File: exported_program.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1467 lines) | stat: -rw-r--r-- 56,902 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import contextlib
import copy
import dataclasses
import functools
import operator
import types
import warnings
from collections import namedtuple
from contextlib import contextmanager
from typing import (
    Any,
    Callable,
    Dict,
    final,
    Iterator,
    List,
    Optional,
    Tuple,
    Type,
    TYPE_CHECKING,
    Union,
)

from torch._higher_order_ops.utils import autograd_not_implemented
from torch._library.fake_class_registry import FakeScriptObject
from torch._subclasses.fake_impls import (
    _deregister_op_impl,
    _is_op_registered_to_fake_rule,
    register_op_impl,
)
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx._utils import first_call_function_nn_module_stack
from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo
from torch.fx.immutable_collections import immutable_dict, immutable_list
from torch.fx.passes.runtime_assert import insert_deferred_runtime_asserts


if TYPE_CHECKING:
    # Import the following modules during type checking to enable code intelligence features,
    # such as auto-completion in tools like pylance, even when these modules are not explicitly
    # imported in user code.

    import sympy

    from torch.utils._sympy.value_ranges import ValueRanges

import torch
import torch.utils._pytree as pytree
from torch._export.utils import (
    _collect_all_valid_cia_ops,
    _collect_and_set_constant_attrs,
    _collect_param_buffer_metadata,
    _detect_fake_mode_from_gm,
    _get_decomp_for_cia,
    _is_preservable_cia_op,
    _name_hoo_subgraph_placeholders,
    _overwrite_signature_for_non_persistent_buffers,
    _populate_param_buffer_metadata_to_new_gm,
    _rename_without_collisions,
    _special_op_to_preserve_cia,
)
from torch._export.verifier import Verifier
from torch._guards import detect_fake_mode
from torch._subclasses.fake_tensor import unset_fake_temporarily
from torch.export._tree_utils import is_equivalent, reorder_kwargs
from torch.export.decomp_utils import CustomDecompTable
from torch.fx._compatibility import compatibility
from torch.fx.passes.infra.pass_base import PassResult
from torch.fx.passes.infra.pass_manager import PassManager

from .graph_signature import (  # noqa: F401
    ArgumentSpec,
    ConstantArgument,
    CustomObjArgument,
    ExportGraphSignature,
    InputKind,
    InputSpec,
    OutputKind,
    OutputSpec,
    SymBoolArgument,
    SymFloatArgument,
    SymIntArgument,
    TensorArgument,
    TokenArgument,
)


__all__ = [
    "ExportedProgram",
    "ModuleCallEntry",
    "ModuleCallSignature",
    "default_decompositions",
]


PassType = Callable[[torch.fx.GraphModule], Optional[PassResult]]


@dataclasses.dataclass
class ModuleCallSignature:
    inputs: List[ArgumentSpec]
    outputs: List[ArgumentSpec]
    in_spec: pytree.TreeSpec
    out_spec: pytree.TreeSpec
    forward_arg_names: Optional[List[str]] = None

    def replace_all_uses_with(self, original_node, new_node):
        for i in self.inputs:
            if i.name == original_node.name:
                i.name = new_node.name
        for o in self.outputs:
            if o.name == original_node.name:
                o.name = new_node.name


@dataclasses.dataclass
class ModuleCallEntry:
    fqn: str
    signature: Optional[ModuleCallSignature] = None


def _disable_prexisiting_fake_mode(fn):
    @functools.wraps(fn)
    def wrapper(*args, **kwargs):
        with unset_fake_temporarily():
            return fn(*args, **kwargs)

    return wrapper


def _fx_collection_equivalence_fn(
    spec1_type: Optional[type],
    spec1_context: pytree.Context,
    spec2_type: Optional[type],
    spec2_context: pytree.Context,
) -> bool:
    """Treat containers and their immutable variants as the same type. Otherwise
    compare as normal.
    """
    if spec1_type is None or spec2_type is None:
        return spec1_type is spec2_type and spec1_context == spec2_context

    if issubclass(spec1_type, (dict, immutable_dict)) and issubclass(
        spec2_type, (dict, immutable_dict)
    ):
        return spec1_context == spec2_context

    if issubclass(spec1_type, (list, immutable_list)) and issubclass(
        spec2_type, (list, immutable_list)
    ):
        return spec1_context == spec2_context

    return spec1_type is spec2_type and spec1_context == spec2_context


# This list is compiled from DispatchKey.cpp.
# The idea is that we use these keys to override
# CIA decomp in export
_AUTOGRAD_ALIAS_BACKEND_KEYS_TO_OVERRIDE = [
    torch._C.DispatchKey.AutogradCPU,
    torch._C.DispatchKey.AutogradCUDA,
    torch._C.DispatchKey.AutogradMeta,
    torch._C.DispatchKey.AutogradXLA,
    torch._C.DispatchKey.AutogradLazy,
    torch._C.DispatchKey.AutogradIPU,
    torch._C.DispatchKey.AutogradXPU,
    torch._C.DispatchKey.AutogradMPS,
    torch._C.DispatchKey.AutogradHPU,
    torch._C.DispatchKey.AutogradPrivateUse1,
    torch._C.DispatchKey.AutogradPrivateUse2,
    torch._C.DispatchKey.AutogradPrivateUse3,
]


# This list is compiled from DispatchKey.cpp.
# The idea is that we use these keys to add
# python kernels that directly uses default
# CIA decomp
# See NOTE Registering old CIA to Backend kernel
_BACKEND_KEYS_TO_OVERRIDE = [
    torch._C.DispatchKey.CPU,
    torch._C.DispatchKey.CUDA,
    torch._C.DispatchKey.Meta,
    torch._C.DispatchKey.XLA,
    torch._C.DispatchKey.Lazy,
    torch._C.DispatchKey.IPU,
    torch._C.DispatchKey.XPU,
    torch._C.DispatchKey.MPS,
    torch._C.DispatchKey.HPU,
]


@contextmanager
def _override_composite_implicit_decomp(cia_ops_to_callable, safe=True):
    # This function overrides CompositeImplicitAutograd decomp for
    # functional composite ops that user specified. Ideally we want to not-decompose
    # ALL composite ops but today's C++ functinalization relies on
    # the fact that it is working with the opset after decomp is run.
    # Hence we can only do it for functional ops. One caveat is that
    # there are some composite ops that lie about their schema (claimed to be
    # functional but not really aka dropout), for these cases, we just decompose.

