overload)(
functools.partial(
_force_dispatch_to_orig_cia_callable,
original_callable=orig_cia_callable,
)
)
for key in _BACKEND_KEYS_TO_OVERRIDE:
if key not in op_overload.py_kernels:
# [NOTE] Registering old CIA to Backend kernel
# We always register original CIA behavior to the backend keys kernel
# The reason is when we are fake tensor prop-ing or executing real kernel,
# we end up calling an operator on respective backend, which in python dispatcher,
# will resolve into CIA key. (see resolve_key in torch/_ops.py)
# As a result, this CIA now will call into the custom user defined
# CIA which can cause a problem.
# To make it more concrete, the case we are handling is:
# (1) there is a tensor constant we are performing constant propagation
# on during tracing
# (2) we invoke an op underneath autograd (either because we are below autograd,
# or we are tracing in inference mode), so one of the backend keys gets hit
# (3) the op we are invoking has a CIA impl that normally runs in eager mode
# (and the user wants to tweak this CIA impl during tracing, but during
# const-prop we want the original CIA to run
op_overload.py_impl(key)(orig_cia_callable)
try:
yield
finally:
for op in patched_ops:
op.py_kernels.clear()
op.py_kernels.update(saved_tables[op])
op._dispatch_cache.clear()
_deregister_op_impl(op)
@contextmanager
def _override_decomp_aten_to_variants():
# Preserve variants of aten::to understanding that they are mutating/aliasing
# and their CompositeImplicitAutograd kernels will not become NotImplemented.
# We will later replace them with aten._to_copy when functionalizing.
with _override_composite_implicit_decomp(
{
torch.ops.aten.to.dtype_layout: _special_op_to_preserve_cia,
torch.ops.aten.to.dtype: _special_op_to_preserve_cia,
},
safe=False,
):
yield
def _split_decomp_table_to_cia_and_python_decomp(
decomp_table: Dict[torch._ops.OperatorBase, Callable]
) -> Tuple[Dict[torch._ops.OperatorBase, Callable], ...]:
all_preservable_cia_ops = set(_collect_all_valid_cia_ops())
cia_ops_to_callable = {}
for op in list(decomp_table.keys()):
# TODO we are silently allowing non-safe(non-functional) ops through a crack
# due to core aten decomp table having non-functional entries. Once we have
# a tigher check around core aten decomp, we should warn users about them.
# Tracking issue: (https://github.com/pytorch/pytorch/issues/135759)
# if it is a valid CIA op we can mess with in export, we check if it is:
# 1. Has been marked as to be decomposed. Example:
# decomp_table = decomp_table_to_core_aten()
# del decomp_table[aten.linear]
# In this case, user says decompose everything except for aten.linear
# 2. Has been marked with custom decomp behavour. Example:
# decomp_table = {aten.linear: some_op}
# For (1), we want to remove all the CIA ops that weren't handled by user as
# it suggests they are safe to decompose, so we should remove from preservable_list.
# for (2), we just plumb the custom decomp to AOTDIspatcher.
# In both cases, we want to remove this CIA op from the decomp_table as it is special
# handled.
if op in all_preservable_cia_ops:
cia_ops_to_callable[op] = decomp_table[op]
all_preservable_cia_ops.remove(op)
del decomp_table[op]
# If it is a custom op, we want to still preserve or do whatever
# with it if it is a functional CIA. The reason we don't remove
# from CIA list is because we don't query custom ops.
elif _is_preservable_cia_op(op):
op_name = op.name()
assert not op_name.startswith("aten"), "This should be a custom op"
cia_ops_to_callable[op] = decomp_table[op]
# If we reached here, it means user intentionally deleted these CIA ops from
# decomp table.
for k in all_preservable_cia_ops:
cia_ops_to_callable[k] = _special_op_to_preserve_cia
return cia_ops_to_callable, decomp_table
def default_decompositions() -> "CustomDecompTable":
"""
This is the default decomposition table which contains decomposition of
all ATEN operators to core aten opset. Use this API together with
:func:`run_decompositions()`
"""
return CustomDecompTable()
def _decompose_and_get_gm_with_new_signature_constants(
ep,
*,
cia_to_decomp: Dict[torch._ops.OperatorBase, Callable],
python_decomp_table: Dict[torch._ops.OperatorBase, Callable],
joint_loss_index: Optional[int],
):
from torch._functorch.aot_autograd import aot_export_module
from torch.export._trace import (
_export_to_aten_ir,
_fakify_params_buffers,
_ignore_backend_decomps,
_verify_nn_module_stack,
_verify_placeholder_names,
_verify_stack_trace,
)
from torch.fx.experimental.symbolic_shapes import ShapeEnv
def _is_joint_ir_decomp(ep, joint_loss_index):
return (
joint_loss_index is not None
or ep.graph_signature.backward_signature is not None
)
if not _is_joint_ir_decomp(ep, joint_loss_index):
mod = ep.module()
# TODO T204030333
fake_mode = _detect_fake_mode_from_gm(ep.graph_module)
if fake_mode is None:
fake_mode = FakeTensorMode(shape_env=ShapeEnv(), export=True)
retracing_args = []
for node in mod.graph.nodes:
if node.op == "placeholder":
if isinstance(node.meta["val"], CustomObjArgument):
real_script_obj = None
if node.meta["val"].fake_val is None:
real_script_obj = ep.constants[node.meta["val"].name]
else:
real_script_obj = node.meta["val"].fake_val.real_obj
retracing_args.append(real_script_obj)
else:
retracing_args.append(node.meta["val"])
retracing_args_unwrapped = pytree.tree_unflatten(retracing_args, mod._in_spec)
