1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
|
# mypy: allow-untyped-decorators
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import functools
import inspect
import logging
import operator
import traceback
import typing
import typing_extensions
import warnings
import weakref
from collections import defaultdict
from contextlib import _GeneratorContextManager, contextmanager, ExitStack, nullcontext
from dataclasses import dataclass
from typing import (
Any,
Callable,
Dict,
Generator,
List,
Mapping,
Optional,
overload,
Protocol,
Sequence,
Tuple,
Type,
TYPE_CHECKING,
TypeVar,
Union,
)
from typing_extensions import Concatenate, ParamSpec, Self
from weakref import WeakKeyDictionary
import torch
import torch._ops
import torch.fx as fx
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch import SymBool, SymInt, Tensor
from torch._dispatch.python import enable_python_dispatcher
from torch._library.fake_class_registry import FakeScriptObject
from torch._logging import trace_structured
from torch._subclasses.fake_impls import fast_detach
from torch._subclasses.fake_tensor import (
FakeTensor,
FakeTensorMode,
is_fake,
unset_fake_temporarily,
)
from torch._subclasses.meta_utils import is_sparse_any
from torch.fx import GraphModule, Proxy, Tracer
from torch.fx.graph_module import _assign_attr
from torch.fx.node import _side_effectful_need_to_be_preserved_pre_dispatch
from torch.fx.passes.shape_prop import _extract_tensor_metadata
from torch.nn import Module
from torch.overrides import TorchFunctionMode
from torch.utils._python_dispatch import (
_disable_infra_mode,
_push_mode,
_unset_infra_mode,
TorchDispatchMode,
)
from torch.utils._stats import count
from torch.utils._thunk import Thunk
from torch.utils._traceback import CapturedTraceback
from torch.utils.weak import _WeakHashRef, WeakIdKeyDictionary, WeakTensorKeyDictionary
from ._backward_state import BackwardState
from .sym_node import SymNode
if TYPE_CHECKING:
import types
from collections.abc import MutableMapping
import sympy
from torch._ops import OpOverload
from torch.fx._symbolic_trace import PHBase
from torch.types import IntLikeType
__all__ = [
"PythonKeyTracer",
"dispatch_trace",
"make_fx",
"DecompositionInterpreter",
"py_sym_types",
"get_innermost_proxy_mode",
"get_proxy_mode",
"handle_sym_dispatch",
"maybe_enable_thunkify",
"maybe_disable_thunkify",
]
_ProxyTracer = Union["PythonKeyTracer", "_GraphAppendingTracerEx"]
_AnyScriptObject = (torch.ScriptObject, FakeScriptObject)
_AnyScriptObjectType = Union[torch.ScriptObject, FakeScriptObject]
aten = torch.ops.aten
prim = torch.ops.prim
log = logging.getLogger(__name__)
not_implemented_log = torch._logging.getArtifactLogger(__name__, "not_implemented")
CURRENT_DECOMPOSITION_TABLE: Mapping[OpOverload, Callable] = {}
CONSTANT_NUMEL_LIMIT = 1
T = TypeVar("T")
U = TypeVar("U")
_P = ParamSpec("_P")
R = TypeVar("R")
null_ctx_type = type(nullcontext)
# We currently convert all SymInt to proxies before we use them.
# This could plausibly be handled at the Dynamo level.
pytree.register_pytree_node(
torch.Size,
lambda xs: (list(xs), None),
lambda xs, _: tuple(xs),
flatten_with_keys_fn=lambda xs: (
[(pytree.SequenceKey(i), x) for i, x in enumerate(xs)],
None,
),
serialized_type_name="torch.Size",
)
def fake_signature(fn: Callable[_P, R], nargs: int) -> Callable[_P, R]:
"""FX gets confused by varargs, de-confuse it"""
argnames = ",".join(f"arg{i}" for i in range(nargs))
return eval(f"lambda {argnames}: fn({argnames})", {"fn": fn})
@contextmanager
def decompose(
decomposition_table: Optional[Mapping[OpOverload, Callable]]
) -> Generator[Mapping[OpOverload, Callable], None, None]:
global CURRENT_DECOMPOSITION_TABLE
old_decomposition_table = CURRENT_DECOMPOSITION_TABLE
CURRENT_DECOMPOSITION_TABLE = decomposition_table or {}
try:
yield CURRENT_DECOMPOSITION_TABLE
finally:
CURRENT_DECOMPOSITION_TABLE = old_decomposition_table
# ensure we cannot collide with other properties
proxy_slot = object()
class _NoDefault:
pass
no_default = _NoDefault()
from torch.types import py_sym_types, PySymType
class _HasMeta(Protocol):
meta: Dict[str, PySymType]
def is_sym_node(node: _HasMeta) -> bool:
assert hasattr(node, "meta"), "All nodes traced with proxy_tensor should have meta"
return "val" in node.meta and isinstance(node.meta["val"], py_sym_types)
@overload
def set_proxy_slot(obj: Tensor, tracer: _ProxyTracer, proxy: _ProxyTensor) -> None:
...