    # When safe=False, we will assume that ops_to_preserve can be mutating/aliasing
    # and their usual decompositions need to be shadowed rather than overridden.
    # Thus we will avoid asserting that they are valid to preserve, and will not
    # replace their CompositeImplicitAutograd kernels with NotImplemented.
    # The only current users of this mode are variants of aten::to that we will
    # replace with aten::_to_copy in FunctionalTensorMode.__torch_dispatch__.
    saved_tables = {}
    patched_ops = set()
    for op_overload, decomp_callable in cia_ops_to_callable.items():
        saved_tables[op_overload] = op_overload.py_kernels.copy()
        patched_ops.add(op_overload)
        for override_dispatch_key in _AUTOGRAD_ALIAS_BACKEND_KEYS_TO_OVERRIDE:
            if override_dispatch_key not in op_overload.py_kernels:
                # TODO (tmanlaibaatar)https://github.com/pytorch/pytorch/issues/129430
                op_overload.py_impl(override_dispatch_key)(
                    autograd_not_implemented(op_overload, deferred_error=True)
                )
        # See NOTE: Registering old CIA to Backend kernel
        # It is important that we cache this before we override py_kernels.
        orig_cia_callable = _get_decomp_for_cia(op_overload)
        if torch._C.DispatchKey.CompositeImplicitAutograd in op_overload.py_kernels:
            del op_overload.py_kernels[torch._C.DispatchKey.CompositeImplicitAutograd]

        if safe:
            op_overload.py_impl(torch._C.DispatchKey.CompositeImplicitAutograd)(
                decomp_callable
            )

        # [NOTE] Directly registering fake tensor rule to CIA ops
        # The problem we are facing here is if your CIA custom rule
        # says we want to preserve the op, we will return NotImplemented.
        # Unfortunately, this will invoke meta device tracing in fake tensor
        # resulting in divergent behaviour for CIA kernels that has device based
        # branching (one case is torch.ops.aten.scaled_dot_product.attention)
        # To get around this issue, we register direct fake impl so that we
        # run the kernel before we actually try to decompose the op in FakeTensorMode.
        # Note that is a no-op in most cases, because:
        #   1) In post dispatch tracing, CIA would have already decomposed
        #   2) Most CIA impl are device agnostic.
        def _force_dispatch_to_orig_cia_callable(fake_tensor_mode, op, *args, **kwargs):
            orig_cia_callable = kwargs["original_callable"]
            del kwargs["original_callable"]
            with fake_tensor_mode:
                return orig_cia_callable(*args, **kwargs)

        if not _is_op_registered_to_fake_rule(op_overload):
            register_op_impl(op_overload)(
                functools.partial(
                    _force_dispatch_to_orig_cia_callable,
                    original_callable=orig_cia_callable,
                )
            )

        for key in _BACKEND_KEYS_TO_OVERRIDE:
            if key not in op_overload.py_kernels:
                # [NOTE] Registering old CIA to Backend kernel
                # We always register original CIA behavior to the backend keys kernel
                # The reason is when we are fake tensor prop-ing or executing real kernel,
                # we end up calling an operator on respective backend, which in python dispatcher,
                # will resolve into CIA key. (see resolve_key in torch/_ops.py)
                # As a result, this CIA now will call into the custom user defined
                # CIA which can cause a problem.
                # To make it more concrete, the case we are handling is:
                #  (1) there is a tensor constant we are performing constant propagation
                #      on during tracing
                #  (2) we invoke an op underneath autograd (either because we are below autograd,
                #      or we are tracing in inference mode), so one of the backend keys gets hit
                #  (3) the op we are invoking has a CIA impl that normally runs in eager mode
                #      (and the user wants to tweak this CIA impl during tracing, but during
                #      const-prop we want the original CIA to run
                op_overload.py_impl(key)(orig_cia_callable)

    try:
        yield
    finally:
        for op in patched_ops:
            op.py_kernels.clear()
            op.py_kernels.update(saved_tables[op])
            op._dispatch_cache.clear()
            _deregister_op_impl(op)


@contextmanager
def _override_decomp_aten_to_variants():
    # Preserve variants of aten::to understanding that they are mutating/aliasing
    # and their CompositeImplicitAutograd kernels will not become NotImplemented.
    # We will later replace them with aten._to_copy when functionalizing.
    with _override_composite_implicit_decomp(
        {
            torch.ops.aten.to.dtype_layout: _special_op_to_preserve_cia,
            torch.ops.aten.to.dtype: _special_op_to_preserve_cia,
        },
        safe=False,
    ):
        yield


def _split_decomp_table_to_cia_and_python_decomp(
    decomp_table: Dict[torch._ops.OperatorBase, Callable]
) -> Tuple[Dict[torch._ops.OperatorBase, Callable], ...]:
    all_preservable_cia_ops = set(_collect_all_valid_cia_ops())
    cia_ops_to_callable = {}

    for op in list(decomp_table.keys()):
        # TODO we are silently allowing non-safe(non-functional) ops through a crack
        # due to core aten decomp table having non-functional entries. Once we have
        # a tigher check around core aten decomp, we should warn users about them.
        # Tracking issue: (https://github.com/pytorch/pytorch/issues/135759)

        # if it is a valid CIA op we can mess with in export, we check if it is:
        #  1. Has been marked as to be decomposed. Example:
        #        decomp_table = decomp_table_to_core_aten()
        #        del decomp_table[aten.linear]
        #     In this case, user says decompose everything except for aten.linear
        #  2. Has been marked with custom decomp behavour. Example:
        #        decomp_table = {aten.linear: some_op}
        # For (1), we want to remove all the CIA ops that weren't handled by user as
        # it suggests they are safe to decompose, so we should remove from preservable_list.
        # for (2), we just plumb the custom decomp to AOTDIspatcher.
        # In both cases, we want to remove this CIA op from the decomp_table as it is special
        # handled.
        if op in all_preservable_cia_ops:
            cia_ops_to_callable[op] = decomp_table[op]
            all_preservable_cia_ops.remove(op)
            del decomp_table[op]
        # If it is a custom op, we want to still preserve or do whatever
        # with it if it is a functional CIA. The reason we don't remove
        # from CIA list is because we don't query custom ops.
        elif _is_preservable_cia_op(op):
            op_name = op.name()
            assert not op_name.startswith("aten"), "This should be a custom op"
            cia_ops_to_callable[op] = decomp_table[op]