# Fix the graph output signature to be tuple if scalar
out_spec = mod._out_spec
orig_arg_names = mod.graph._codegen.pytree_info.orig_args
# aot_export expect the return type to always be a tuple.
if out_spec.type not in (list, tuple):
out_spec = pytree.TreeSpec(tuple, None, [out_spec])
mod.graph._codegen = _PyTreeCodeGen(
_PyTreeInfo(
orig_arg_names,
mod._in_spec,
out_spec,
)
)
mod.recompile()
# the exported module will store constants & non-persistent buffers such that
# retracing treats them as persistent buffers, so we inform the constants lifting pass
# and overwrite the new graph signature using the previous program.
_collect_and_set_constant_attrs(ep.graph_signature, ep.constants, mod)
# get params & buffers after excluding constants
fake_params_buffers = _fakify_params_buffers(fake_mode, mod)
params_buffers_to_node_meta = _collect_param_buffer_metadata(mod)
# TODO (tmanlaibaatar) Ideally run_decomp should just call _non_strict_export
# but due to special handling of constants as non-persistent buffers make it little
# diffucult. But we should unify this code path together. T206837815
from torch._export.non_strict_utils import _fakify_script_objects
with (
fake_mode
), _override_decomp_aten_to_variants(), _override_composite_implicit_decomp(
cia_to_decomp,
):
# this requires empty kwargs, but not in pytree.flattened format
with _fakify_script_objects(
mod,
(
*retracing_args_unwrapped[0],
*retracing_args_unwrapped[1].values(),
),
{},
fake_mode,
) as (
patched_mod,
new_fake_args,
new_fake_kwargs,
new_fake_constant_attrs,
map_fake_to_real,
):
aten_export_artifact = _export_to_aten_ir(
patched_mod,
new_fake_args,
new_fake_kwargs,
fake_params_buffers,
new_fake_constant_attrs,
decomp_table=python_decomp_table,
_check_autograd_state=False,
)
# aten_export_artifact.constants contains only fake script objects, we need to map them back
aten_export_artifact.constants = {
fqn: map_fake_to_real[obj]
if isinstance(obj, FakeScriptObject)
else obj
for fqn, obj in aten_export_artifact.constants.items()
}
gm = aten_export_artifact.gm
new_graph_signature = aten_export_artifact.sig
_populate_param_buffer_metadata_to_new_gm(
params_buffers_to_node_meta, gm, new_graph_signature
)
# overwrite signature for non-persistent buffers
new_graph_signature = _overwrite_signature_for_non_persistent_buffers(
ep.graph_signature, new_graph_signature
)
_verify_nn_module_stack(gm)
_verify_stack_trace(gm)
_verify_placeholder_names(gm, new_graph_signature)
return _remove_unneccessary_copy_op_pass(gm, new_graph_signature)
old_placeholders = [
node for node in ep.graph_module.graph.nodes if node.op == "placeholder"
]
fake_args = [node.meta["val"] for node in old_placeholders]
buffers_to_remove = [name for name, _ in ep.graph_module.named_buffers()]
for name in buffers_to_remove:
delattr(ep.graph_module, name)
# TODO(zhxhchen17) Return the new graph_signature directly.
fake_mode = detect_fake_mode(fake_args)
fake_mode = contextlib.nullcontext() if fake_mode is None else fake_mode
with _ignore_backend_decomps(), fake_mode, _override_composite_implicit_decomp(
cia_to_decomp
):
gm, graph_signature = aot_export_module(
ep.graph_module,
fake_args,
decompositions=python_decomp_table,
trace_joint=True if joint_loss_index is not None else False,
output_loss_index=(
joint_loss_index if joint_loss_index is not None else None
),
)
gm.graph.eliminate_dead_code()
# Update the signatures with the new placeholder names in case they
# changed when calling aot_export
def update_arg(old_arg, new_ph):
if isinstance(old_arg, ConstantArgument):
return old_arg
elif isinstance(old_arg, TensorArgument):
return TensorArgument(name=new_ph.name)
elif isinstance(old_arg, SymIntArgument):
return SymIntArgument(name=new_ph.name)
elif isinstance(old_arg, SymFloatArgument):
return SymFloatArgument(name=new_ph.name)
elif isinstance(old_arg, SymBoolArgument):
return SymBoolArgument(name=new_ph.name)
raise RuntimeError(f"Type of old_arg not supported: {type(old_arg)}")
new_placeholders = [node for node in gm.graph.nodes if node.op == "placeholder"]
new_outputs = list(gm.graph.nodes)[-1].args[0]
# rename the placeholders
assert len(new_placeholders) == len(old_placeholders)
for old_ph, new_ph in zip(old_placeholders, new_placeholders):
new_ph.name = new_ph.target = old_ph.name
# handle name collisions with newly decomposed graph nodes
name_map = {ph.name: ph.name for ph in new_placeholders}
for node in gm.graph.nodes:
if node.op == "placeholder":
continue
node.name = _rename_without_collisions(name_map, node.name, node.name)
# propagate names to higher order op subgraphs
_name_hoo_subgraph_placeholders(gm)
# Run this pass before creating input/output specs, since size-related CSE/DCE might affect output signature.
# Overwrite output specs afterwards.
from torch._export.passes._node_metadata_hook import (
_node_metadata_hook,
_set_node_metadata_hook,
)
from torch._functorch._aot_autograd.input_output_analysis import _graph_output_names
if not torch._dynamo.config.do_not_emit_runtime_asserts:
stack_trace = (
'File "torch/fx/passes/runtime_assert.py", line 24, '
"in insert_deferred_runtime_asserts"
)
shape_env = _get_shape_env(gm)
if shape_env is not None:
with _set_node_metadata_hook(
gm, functools.partial(_node_metadata_hook, stack_trace=stack_trace)
):
insert_deferred_runtime_asserts(
gm,
shape_env,
f"exported program: {first_call_function_nn_module_stack(gm.graph)}",
export=True,
)
# update output specs
gm.recompile()
for i, name in enumerate(_graph_output_names(gm)):
if isinstance(new_outputs[i], torch.fx.Node):
new_outputs[i].name = name
# To match the output target with correct input for input mutations
# need to find the old to new placeholder map
old_new_placeholder_map = {
spec.arg.name: new_placeholders[i].name
for i, spec in enumerate(ep.graph_signature.input_specs)
if not isinstance(spec.arg, ConstantArgument)
}
input_specs = [
InputSpec(
spec.kind,
update_arg(spec.arg, new_placeholders[i]),
spec.target,
spec.persistent,
)
for i, spec in enumerate(ep.graph_signature.input_specs)
]
output_specs = [
OutputSpec(
OutputKind.LOSS_OUTPUT if i == joint_loss_index else spec.kind,
update_arg(spec.arg, new_outputs[i]),
old_new_placeholder_map.get(spec.target, spec.target),
)
for i, spec in enumerate(ep.graph_signature.output_specs)
]
if joint_loss_index is not None:
assert graph_signature.backward_signature is not None
gradients = graph_signature.backward_signature.gradients_to_user_inputs
assert len(graph_signature.user_inputs) == len(ep.graph_signature.input_specs)
specs = {
graph_signature.user_inputs[i]: spec
for i, spec in enumerate(ep.graph_signature.input_specs)
if isinstance(spec.arg, TensorArgument)
}
for i, node in enumerate(new_outputs[len(output_specs) :]):
source = gradients[node.name]
spec = specs[source] # type: ignore[index]
if spec.kind == InputKind.PARAMETER:
kind = OutputKind.GRADIENT_TO_PARAMETER
target = spec.target
elif spec.kind == InputKind.USER_INPUT:
kind = OutputKind.GRADIENT_TO_USER_INPUT
target = source
else:
raise AssertionError(f"Unknown input kind: {spec.kind}")
output_specs.append(
OutputSpec(
kind,
TensorArgument(name=node.name),
target,
)
)
assert len(new_placeholders) == len(old_placeholders)
new_graph_signature = ExportGraphSignature(
input_specs=input_specs, output_specs=output_specs
)
# NOTE: aot_export adds symint metadata for placeholders with int
# values; since these become specialized, we replace such metadata with
# the original values.
# Also, set the param/buffer metadata back to the placeholders.
for old_node, new_node in zip(old_placeholders, new_placeholders):
if not isinstance(old_node.meta["val"], torch.Tensor):
new_node.meta["val"] = old_node.meta["val"]
if (
new_node.target in new_graph_signature.inputs_to_parameters
or new_node.target in new_graph_signature.inputs_to_buffers
):
for k, v in old_node.meta.items():
new_node.meta[k] = v
return gm, new_graph_signature
def _remove_unneccessary_copy_op_pass(
gm: torch.fx.GraphModule, new_graph_signature: ExportGraphSignature
) -> Tuple[torch.fx.GraphModule, ExportGraphSignature]:
"""
Removes redundant copy_ node that was introduced due to mutated buffer.