    # If we reached here, it means user intentionally deleted these CIA ops from
    # decomp table.
    for k in all_preservable_cia_ops:
        cia_ops_to_callable[k] = _special_op_to_preserve_cia

    return cia_ops_to_callable, decomp_table


def default_decompositions() -> "CustomDecompTable":
    """
    This is the default decomposition table which contains decomposition of
    all ATEN operators to core aten opset. Use this API together with
    :func:`run_decompositions()`
    """
    return CustomDecompTable()


def _decompose_and_get_gm_with_new_signature_constants(
    ep,
    *,
    cia_to_decomp: Dict[torch._ops.OperatorBase, Callable],
    python_decomp_table: Dict[torch._ops.OperatorBase, Callable],
    joint_loss_index: Optional[int],
):
    from torch._functorch.aot_autograd import aot_export_module
    from torch.export._trace import (
        _export_to_aten_ir,
        _fakify_params_buffers,
        _ignore_backend_decomps,
        _verify_nn_module_stack,
        _verify_placeholder_names,
        _verify_stack_trace,
    )
    from torch.fx.experimental.symbolic_shapes import ShapeEnv

    def _is_joint_ir_decomp(ep, joint_loss_index):
        return (
            joint_loss_index is not None
            or ep.graph_signature.backward_signature is not None
        )

    if not _is_joint_ir_decomp(ep, joint_loss_index):
        mod = ep.module()
        # TODO T204030333
        fake_mode = _detect_fake_mode_from_gm(ep.graph_module)
        if fake_mode is None:
            fake_mode = FakeTensorMode(shape_env=ShapeEnv(), export=True)
        retracing_args = []
        for node in mod.graph.nodes:
            if node.op == "placeholder":
                if isinstance(node.meta["val"], CustomObjArgument):
                    real_script_obj = None
                    if node.meta["val"].fake_val is None:
                        real_script_obj = ep.constants[node.meta["val"].name]
                    else:
                        real_script_obj = node.meta["val"].fake_val.real_obj
                    retracing_args.append(real_script_obj)
                else:
                    retracing_args.append(node.meta["val"])

        retracing_args_unwrapped = pytree.tree_unflatten(retracing_args, mod._in_spec)
        # Fix the graph output signature to be tuple if scalar
        out_spec = mod._out_spec

        orig_arg_names = mod.graph._codegen.pytree_info.orig_args

        # aot_export expect the return type to always be a tuple.
        if out_spec.type not in (list, tuple):
            out_spec = pytree.TreeSpec(tuple, None, [out_spec])

        mod.graph._codegen = _PyTreeCodeGen(
            _PyTreeInfo(
                orig_arg_names,
                mod._in_spec,
                out_spec,
            )
        )

        mod.recompile()

        # the exported module will store constants & non-persistent buffers such that
        # retracing treats them as persistent buffers, so we inform the constants lifting pass
        # and overwrite the new graph signature using the previous program.
        _collect_and_set_constant_attrs(ep.graph_signature, ep.constants, mod)

        # get params & buffers after excluding constants
        fake_params_buffers = _fakify_params_buffers(fake_mode, mod)

        params_buffers_to_node_meta = _collect_param_buffer_metadata(mod)

        # TODO (tmanlaibaatar) Ideally run_decomp should just call _non_strict_export
        # but due to special handling of constants as non-persistent buffers make it little
        # diffucult. But we should unify this code path together. T206837815
        from torch._export.non_strict_utils import _fakify_script_objects

        with (
            fake_mode
        ), _override_decomp_aten_to_variants(), _override_composite_implicit_decomp(
            cia_to_decomp,
        ):
            # this requires empty kwargs, but not in pytree.flattened format
            with _fakify_script_objects(
                mod,
                (
                    *retracing_args_unwrapped[0],
                    *retracing_args_unwrapped[1].values(),
                ),
                {},
                fake_mode,
            ) as (
                patched_mod,
                new_fake_args,
                new_fake_kwargs,
                new_fake_constant_attrs,
                map_fake_to_real,
            ):
                aten_export_artifact = _export_to_aten_ir(
                    patched_mod,
                    new_fake_args,
                    new_fake_kwargs,
                    fake_params_buffers,
                    new_fake_constant_attrs,
                    decomp_table=python_decomp_table,
                    _check_autograd_state=False,
                )

                # aten_export_artifact.constants contains only fake script objects, we need to map them back
                aten_export_artifact.constants = {
                    fqn: map_fake_to_real[obj]
                    if isinstance(obj, FakeScriptObject)
                    else obj
                    for fqn, obj in aten_export_artifact.constants.items()
                }

        gm = aten_export_artifact.gm
        new_graph_signature = aten_export_artifact.sig

        _populate_param_buffer_metadata_to_new_gm(
            params_buffers_to_node_meta, gm, new_graph_signature
        )

        # overwrite signature for non-persistent buffers
        new_graph_signature = _overwrite_signature_for_non_persistent_buffers(
            ep.graph_signature, new_graph_signature
        )

        _verify_nn_module_stack(gm)
        _verify_stack_trace(gm)
        _verify_placeholder_names(gm, new_graph_signature)

        return _remove_unneccessary_copy_op_pass(gm, new_graph_signature)

    old_placeholders = [
        node for node in ep.graph_module.graph.nodes if node.op == "placeholder"
    ]
    fake_args = [node.meta["val"] for node in old_placeholders]

    buffers_to_remove = [name for name, _ in ep.graph_module.named_buffers()]
    for name in buffers_to_remove:
        delattr(ep.graph_module, name)

    # TODO(zhxhchen17) Return the new graph_signature directly.
    fake_mode = detect_fake_mode(fake_args)
    fake_mode = contextlib.nullcontext() if fake_mode is None else fake_mode
    with _ignore_backend_decomps(), fake_mode, _override_composite_implicit_decomp(
        cia_to_decomp
    ):
        gm, graph_signature = aot_export_module(
            ep.graph_module,
            fake_args,
            decompositions=python_decomp_table,
            trace_joint=True if joint_loss_index is not None else False,
            output_loss_index=(
                joint_loss_index if joint_loss_index is not None else None
            ),
        )
        gm.graph.eliminate_dead_code()