"""
with gm._set_replace_hook(new_graph_signature.get_replace_hook()):
for node in gm.graph.nodes:
if node.op == "output":
args, _ = pytree.tree_flatten(node.args)
for out in args:
if (
isinstance(out, torch.fx.Node)
and out.name in new_graph_signature.buffers_to_mutate
):
if (
out.op == "call_function"
and out.target == torch.ops.aten.copy.default
):
out.replace_all_uses_with(out.args[1]) # type: ignore[arg-type]
gm.graph.erase_node(out)
gm.recompile()
return gm, new_graph_signature
def _common_getitem_elimination_pass(
gm: torch.fx.GraphModule, graph_signature, module_call_graph
):
with gm._set_replace_hook(graph_signature.get_replace_hook()):
for module in gm.modules():
if not isinstance(module, torch.fx.GraphModule):
continue
node_id: Dict[torch.fx.Node, str] = {}
getitems: Dict[str, torch.fx.Node] = {}
for node in list(module.graph.nodes):
if node.op == "call_function" and node.target == operator.getitem:
source, idx = node.args
new_id = f"{node_id[source]}.{idx}"
if new_id in getitems:
node.replace_all_uses_with(getitems[new_id])
for entry in module_call_graph:
if entry.signature is not None:
entry.signature.replace_all_uses_with(
node, getitems[new_id]
)
module.graph.erase_node(node)
else:
getitems[new_id] = node
node_id[node] = new_id
else:
node_id[node] = node.name
def _get_updated_module_call_graph(
gm: torch.fx.GraphModule,
old_module_call_graph: List[ModuleCallEntry],
):
new_module_call_graph = copy.deepcopy(old_module_call_graph)
# use node-level provenance metadata to create a map
# from old node names to new node names
provenance: Dict[str, str] = {}
for node in gm.graph.nodes:
if history := node.meta.get("from_node", []):
provenance[history[-1].name] = node.name
# map old names to new names in module call signatures
for entry in new_module_call_graph:
signature = entry.signature
if signature is None:
continue
for x in [*signature.inputs, *signature.outputs]:
x.name = provenance.get(x.name, x.name)
return new_module_call_graph
def _decompose_exported_program(
ep,
*,
cia_to_decomp: Dict[torch._ops.OperatorBase, Callable],
python_decomp_table: Dict[torch._ops.OperatorBase, Callable],
joint_loss_index: Optional[int],
):
gm, new_graph_signature = _decompose_and_get_gm_with_new_signature_constants(
ep,
cia_to_decomp=cia_to_decomp,
python_decomp_table=python_decomp_table,
joint_loss_index=joint_loss_index,
)
# The signatures of ep.module_call_graph refer to input / output nodes of
# the original graph module. However, the new graph module may have
# new nodes due to decompositions. So we need to update these signatures
# in the decomposed exported program's module_call_graph.
new_module_call_graph = _get_updated_module_call_graph(
gm,
ep.module_call_graph,
)
# TODO unfortunately preserving graph-level metadata is not
# working well with aot_export. So we manually copy it.
# (The node-level meta is addressed above.)
gm.meta.update(ep.graph_module.meta)
new_range_constraints = _get_updated_range_constraints(
gm,
ep.range_constraints,
)
exported_program = ExportedProgram(
root=gm,
graph=gm.graph,
graph_signature=new_graph_signature,
state_dict=ep.state_dict,
range_constraints=new_range_constraints,
module_call_graph=new_module_call_graph,
example_inputs=ep.example_inputs,
constants=ep.constants,
)
return exported_program
class ExportedProgram:
"""
Package of a program from :func:`export`. It contains
an :class:`torch.fx.Graph` that represents Tensor computation, a state_dict containing
tensor values of all lifted parameters and buffers, and various metadata.
You can call an ExportedProgram like the original callable traced by
:func:`export` with the same calling convention.
To perform transformations on the graph, use ``.module`` property to access
an :class:`torch.fx.GraphModule`. You can then use
`FX transformation <https://pytorch.org/docs/stable/fx.html#writing-transformations>`_
to rewrite the graph. Afterwards, you can simply use :func:`export`
again to construct a correct ExportedProgram.
"""
def __init__(
self,
root: Union[torch.nn.Module, Dict[str, Any]],
graph: torch.fx.Graph,
graph_signature: ExportGraphSignature,
state_dict: Dict[str, Union[torch.Tensor, torch.nn.Parameter]],
range_constraints: "Dict[sympy.Symbol, Any]",
module_call_graph: List[ModuleCallEntry],
example_inputs: Optional[Tuple[Tuple[Any, ...], Dict[str, Any]]] = None,
constants: Optional[
Dict[str, Union[torch.Tensor, FakeScriptObject, torch._C.ScriptObject]]
] = None,
*,
verifiers: Optional[List[Type[Verifier]]] = None,
):
# Remove codegen related things from the graph. It should just be a flat graph.
graph._codegen = torch.fx.graph.CodeGen()
self._graph_module = _create_graph_module_for_export(root, graph)
if isinstance(root, torch.fx.GraphModule):
self._graph_module.meta.update(root.meta)
_common_getitem_elimination_pass(
self._graph_module, graph_signature, module_call_graph
)
self._graph_signature: ExportGraphSignature = graph_signature
self._state_dict: Dict[str, Any] = state_dict
self._range_constraints: Dict[sympy.Symbol, ValueRanges] = range_constraints
assert module_call_graph is not None
self._module_call_graph: List[ModuleCallEntry] = module_call_graph
self._example_inputs = example_inputs
self._constants = constants or {}
verifiers = verifiers or [Verifier]
assert all(issubclass(v, Verifier) for v in verifiers)
self._verifiers = verifiers
# Validate should be always the last step of the constructor.
self.validate()
@property
@compatibility(is_backward_compatible=False)
def graph_module(self):
return self._graph_module
@graph_module.setter
@compatibility(is_backward_compatible=False)
def graph_module(self, value):
raise RuntimeError("Unable to set ExportedProgram's graph_module attribute.")
@property
@compatibility(is_backward_compatible=False)
def graph(self):
return self.graph_module.graph
@graph.setter
@compatibility(is_backward_compatible=False)
def graph(self, value):
raise RuntimeError("Unable to set ExportedProgram's graph attribute.")
@property
@compatibility(is_backward_compatible=False)
def graph_signature(self):
return self._graph_signature
@graph_signature.setter
@compatibility(is_backward_compatible=False)
def graph_signature(self, value):
raise RuntimeError("Unable to set ExportedProgram's graph_signature attribute.")
@property
@compatibility(is_backward_compatible=False)
def state_dict(self):
return self._state_dict
@state_dict.setter
@compatibility(is_backward_compatible=False)
def state_dict(self, value):
raise RuntimeError("Unable to set ExportedProgram's state_dict attribute.")
@compatibility(is_backward_compatible=False)
def parameters(self) -> Iterator[torch.nn.Parameter]:
"""
Returns an iterator over original module's parameters.
"""
for _, param in self.named_parameters():
yield param
@compatibility(is_backward_compatible=False)
def named_parameters(self) -> Iterator[Tuple[str, torch.nn.Parameter]]:
"""
Returns an iterator over original module parameters, yielding
both the name of the parameter as well as the parameter itself.
"""
for param_name in self.graph_signature.parameters:
yield param_name, self.state_dict[param_name]
@compatibility(is_backward_compatible=False)
def buffers(self) -> Iterator[torch.Tensor]:
"""
Returns an iterator over original module buffers.
"""
for _, buf in self.named_buffers():
yield buf
@compatibility(is_backward_compatible=False)
def named_buffers(self) -> Iterator[Tuple[str, torch.Tensor]]:
"""
Returns an iterator over original module buffers, yielding
both the name of the buffer as well as the buffer itself.
"""
non_persistent_buffers = set(self.graph_signature.non_persistent_buffers)
for buffer_name in self.graph_signature.buffers:
if buffer_name in non_persistent_buffers:
yield buffer_name, self.constants[buffer_name]
else:
yield buffer_name, self.state_dict[buffer_name]
@property
@compatibility(is_backward_compatible=False)
def range_constraints(self):
return self._range_constraints
@range_constraints.setter
@compatibility(is_backward_compatible=False)
def range_constraints(self, value):
raise RuntimeError(
"Unable to set ExportedProgram's range_constraints attribute."
)
@property
@compatibility(is_backward_compatible=False)
def module_call_graph(self):
return self._module_call_graph
@module_call_graph.setter
@compatibility(is_backward_compatible=False)
def module_call_graph(self, value):
raise RuntimeError(
"Unable to set ExportedProgram's module_call_graph attribute."
)
@property
@compatibility(is_backward_compatible=False)
def example_inputs(self):
return self._example_inputs
@example_inputs.setter
@compatibility(is_backward_compatible=False)
def example_inputs(self, value):
# This is allowed
if not (
isinstance(value, tuple)
and len(value) == 2
and isinstance(value[0], tuple)
and isinstance(value[1], dict)
):
raise ValueError(
"Example inputs should be a tuple containing example arguments (as "
"a tuple), and example kwargs (as a dictionary)."
)
args, kwargs = value
from ._unlift import _check_inputs_match
_check_inputs_match(args, kwargs, self.call_spec.in_spec)
self._example_inputs = value
@property
@compatibility(is_backward_compatible=False)
def call_spec(self):
CallSpec = namedtuple("CallSpec", ["in_spec", "out_spec"])
if len(self.module_call_graph) == 0:
return CallSpec(in_spec=None, out_spec=None)
assert self.module_call_graph[0].fqn == ""
return CallSpec(
in_spec=self.module_call_graph[0].signature.in_spec,
out_spec=self.module_call_graph[0].signature.out_spec,
)
@call_spec.setter
@compatibility(is_backward_compatible=False)
def call_spec(self, value):
raise RuntimeError("Unable to set ExportedProgram's call_spec attribute.")
@property
@compatibility(is_backward_compatible=False)
def verifier(self) -> Any:
return self._verifiers[0]
@verifier.setter
@compatibility(is_backward_compatible=False)
def verifier(self, value):
raise RuntimeError("Unable to set ExportedProgram's verifier attribute.")