    # Update the signatures with the new placeholder names in case they
    # changed when calling aot_export
    def update_arg(old_arg, new_ph):
        if isinstance(old_arg, ConstantArgument):
            return old_arg
        elif isinstance(old_arg, TensorArgument):
            return TensorArgument(name=new_ph.name)
        elif isinstance(old_arg, SymIntArgument):
            return SymIntArgument(name=new_ph.name)
        elif isinstance(old_arg, SymFloatArgument):
            return SymFloatArgument(name=new_ph.name)
        elif isinstance(old_arg, SymBoolArgument):
            return SymBoolArgument(name=new_ph.name)
        raise RuntimeError(f"Type of old_arg not supported: {type(old_arg)}")

    new_placeholders = [node for node in gm.graph.nodes if node.op == "placeholder"]
    new_outputs = list(gm.graph.nodes)[-1].args[0]

    # rename the placeholders
    assert len(new_placeholders) == len(old_placeholders)
    for old_ph, new_ph in zip(old_placeholders, new_placeholders):
        new_ph.name = new_ph.target = old_ph.name

    # handle name collisions with newly decomposed graph nodes
    name_map = {ph.name: ph.name for ph in new_placeholders}
    for node in gm.graph.nodes:
        if node.op == "placeholder":
            continue
        node.name = _rename_without_collisions(name_map, node.name, node.name)

    # propagate names to higher order op subgraphs
    _name_hoo_subgraph_placeholders(gm)

    # Run this pass before creating input/output specs, since size-related CSE/DCE might affect output signature.
    # Overwrite output specs afterwards.
    from torch._export.passes._node_metadata_hook import (
        _node_metadata_hook,
        _set_node_metadata_hook,
    )
    from torch._functorch._aot_autograd.input_output_analysis import _graph_output_names

    if not torch._dynamo.config.do_not_emit_runtime_asserts:
        stack_trace = (
            'File "torch/fx/passes/runtime_assert.py", line 24, '
            "in insert_deferred_runtime_asserts"
        )
        shape_env = _get_shape_env(gm)
        if shape_env is not None:
            with _set_node_metadata_hook(
                gm, functools.partial(_node_metadata_hook, stack_trace=stack_trace)
            ):
                insert_deferred_runtime_asserts(
                    gm,
                    shape_env,
                    f"exported program: {first_call_function_nn_module_stack(gm.graph)}",
                    export=True,
                )

    # update output specs
    gm.recompile()
    for i, name in enumerate(_graph_output_names(gm)):
        if isinstance(new_outputs[i], torch.fx.Node):
            new_outputs[i].name = name

    # To match the output target with correct input for input mutations
    # need to find the old to new placeholder map
    old_new_placeholder_map = {
        spec.arg.name: new_placeholders[i].name
        for i, spec in enumerate(ep.graph_signature.input_specs)
        if not isinstance(spec.arg, ConstantArgument)
    }

    input_specs = [
        InputSpec(
            spec.kind,
            update_arg(spec.arg, new_placeholders[i]),
            spec.target,
            spec.persistent,
        )
        for i, spec in enumerate(ep.graph_signature.input_specs)
    ]

    output_specs = [
        OutputSpec(
            OutputKind.LOSS_OUTPUT if i == joint_loss_index else spec.kind,
            update_arg(spec.arg, new_outputs[i]),
            old_new_placeholder_map.get(spec.target, spec.target),
        )
        for i, spec in enumerate(ep.graph_signature.output_specs)
    ]

    if joint_loss_index is not None:
        assert graph_signature.backward_signature is not None
        gradients = graph_signature.backward_signature.gradients_to_user_inputs
        assert len(graph_signature.user_inputs) == len(ep.graph_signature.input_specs)
        specs = {
            graph_signature.user_inputs[i]: spec
            for i, spec in enumerate(ep.graph_signature.input_specs)
            if isinstance(spec.arg, TensorArgument)
        }
        for i, node in enumerate(new_outputs[len(output_specs) :]):
            source = gradients[node.name]
            spec = specs[source]  # type: ignore[index]
            if spec.kind == InputKind.PARAMETER:
                kind = OutputKind.GRADIENT_TO_PARAMETER
                target = spec.target
            elif spec.kind == InputKind.USER_INPUT:
                kind = OutputKind.GRADIENT_TO_USER_INPUT
                target = source
            else:
                raise AssertionError(f"Unknown input kind: {spec.kind}")
            output_specs.append(
                OutputSpec(
                    kind,
                    TensorArgument(name=node.name),
                    target,
                )
            )

    assert len(new_placeholders) == len(old_placeholders)

    new_graph_signature = ExportGraphSignature(
        input_specs=input_specs, output_specs=output_specs
    )
    # NOTE: aot_export adds symint metadata for placeholders with int
    # values; since these become specialized, we replace such metadata with
    # the original values.
    # Also, set the param/buffer metadata back to the placeholders.
    for old_node, new_node in zip(old_placeholders, new_placeholders):
        if not isinstance(old_node.meta["val"], torch.Tensor):
            new_node.meta["val"] = old_node.meta["val"]

        if (
            new_node.target in new_graph_signature.inputs_to_parameters
            or new_node.target in new_graph_signature.inputs_to_buffers
        ):
            for k, v in old_node.meta.items():
                new_node.meta[k] = v
    return gm, new_graph_signature


def _remove_unneccessary_copy_op_pass(
    gm: torch.fx.GraphModule, new_graph_signature: ExportGraphSignature
) -> Tuple[torch.fx.GraphModule, ExportGraphSignature]:
    """
    Removes redundant copy_ node that was introduced due to mutated buffer.
    """
    with gm._set_replace_hook(new_graph_signature.get_replace_hook()):
        for node in gm.graph.nodes:
            if node.op == "output":
                args, _ = pytree.tree_flatten(node.args)
                for out in args:
                    if (
                        isinstance(out, torch.fx.Node)
                        and out.name in new_graph_signature.buffers_to_mutate
                    ):
                        if (
                            out.op == "call_function"
                            and out.target == torch.ops.aten.copy.default
                        ):
                            out.replace_all_uses_with(out.args[1])  # type: ignore[arg-type]
                            gm.graph.erase_node(out)
        gm.recompile()
    return gm, new_graph_signature


def _common_getitem_elimination_pass(
    gm: torch.fx.GraphModule, graph_signature, module_call_graph
):
    with gm._set_replace_hook(graph_signature.get_replace_hook()):
        for module in gm.modules():
            if not isinstance(module, torch.fx.GraphModule):
                continue

            node_id: Dict[torch.fx.Node, str] = {}
            getitems: Dict[str, torch.fx.Node] = {}
            for node in list(module.graph.nodes):
                if node.op == "call_function" and node.target == operator.getitem:
                    source, idx = node.args
                    new_id = f"{node_id[source]}.{idx}"
                    if new_id in getitems:
                        node.replace_all_uses_with(getitems[new_id])
                        for entry in module_call_graph:
                            if entry.signature is not None:
                                entry.signature.replace_all_uses_with(
                                    node, getitems[new_id]
                                )
                        module.graph.erase_node(node)
                    else:
                        getitems[new_id] = node
                        node_id[node] = new_id
                else:
                    node_id[node] = node.name


def _get_updated_module_call_graph(
    gm: torch.fx.GraphModule,
    old_module_call_graph: List[ModuleCallEntry],
):
    new_module_call_graph = copy.deepcopy(old_module_call_graph)