@property
@compatibility(is_backward_compatible=False)
def dialect(self) -> str:
assert self._verifiers is not None
return self._verifiers[0].dialect
@dialect.setter
@compatibility(is_backward_compatible=False)
def dialect(self, value):
raise RuntimeError("Unable to set ExportedProgram's dialect attribute.")
@property
@compatibility(is_backward_compatible=False)
def verifiers(self):
return self._verifiers
@verifiers.setter
@compatibility(is_backward_compatible=False)
def verifiers(self, value):
raise RuntimeError("Unable to set ExportedProgram's verifiers attribute.")
@property
@compatibility(is_backward_compatible=False)
def tensor_constants(self):
return self._constants
@tensor_constants.setter
@compatibility(is_backward_compatible=False)
def tensor_constants(self, value):
raise RuntimeError(
"Unable to set ExportedProgram's tensor_constants attribute."
)
@property
@compatibility(is_backward_compatible=False)
def constants(self):
return self._constants
@constants.setter
@compatibility(is_backward_compatible=False)
def constants(self, value):
raise RuntimeError("Unable to set ExportedProgram's constants attribute.")
def _get_flat_args_with_check(self, args, kwargs):
"""Flatten args, kwargs using pytree, then, check specs.
Args:
args: List[Any] original args passed to __call__
kwargs: Dict[str, Any] original kwargs passed to __call
Returns:
A tuple of (flat_args, received_spec)
flat_args is flattend args / kwargs
received_spec is the pytree spec produced while flattening the
tuple (args, kwargs)
"""
in_spec = self.call_spec.in_spec
if in_spec is not None:
kwargs = reorder_kwargs(kwargs, in_spec)
flat_args_with_path, received_spec = pytree.tree_flatten_with_path(
(args, kwargs)
)
self._check_input_constraints(flat_args_with_path)
flat_args = tuple(x[1] for x in flat_args_with_path)
return flat_args, received_spec
def _graph_module_flat_inputs(self, args: Any, kwargs: Any) -> Any:
"""Transform args, kwargs of __call__ to args for graph_module.
self.graph_module takes stuff from state dict as inputs.
The invariant is for ep: ExportedProgram is
ep(args, kwargs) ==
ep.postprocess(ep.graph_module(ep.graph_module_flat_inputs(args, kwargs)))
"""
in_spec = self.call_spec.in_spec
flat_args, received_spec = self._get_flat_args_with_check(args, kwargs)
if in_spec is not None and not is_equivalent(
received_spec, in_spec, _fx_collection_equivalence_fn
):
raise ValueError(
"Trying to flatten user inputs with exported input tree spec: \n"
f"{in_spec}\n"
"but actually got inputs with tree spec of: \n"
f"{received_spec}"
)
additional_inputs = []
for input_ in self.graph_signature.input_specs:
if input_.kind == InputKind.USER_INPUT:
continue
elif input_.kind in (
InputKind.PARAMETER,
InputKind.BUFFER,
):
if input_.persistent is False:
# This is a non-persistent buffer, grab it from our
# constants instead of the state dict.
additional_inputs.append(self.constants[input_.target])
else:
additional_inputs.append(self.state_dict[input_.target])
elif input_.kind in (
InputKind.CONSTANT_TENSOR,
InputKind.CUSTOM_OBJ,
):
additional_inputs.append(self.constants[input_.target])
additional_inputs = tuple(additional_inputs)
# NOTE: calling convention is first params, then buffers, then args as user supplied them.
# See: torch/_functorch/aot_autograd.py#L1034
return additional_inputs + flat_args
def __call__(self, *args: Any, **kwargs: Any) -> Any:
raise RuntimeError(
"Unable to call ExportedProgram directly. "
"You should use `exported_program.module()` instead."
)
def _postprocess_graph_module_outputs(self, res, orig_args, orig_kwargs):
"""Process potential mutations to the input.
Because self.graph_module is functional, so mutations has to be written
back after execution of graph_module.
"""
import torch._export.error as error
flat_args, _ = self._get_flat_args_with_check(orig_args, orig_kwargs)
if self.call_spec.out_spec is not None:
buffer_mutation = self.graph_signature.buffers_to_mutate
user_input_mutation = self.graph_signature.user_inputs_to_mutate
num_mutated = len(buffer_mutation) + len(user_input_mutation)
mutated_values = res[:num_mutated]
# Exclude dependency token from final result.
assertion_dep_token = self.graph_signature.assertion_dep_token
if assertion_dep_token is not None:
assertion_dep_token_index = next(iter(assertion_dep_token.keys()))
res = res[:assertion_dep_token_index]
res = res[num_mutated:]
try:
res = pytree.tree_unflatten(res, self.call_spec.out_spec)
except Exception:
_, received_spec = pytree.tree_flatten(res)
raise error.InternalError( # noqa: B904
"Trying to flatten user outputs with exported output tree spec: \n"
f"{self.call_spec.out_spec}\n"
"but actually got outputs with tree spec of: \n"
f"{received_spec}"
)
finally:
user_inputs = [
spec
for spec in self.graph_signature.input_specs
if spec.kind == InputKind.USER_INPUT
]
for i, value in enumerate(mutated_values):
output_spec = self.graph_signature.output_specs[i]
if output_spec.kind == OutputKind.BUFFER_MUTATION:
assert output_spec.target is not None
self.state_dict[output_spec.target] = value
elif output_spec.kind == OutputKind.USER_INPUT_MUTATION:
assert output_spec.target is not None
index = next(
i
for i, spec in enumerate(user_inputs)
if spec.arg.name == output_spec.target
)
flat_args[index].copy_(value)
else:
raise AssertionError(f"Unexpected kind: {output_spec.kind}")
return res
def __str__(self) -> str:
graph_module = self.graph_module.print_readable(
print_output=False, colored=False
).replace("\n", "\n ")
string = (
"ExportedProgram:\n"
f" {graph_module}\n"
f"Graph signature: {self.graph_signature}\n"
f"Range constraints: {self.range_constraints}\n"
)
return string
def module(self) -> torch.nn.Module:
"""
Returns a self contained GraphModule with all the parameters/buffers inlined.
"""
from ._unlift import _unlift_exported_program_lifted_states
module = _unlift_exported_program_lifted_states(self)
def _train(self, mode: bool = True):
raise NotImplementedError("Calling train() is not supported yet.")
def _eval(self, mode: bool = True):
raise NotImplementedError("Calling eval() is not supported yet.")
module.train = types.MethodType(_train, module) # type: ignore[method-assign]
module.eval = types.MethodType(_eval, module) # type: ignore[method-assign]
return module
def _num_lifted_params_buffers(self):
return next(
(
i
for i, s in enumerate(self._graph_signature.input_specs)
if s.kind == InputKind.USER_INPUT
),
len(self._graph_signature.input_specs),
)
@_disable_prexisiting_fake_mode
def run_decompositions(
self,
decomp_table: Optional[Dict[torch._ops.OperatorBase, Callable]] = None,
) -> "ExportedProgram":
"""
Run a set of decompositions on the exported program and returns a new
exported program. By default we will run the Core ATen decompositions to
get operators in the
`Core ATen Operator Set <https://pytorch.org/docs/stable/torch.compiler_ir.html>`_.
For now, we do not decompose joint graphs.
Args:
decomp_table:
An optional argument that specifies decomp behaviour for Aten ops
(1) If None, we decompose to core aten decompositions
(2) If empty, we don't decompose any operator
Some examples:
If you don't want to decompose anything
.. code-block:: python
ep = torch.export.export(model, ...)
ep = ep.run_decompositions(decomp_table={})
If you want to get a core aten operator set except for certain operator, you can do following:
.. code-block:: python
ep = torch.export.export(model, ...)
decomp_table = torch.export.default_decompositions()
decomp_table[your_op] = your_custom_decomp
ep = ep.run_decompositions(decomp_table=decomp_table)
"""
_decomp_table = (
default_decompositions() if decomp_table is None else dict(decomp_table)
)
if isinstance(_decomp_table, CustomDecompTable):
_decomp_table = _decomp_table.materialize()
# Note [Seperating decomp_table into CIA decomps and non-CIA decomps]
# At this point, we have a decomp_table that contains decomp behaviour for
# both CIA and post-autograd ops.
# We need to separate the op into two categories:
# 1. CIA op: These are the ops that we want to override
# CompositeImplicitAutograd decomp for. For them, we need to use _override_composite_implicit_decomp
# context manager to plumb it through AOTDispatcher
# 2. Non-CIA op: These ops are only relevant after AOTDIspatcher runs, so just
# checking if they are statically functional is enough.
# For joint IR case tho, we need to use the old path because we can't register
# custom decomps this way because we can't use context manager as it installs
# autograd_error node.
(
cia_to_decomp,
python_decomp_table,
) = _split_decomp_table_to_cia_and_python_decomp(_decomp_table)
return _decompose_exported_program(
self,
cia_to_decomp=cia_to_decomp,
python_decomp_table=python_decomp_table,
joint_loss_index=None,
)
def _transform_do_not_use(self, *passes: PassType) -> "ExportedProgram":
pm = PassManager(list(passes))
# Since we abstractly run the passes, we need to disable backend decomp here
# again.
from torch.export._trace import _ignore_backend_decomps
with _ignore_backend_decomps():
res = pm(self.graph_module)
transformed_gm = res.graph_module if res is not None else self.graph_module
assert transformed_gm is not None
if transformed_gm is self.graph_module and not res.modified:
return self
# TODO(zhxchen17) Remove this.
def _get_updated_graph_signature(
old_signature: ExportGraphSignature,
new_gm: torch.fx.GraphModule,
) -> ExportGraphSignature:
"""
Update the graph signature's user_input/user_outputs.