    # use node-level provenance metadata to create a map
    # from old node names to new node names
    provenance: Dict[str, str] = {}
    for node in gm.graph.nodes:
        if history := node.meta.get("from_node", []):
            provenance[history[-1].name] = node.name

    # map old names to new names in module call signatures
    for entry in new_module_call_graph:
        signature = entry.signature
        if signature is None:
            continue
        for x in [*signature.inputs, *signature.outputs]:
            x.name = provenance.get(x.name, x.name)

    return new_module_call_graph


def _decompose_exported_program(
    ep,
    *,
    cia_to_decomp: Dict[torch._ops.OperatorBase, Callable],
    python_decomp_table: Dict[torch._ops.OperatorBase, Callable],
    joint_loss_index: Optional[int],
):
    gm, new_graph_signature = _decompose_and_get_gm_with_new_signature_constants(
        ep,
        cia_to_decomp=cia_to_decomp,
        python_decomp_table=python_decomp_table,
        joint_loss_index=joint_loss_index,
    )

    # The signatures of ep.module_call_graph refer to input / output nodes of
    # the original graph module. However, the new graph module may have
    # new nodes due to decompositions. So we need to update these signatures
    # in the decomposed exported program's module_call_graph.
    new_module_call_graph = _get_updated_module_call_graph(
        gm,
        ep.module_call_graph,
    )

    # TODO unfortunately preserving graph-level metadata is not
    # working well with aot_export. So we manually copy it.
    # (The node-level meta is addressed above.)
    gm.meta.update(ep.graph_module.meta)

    new_range_constraints = _get_updated_range_constraints(
        gm,
        ep.range_constraints,
    )

    exported_program = ExportedProgram(
        root=gm,
        graph=gm.graph,
        graph_signature=new_graph_signature,
        state_dict=ep.state_dict,
        range_constraints=new_range_constraints,
        module_call_graph=new_module_call_graph,
        example_inputs=ep.example_inputs,
        constants=ep.constants,
    )
    return exported_program


class ExportedProgram:
    """
    Package of a program from :func:`export`. It contains
    an :class:`torch.fx.Graph` that represents Tensor computation, a state_dict containing
    tensor values of all lifted parameters and buffers, and various metadata.

    You can call an ExportedProgram like the original callable traced by
    :func:`export` with the same calling convention.

    To perform transformations on the graph, use ``.module`` property to access
    an :class:`torch.fx.GraphModule`. You can then use
    `FX transformation <https://pytorch.org/docs/stable/fx.html#writing-transformations>`_
    to rewrite the graph. Afterwards, you can simply use :func:`export`
    again to construct a correct ExportedProgram.
    """

    def __init__(
        self,
        root: Union[torch.nn.Module, Dict[str, Any]],
        graph: torch.fx.Graph,
        graph_signature: ExportGraphSignature,
        state_dict: Dict[str, Union[torch.Tensor, torch.nn.Parameter]],
        range_constraints: "Dict[sympy.Symbol, Any]",
        module_call_graph: List[ModuleCallEntry],
        example_inputs: Optional[Tuple[Tuple[Any, ...], Dict[str, Any]]] = None,
        constants: Optional[
            Dict[str, Union[torch.Tensor, FakeScriptObject, torch._C.ScriptObject]]
        ] = None,
        *,
        verifiers: Optional[List[Type[Verifier]]] = None,
    ):
        # Remove codegen related things from the graph. It should just be a flat graph.
        graph._codegen = torch.fx.graph.CodeGen()
        self._graph_module = _create_graph_module_for_export(root, graph)
        if isinstance(root, torch.fx.GraphModule):
            self._graph_module.meta.update(root.meta)

        _common_getitem_elimination_pass(
            self._graph_module, graph_signature, module_call_graph
        )
        self._graph_signature: ExportGraphSignature = graph_signature
        self._state_dict: Dict[str, Any] = state_dict
        self._range_constraints: Dict[sympy.Symbol, ValueRanges] = range_constraints
        assert module_call_graph is not None
        self._module_call_graph: List[ModuleCallEntry] = module_call_graph
        self._example_inputs = example_inputs

        self._constants = constants or {}

        verifiers = verifiers or [Verifier]
        assert all(issubclass(v, Verifier) for v in verifiers)
        self._verifiers = verifiers
        # Validate should be always the last step of the constructor.
        self.validate()

    @property
    @compatibility(is_backward_compatible=False)
    def graph_module(self):
        return self._graph_module

    @graph_module.setter
    @compatibility(is_backward_compatible=False)
    def graph_module(self, value):
        raise RuntimeError("Unable to set ExportedProgram's graph_module attribute.")

    @property
    @compatibility(is_backward_compatible=False)
    def graph(self):
        return self.graph_module.graph

    @graph.setter
    @compatibility(is_backward_compatible=False)
    def graph(self, value):
        raise RuntimeError("Unable to set ExportedProgram's graph attribute.")

    @property
    @compatibility(is_backward_compatible=False)
    def graph_signature(self):
        return self._graph_signature

    @graph_signature.setter
    @compatibility(is_backward_compatible=False)
    def graph_signature(self, value):
        raise RuntimeError("Unable to set ExportedProgram's graph_signature attribute.")

    @property
    @compatibility(is_backward_compatible=False)
    def state_dict(self):
        return self._state_dict

    @state_dict.setter
    @compatibility(is_backward_compatible=False)
    def state_dict(self, value):
        raise RuntimeError("Unable to set ExportedProgram's state_dict attribute.")

    @compatibility(is_backward_compatible=False)
    def parameters(self) -> Iterator[torch.nn.Parameter]:
        """
        Returns an iterator over original module's parameters.
        """
        for _, param in self.named_parameters():
            yield param

    @compatibility(is_backward_compatible=False)
    def named_parameters(self) -> Iterator[Tuple[str, torch.nn.Parameter]]:
        """
        Returns an iterator over original module parameters, yielding
        both the name of the parameter as well as the parameter itself.
        """
        for param_name in self.graph_signature.parameters:
            yield param_name, self.state_dict[param_name]

    @compatibility(is_backward_compatible=False)
    def buffers(self) -> Iterator[torch.Tensor]:
        """
        Returns an iterator over original module buffers.
        """
        for _, buf in self.named_buffers():
            yield buf

    @compatibility(is_backward_compatible=False)
    def named_buffers(self) -> Iterator[Tuple[str, torch.Tensor]]:
        """
        Returns an iterator over original module buffers, yielding
        both the name of the buffer as well as the buffer itself.
        """
        non_persistent_buffers = set(self.graph_signature.non_persistent_buffers)
        for buffer_name in self.graph_signature.buffers:
            if buffer_name in non_persistent_buffers:
                yield buffer_name, self.constants[buffer_name]
            else:
                yield buffer_name, self.state_dict[buffer_name]

    @property
    @compatibility(is_backward_compatible=False)
    def range_constraints(self):
        return self._range_constraints

    @range_constraints.setter
    @compatibility(is_backward_compatible=False)
    def range_constraints(self, value):
        raise RuntimeError(
            "Unable to set ExportedProgram's range_constraints attribute."
        )

    @property
    @compatibility(is_backward_compatible=False)
    def module_call_graph(self):
        return self._module_call_graph

    @module_call_graph.setter
    @compatibility(is_backward_compatible=False)
    def module_call_graph(self, value):
        raise RuntimeError(
            "Unable to set ExportedProgram's module_call_graph attribute."
        )

    @property
    @compatibility(is_backward_compatible=False)
    def example_inputs(self):
        return self._example_inputs

    @example_inputs.setter
    @compatibility(is_backward_compatible=False)
    def example_inputs(self, value):
        # This is allowed
        if not (
            isinstance(value, tuple)
            and len(value) == 2
            and isinstance(value[0], tuple)
            and isinstance(value[1], dict)
        ):
            raise ValueError(
                "Example inputs should be a tuple containing example arguments (as "
                "a tuple), and example kwargs (as a dictionary)."
            )

        args, kwargs = value
        from ._unlift import _check_inputs_match

        _check_inputs_match(args, kwargs, self.call_spec.in_spec)

        self._example_inputs = value

    @property
    @compatibility(is_backward_compatible=False)
    def call_spec(self):
        CallSpec = namedtuple("CallSpec", ["in_spec", "out_spec"])

        if len(self.module_call_graph) == 0:
            return CallSpec(in_spec=None, out_spec=None)
        assert self.module_call_graph[0].fqn == ""
        return CallSpec(
            in_spec=self.module_call_graph[0].signature.in_spec,
            out_spec=self.module_call_graph[0].signature.out_spec,
        )

    @call_spec.setter
    @compatibility(is_backward_compatible=False)
    def call_spec(self, value):
        raise RuntimeError("Unable to set ExportedProgram's call_spec attribute.")

    @property
    @compatibility(is_backward_compatible=False)
    def verifier(self) -> Any:
        return self._verifiers[0]

    @verifier.setter
    @compatibility(is_backward_compatible=False)
    def verifier(self, value):
        raise RuntimeError("Unable to set ExportedProgram's verifier attribute.")

    @property
    @compatibility(is_backward_compatible=False)
    def dialect(self) -> str:
        assert self._verifiers is not None
        return self._verifiers[0].dialect

    @dialect.setter
    @compatibility(is_backward_compatible=False)
    def dialect(self, value):
        raise RuntimeError("Unable to set ExportedProgram's dialect attribute.")

    @property
    @compatibility(is_backward_compatible=False)
    def verifiers(self):
        return self._verifiers

    @verifiers.setter
    @compatibility(is_backward_compatible=False)
    def verifiers(self, value):
        raise RuntimeError("Unable to set ExportedProgram's verifiers attribute.")

    @property
    @compatibility(is_backward_compatible=False)
    def tensor_constants(self):
        return self._constants

    @tensor_constants.setter
    @compatibility(is_backward_compatible=False)
    def tensor_constants(self, value):
        raise RuntimeError(
            "Unable to set ExportedProgram's tensor_constants attribute."
        )

    @property
    @compatibility(is_backward_compatible=False)
    def constants(self):
        return self._constants

    @constants.setter
    @compatibility(is_backward_compatible=False)
    def constants(self, value):
        raise RuntimeError("Unable to set ExportedProgram's constants attribute.")

    def _get_flat_args_with_check(self, args, kwargs):
        """Flatten args, kwargs using pytree, then, check specs.

        Args:
            args: List[Any] original args passed to __call__
            kwargs: Dict[str, Any] original kwargs passed to __call

        Returns:
            A tuple of (flat_args, received_spec)
            flat_args is flattend args / kwargs
            received_spec is the pytree spec produced while flattening the
            tuple (args, kwargs)
        """
        in_spec = self.call_spec.in_spec
        if in_spec is not None:
            kwargs = reorder_kwargs(kwargs, in_spec)
        flat_args_with_path, received_spec = pytree.tree_flatten_with_path(
            (args, kwargs)
        )
        self._check_input_constraints(flat_args_with_path)
        flat_args = tuple(x[1] for x in flat_args_with_path)
        return flat_args, received_spec

    def _graph_module_flat_inputs(self, args: Any, kwargs: Any) -> Any:
        """Transform args, kwargs of __call__ to args for graph_module.

        self.graph_module takes stuff from state dict as inputs.
        The invariant is for ep: ExportedProgram is
        ep(args, kwargs) ==
          ep.postprocess(ep.graph_module(ep.graph_module_flat_inputs(args, kwargs)))
        """

        in_spec = self.call_spec.in_spec
        flat_args, received_spec = self._get_flat_args_with_check(args, kwargs)
        if in_spec is not None and not is_equivalent(
            received_spec, in_spec, _fx_collection_equivalence_fn
        ):
            raise ValueError(
                "Trying to flatten user inputs with exported input tree spec: \n"
                f"{in_spec}\n"
                "but actually got inputs with tree spec of: \n"
                f"{received_spec}"
            )

        additional_inputs = []
        for input_ in self.graph_signature.input_specs:
            if input_.kind == InputKind.USER_INPUT:
                continue
            elif input_.kind in (
                InputKind.PARAMETER,
                InputKind.BUFFER,
            ):
                if input_.persistent is False:
                    # This is a non-persistent buffer, grab it from our
                    # constants instead of the state dict.
                    additional_inputs.append(self.constants[input_.target])
                else:
                    additional_inputs.append(self.state_dict[input_.target])
            elif input_.kind in (
                InputKind.CONSTANT_TENSOR,
                InputKind.CUSTOM_OBJ,
            ):
                additional_inputs.append(self.constants[input_.target])
        additional_inputs = tuple(additional_inputs)

        # NOTE: calling convention is first params, then buffers, then args as user supplied them.
        # See: torch/_functorch/aot_autograd.py#L1034
        return additional_inputs + flat_args

    def __call__(self, *args: Any, **kwargs: Any) -> Any:
        raise RuntimeError(
            "Unable to call ExportedProgram directly. "
            "You should use `exported_program.module()` instead."
        )

    def _postprocess_graph_module_outputs(self, res, orig_args, orig_kwargs):
        """Process potential mutations to the input.