"""
new_input_specs = []
for i, node in enumerate(new_gm.graph.nodes):
if node.op != "placeholder":
break
assert i < len(
old_signature.input_specs
), "Number of inputs changed after transformation"
old_input_spec = old_signature.input_specs[i]
arg = (
old_input_spec.arg
if isinstance(
old_input_spec.arg, (ConstantArgument, CustomObjArgument)
)
else type(old_input_spec.arg)(node.name)
)
new_input_specs.append(
InputSpec(
old_input_spec.kind,
arg,
old_input_spec.target,
old_input_spec.persistent,
)
)
output_node = list(new_gm.graph.nodes)[-1]
assert output_node.op == "output"
new_output_specs = []
for i, node in enumerate(output_node.args[0]):
assert i < len(
old_signature.output_specs
), "Number of outputs changed after transformation"
old_output_spec = old_signature.output_specs[i]
arg = (
old_output_spec.arg
if isinstance(
old_output_spec.arg, (ConstantArgument, CustomObjArgument)
)
else type(old_output_spec.arg)(node.name)
)
new_output_specs.append(
OutputSpec(old_output_spec.kind, arg, old_output_spec.target)
)
new_signature = ExportGraphSignature(
input_specs=new_input_specs, output_specs=new_output_specs
)
return new_signature
transformed_ep = ExportedProgram(
root=transformed_gm,
graph=transformed_gm.graph,
graph_signature=_get_updated_graph_signature(
self.graph_signature, transformed_gm
),
state_dict=self.state_dict,
range_constraints=_get_updated_range_constraints(
transformed_gm,
self.range_constraints,
),
module_call_graph=copy.deepcopy(self._module_call_graph),
example_inputs=self.example_inputs,
constants=self.constants,
verifiers=self.verifiers,
)
transformed_ep.graph_module.meta.update(self.graph_module.meta)
transformed_ep.graph_module.meta.update(res.graph_module.meta)
return transformed_ep
def _check_input_constraints(self, flat_args_with_path):
from torch._export.utils import _check_input_constraints_for_graph
placeholders = [p for p in self.graph.nodes if p.op == "placeholder"]
input_placeholders = [
p
for p, s in zip(placeholders, self.graph_signature.input_specs)
if s.kind == InputKind.USER_INPUT
]
_check_input_constraints_for_graph(
input_placeholders, flat_args_with_path, self.range_constraints
)
@compatibility(is_backward_compatible=False)
def validate(self):
self._validate()
# TODO: remove this
@final
def _validate(self):
assert (
len(self.verifiers) > 0
), "ExportedProgram must have at least one verifier."
for v in self.verifiers:
v().check(self)
# TODO(zhxchen17) Formalize this.
def _update(
self, graph_module, graph_signature, *, state_dict=None, verifiers=None
) -> "ExportedProgram":
return ExportedProgram(
root=graph_module,
graph=graph_module.graph,
graph_signature=graph_signature,
state_dict=state_dict if state_dict is not None else self.state_dict,
range_constraints=copy.deepcopy(self.range_constraints),
module_call_graph=copy.deepcopy(self._module_call_graph),
example_inputs=self.example_inputs,
constants=self.constants,
verifiers=verifiers if verifiers is not None else self.verifiers,
)
def _get_shape_env(gm):
vals = [
node.meta["val"]
for node in gm.graph.nodes
if node.meta.get("val", None) is not None
]
from torch._guards import detect_fake_mode
fake_mode = detect_fake_mode(vals)
if fake_mode is not None:
return fake_mode.shape_env
for v in vals:
if isinstance(v, torch.SymInt):
return v.node.shape_env
def _get_updated_range_constraints(
gm: torch.fx.GraphModule,
old_range_constraints: "Optional[Dict[sympy.Symbol, Any]]" = None,
) -> "Dict[sympy.Symbol, Any]":
assert old_range_constraints is not None
shape_env = _get_shape_env(gm)
if shape_env is None:
return {}
range_constraints = copy.copy(old_range_constraints)
range_constraints = {
k: v for k, v in range_constraints.items() if k not in shape_env.replacements
}
# Only when we have an unbacked symint, and it's used as constructor inputs,
# runtime_var_to_range will make a difference compated to var_to_range.
# e.g. [2, oo) -> [0, oo)
for k, v in shape_env.var_to_range.items():
if k not in shape_env.replacements and k not in range_constraints:
range_constraints[k] = v
return range_constraints
def _create_graph_module_for_export(root, graph):
try:
gm = torch.fx.GraphModule(root, graph)
except SyntaxError:
# If custom objects stored in memory are being used in the graph,
# the generated python code will result in a syntax error on the custom
# object, since it is unable to parse the in-memory object. However
# we can still run the graph eagerly through torch.fx.Interpreter,
# so we will bypass this error.
warnings.warn(
"Unable to execute the generated python source code from "
"the graph. The graph module will no longer be directly callable, "
"but you can still run the ExportedProgram, and if needed, you can "
"run the graph module eagerly using torch.fx.Interpreter."
)
gm = torch.fx.GraphModule(root, torch.fx.Graph())
gm._graph = graph
return gm
|