        Because self.graph_module is functional, so mutations has to be written
        back after execution of graph_module.
        """
        import torch._export.error as error

        flat_args, _ = self._get_flat_args_with_check(orig_args, orig_kwargs)
        if self.call_spec.out_spec is not None:
            buffer_mutation = self.graph_signature.buffers_to_mutate
            user_input_mutation = self.graph_signature.user_inputs_to_mutate
            num_mutated = len(buffer_mutation) + len(user_input_mutation)
            mutated_values = res[:num_mutated]

            # Exclude dependency token from final result.
            assertion_dep_token = self.graph_signature.assertion_dep_token
            if assertion_dep_token is not None:
                assertion_dep_token_index = next(iter(assertion_dep_token.keys()))
                res = res[:assertion_dep_token_index]

            res = res[num_mutated:]
            try:
                res = pytree.tree_unflatten(res, self.call_spec.out_spec)
            except Exception:
                _, received_spec = pytree.tree_flatten(res)
                raise error.InternalError(  # noqa: B904
                    "Trying to flatten user outputs with exported output tree spec: \n"
                    f"{self.call_spec.out_spec}\n"
                    "but actually got outputs with tree spec of: \n"
                    f"{received_spec}"
                )
            finally:
                user_inputs = [
                    spec
                    for spec in self.graph_signature.input_specs
                    if spec.kind == InputKind.USER_INPUT
                ]
                for i, value in enumerate(mutated_values):
                    output_spec = self.graph_signature.output_specs[i]
                    if output_spec.kind == OutputKind.BUFFER_MUTATION:
                        assert output_spec.target is not None
                        self.state_dict[output_spec.target] = value
                    elif output_spec.kind == OutputKind.USER_INPUT_MUTATION:
                        assert output_spec.target is not None
                        index = next(
                            i
                            for i, spec in enumerate(user_inputs)
                            if spec.arg.name == output_spec.target
                        )
                        flat_args[index].copy_(value)
                    else:
                        raise AssertionError(f"Unexpected kind: {output_spec.kind}")
        return res

    def __str__(self) -> str:
        graph_module = self.graph_module.print_readable(
            print_output=False, colored=False
        ).replace("\n", "\n    ")
        string = (
            "ExportedProgram:\n"
            f"    {graph_module}\n"
            f"Graph signature: {self.graph_signature}\n"
            f"Range constraints: {self.range_constraints}\n"
        )
        return string

    def module(self) -> torch.nn.Module:
        """
        Returns a self contained GraphModule with all the parameters/buffers inlined.
        """
        from ._unlift import _unlift_exported_program_lifted_states

        module = _unlift_exported_program_lifted_states(self)

        def _train(self, mode: bool = True):
            raise NotImplementedError("Calling train() is not supported yet.")

        def _eval(self, mode: bool = True):
            raise NotImplementedError("Calling eval() is not supported yet.")

        module.train = types.MethodType(_train, module)  # type: ignore[method-assign]
        module.eval = types.MethodType(_eval, module)  # type: ignore[method-assign]
        return module

    def _num_lifted_params_buffers(self):
        return next(
            (
                i
                for i, s in enumerate(self._graph_signature.input_specs)
                if s.kind == InputKind.USER_INPUT
            ),
            len(self._graph_signature.input_specs),
        )

    @_disable_prexisiting_fake_mode
    def run_decompositions(
        self,
        decomp_table: Optional[Dict[torch._ops.OperatorBase, Callable]] = None,
    ) -> "ExportedProgram":
        """
        Run a set of decompositions on the exported program and returns a new
        exported program. By default we will run the Core ATen decompositions to
        get operators in the
        `Core ATen Operator Set <https://pytorch.org/docs/stable/torch.compiler_ir.html>`_.

        For now, we do not decompose joint graphs.

        Args:
            decomp_table:
             An optional argument that specifies decomp behaviour for Aten ops
             (1) If None, we decompose to core aten decompositions
             (2) If empty, we don't decompose any operator


        Some examples:

        If you don't want to decompose anything

        .. code-block:: python

            ep = torch.export.export(model, ...)
            ep = ep.run_decompositions(decomp_table={})

        If you want to get a core aten operator set except for certain operator, you can do following:

        .. code-block:: python

            ep = torch.export.export(model, ...)
            decomp_table = torch.export.default_decompositions()
            decomp_table[your_op] = your_custom_decomp
            ep = ep.run_decompositions(decomp_table=decomp_table)
        """
        _decomp_table = (
            default_decompositions() if decomp_table is None else dict(decomp_table)
        )

        if isinstance(_decomp_table, CustomDecompTable):
            _decomp_table = _decomp_table.materialize()

        # Note [Seperating decomp_table into CIA decomps and non-CIA decomps]
        # At this point, we have a decomp_table that contains decomp behaviour for
        # both CIA and post-autograd ops.
        # We need to separate the op into two categories:
        # 1. CIA op: These are the ops that we want to override
        #    CompositeImplicitAutograd decomp for. For them, we need to use _override_composite_implicit_decomp
        #    context manager to plumb it through AOTDispatcher
        # 2. Non-CIA op: These ops are only relevant after AOTDIspatcher runs, so just
        #    checking if they are statically functional is enough.
        # For joint IR case tho, we need to use the old path because we can't register
        # custom decomps this way because we can't use context manager as it installs
        # autograd_error node.
        (
            cia_to_decomp,
            python_decomp_table,
        ) = _split_decomp_table_to_cia_and_python_decomp(_decomp_table)

        return _decompose_exported_program(
            self,
            cia_to_decomp=cia_to_decomp,
            python_decomp_table=python_decomp_table,
            joint_loss_index=None,
        )

    def _transform_do_not_use(self, *passes: PassType) -> "ExportedProgram":
        pm = PassManager(list(passes))
        # Since we abstractly run the passes, we need to disable backend decomp here
        # again.
        from torch.export._trace import _ignore_backend_decomps

        with _ignore_backend_decomps():
            res = pm(self.graph_module)
        transformed_gm = res.graph_module if res is not None else self.graph_module
        assert transformed_gm is not None

        if transformed_gm is self.graph_module and not res.modified:
            return self

        # TODO(zhxchen17) Remove this.
        def _get_updated_graph_signature(
            old_signature: ExportGraphSignature,
            new_gm: torch.fx.GraphModule,
        ) -> ExportGraphSignature:
            """
            Update the graph signature's user_input/user_outputs.
            """
            new_input_specs = []
            for i, node in enumerate(new_gm.graph.nodes):
                if node.op != "placeholder":
                    break

                assert i < len(
                    old_signature.input_specs
                ), "Number of inputs changed after transformation"
                old_input_spec = old_signature.input_specs[i]
                arg = (
                    old_input_spec.arg
                    if isinstance(
                        old_input_spec.arg, (ConstantArgument, CustomObjArgument)
                    )
                    else type(old_input_spec.arg)(node.name)
                )
                new_input_specs.append(
                    InputSpec(
                        old_input_spec.kind,
                        arg,
                        old_input_spec.target,
                        old_input_spec.persistent,
                    )
                )

            output_node = list(new_gm.graph.nodes)[-1]
            assert output_node.op == "output"

            new_output_specs = []
            for i, node in enumerate(output_node.args[0]):
                assert i < len(
                    old_signature.output_specs
                ), "Number of outputs changed after transformation"
                old_output_spec = old_signature.output_specs[i]
                arg = (
                    old_output_spec.arg
                    if isinstance(
                        old_output_spec.arg, (ConstantArgument, CustomObjArgument)
                    )
                    else type(old_output_spec.arg)(node.name)
                )
                new_output_specs.append(
                    OutputSpec(old_output_spec.kind, arg, old_output_spec.target)
                )

            new_signature = ExportGraphSignature(
                input_specs=new_input_specs, output_specs=new_output_specs
            )
            return new_signature

        transformed_ep = ExportedProgram(
            root=transformed_gm,
            graph=transformed_gm.graph,
            graph_signature=_get_updated_graph_signature(
                self.graph_signature, transformed_gm
            ),
            state_dict=self.state_dict,
            range_constraints=_get_updated_range_constraints(
                transformed_gm,
                self.range_constraints,
            ),
            module_call_graph=copy.deepcopy(self._module_call_graph),
            example_inputs=self.example_inputs,
            constants=self.constants,
            verifiers=self.verifiers,
        )
        transformed_ep.graph_module.meta.update(self.graph_module.meta)
        transformed_ep.graph_module.meta.update(res.graph_module.meta)
        return transformed_ep

    def _check_input_constraints(self, flat_args_with_path):
        from torch._export.utils import _check_input_constraints_for_graph

        placeholders = [p for p in self.graph.nodes if p.op == "placeholder"]
        input_placeholders = [
            p
            for p, s in zip(placeholders, self.graph_signature.input_specs)
            if s.kind == InputKind.USER_INPUT
        ]
        _check_input_constraints_for_graph(
            input_placeholders, flat_args_with_path, self.range_constraints
        )

    @compatibility(is_backward_compatible=False)
    def validate(self):
        self._validate()

    # TODO: remove this
    @final
    def _validate(self):
        assert (
            len(self.verifiers) > 0
        ), "ExportedProgram must have at least one verifier."
        for v in self.verifiers:
            v().check(self)

    # TODO(zhxchen17) Formalize this.
    def _update(
        self, graph_module, graph_signature, *, state_dict=None, verifiers=None
    ) -> "ExportedProgram":
        return ExportedProgram(
            root=graph_module,
            graph=graph_module.graph,
            graph_signature=graph_signature,
            state_dict=state_dict if state_dict is not None else self.state_dict,
            range_constraints=copy.deepcopy(self.range_constraints),
            module_call_graph=copy.deepcopy(self._module_call_graph),
            example_inputs=self.example_inputs,
            constants=self.constants,
            verifiers=verifiers if verifiers is not None else self.verifiers,
        )


def _get_shape_env(gm):
    vals = [
        node.meta["val"]
        for node in gm.graph.nodes
        if node.meta.get("val", None) is not None
    ]
    from torch._guards import detect_fake_mode

    fake_mode = detect_fake_mode(vals)
    if fake_mode is not None:
        return fake_mode.shape_env
    for v in vals:
        if isinstance(v, torch.SymInt):
            return v.node.shape_env


def _get_updated_range_constraints(
    gm: torch.fx.GraphModule,
    old_range_constraints: "Optional[Dict[sympy.Symbol, Any]]" = None,
) -> "Dict[sympy.Symbol, Any]":
    assert old_range_constraints is not None

    shape_env = _get_shape_env(gm)
    if shape_env is None:
        return {}

    range_constraints = copy.copy(old_range_constraints)
    range_constraints = {
        k: v for k, v in range_constraints.items() if k not in shape_env.replacements
    }
    # Only when we have an unbacked symint, and it's used as constructor inputs,
    # runtime_var_to_range will make a difference compated to var_to_range.
    # e.g. [2, oo) -> [0, oo)
    for k, v in shape_env.var_to_range.items():
        if k not in shape_env.replacements and k not in range_constraints:
            range_constraints[k] = v
    return range_constraints


def _create_graph_module_for_export(root, graph):
    try:
        gm = torch.fx.GraphModule(root, graph)
    except SyntaxError:
        # If custom objects stored in memory are being used in the graph,
        # the generated python code will result in a syntax error on the custom
        # object, since it is unable to parse the in-memory object. However
        # we can still run the graph eagerly through torch.fx.Interpreter,
        # so we will bypass this error.
        warnings.warn(
            "Unable to execute the generated python source code from "
            "the graph. The graph module will no longer be directly callable, "
            "but you can still run the ExportedProgram, and if needed, you can "
            "run the graph module eagerly using torch.fx.Interpreter."
        )
        gm = torch.fx.GraphModule(root, torch.fx.Graph())
        gm._graph = graph

    return gm