@overload
def set_proxy_slot(
obj: _AnyScriptObjectType, tracer: _ProxyTracer, proxy: Proxy
) -> None:
...
@overload
def set_proxy_slot(
obj: PySymType, tracer: _ProxyTracer, proxy: _PySymProxyType
) -> None:
...
def set_proxy_slot(
obj: Union[PySymType, _AnyScriptObjectType, Tensor],
tracer: _ProxyTracer,
proxy: object,
) -> None:
log.debug("set_proxy_slot %s (%s) %s", obj, id(obj), proxy)
if isinstance(obj, Tensor):
# We DO want to clobber proxies whenever we run an inplace operation
# on a tensor, and it affects the metadata on the proxy.
assert isinstance(proxy, _ProxyTensor)
tracer.tensor_tracker[obj] = proxy
elif isinstance(obj, (_AnyScriptObject)):
# We DO want to clobber proxies, with a similar rationale as for tensors.
assert isinstance(proxy, Proxy)
tracer.script_object_tracker[obj] = proxy
else:
# NB: Never clobber pre-existing proxy. Although the proxies
# are in principle equivalent, when we do graph partitioning
# we need there not to be spurious dependencies on tangent inputs.
# This works because primals get their SymInts set first, and
# THEN later we allocate tangent inputs. Make sure if a SymInt
# is derivable from a primal that we use that.
assert isinstance(obj, py_sym_types), type(obj)
if obj not in tracer.symnode_tracker:
tracer.symnode_tracker[obj] = typing.cast(_PySymProxyType, proxy)
# WAR: python test/dynamo/test_subclasses.py
# TestNestedTensor.test_basic_autograd
#
# AOTAutograd doesn't pass the "outer sizes" as an actual argument
# to make_fx, but it is made use of internally in AOTAutograd's
# call to tensor unflatten. Because the outer sizes isn't passed
# as an argument, it is therefore untracked. However, it turns
# out you luck out, because *Dynamo* will manually add the outer
# sizes as an argument so you can fix up the proxy'ness.
#
# This is probably fixed in
# https://github.com/pytorch/pytorch/pull/125941/
import sympy
if isinstance(obj.node.expr, sympy.Symbol):
tracer.sympy_expr_tracker[obj.node.expr] = proxy
def has_proxy_slot(obj: Tensor, tracer: _ProxyTracer) -> bool:
assert isinstance(obj, (Tensor, SymNode)), type(obj)
return bool(get_proxy_slot(obj, tracer, False, lambda _: True))
_PySymProxyType = Thunk[Proxy]
@overload
def get_proxy_slot(
obj: Tensor,
tracer: _ProxyTracer,
) -> _ProxyTensor:
...
@overload
def get_proxy_slot(
obj: Tensor,
tracer: _ProxyTracer,
default: U,
) -> Union[_ProxyTensor, U]:
...
@overload
def get_proxy_slot(
obj: Tensor,
tracer: _ProxyTracer,
default: U,
transform: Callable[[_ProxyTensor], R],
) -> Union[R, U]:
...
@overload
def get_proxy_slot(
obj: _AnyScriptObjectType,
tracer: _ProxyTracer,
) -> Proxy:
...
@overload
def get_proxy_slot(
obj: _AnyScriptObjectType,
tracer: _ProxyTracer,
default: U,
) -> Union[Proxy, U]:
...
@overload
def get_proxy_slot(
obj: _AnyScriptObjectType,
tracer: _ProxyTracer,
default: U,
transform: Callable[[Proxy], R],
) -> Union[R, U]:
...
@overload
def get_proxy_slot(
obj: PySymType,
tracer: _ProxyTracer,
) -> _PySymProxyType:
...
@overload
def get_proxy_slot(
obj: PySymType,
tracer: _ProxyTracer,
default: T,
) -> Union[T, _PySymProxyType]:
...
@overload
def get_proxy_slot(
obj: PySymType,
tracer: _ProxyTracer,
default: U,
transform: Callable[[_PySymProxyType], R],
) -> Union[R, U]:
...
# the default argument is what to return if the slot is not set.
# the transform argument is handy if you need to extract a subfield from
# the successfully looked up result (but NOT the default.)
def get_proxy_slot(
obj: Union[Tensor, _AnyScriptObjectType, PySymType],
tracer: _ProxyTracer,
default: object = no_default,
transform: Callable = lambda x: x,
) -> object:
tracker: Any
if isinstance(obj, Tensor):
tracker = tracer.tensor_tracker
elif isinstance(obj, _AnyScriptObject):
tracker = tracer.script_object_tracker
else:
assert isinstance(obj, py_sym_types), type(obj)
tracker = tracer.symnode_tracker
if obj not in tracker:
# Last ditch
if isinstance(obj, py_sym_types) and obj.node.expr in tracer.sympy_expr_tracker:
value = tracer.sympy_expr_tracker[obj.node.expr]
else:
if isinstance(default, _NoDefault):
raise RuntimeError(
f"{obj} ({id(obj)})is not tracked with proxy for {tracer}"
)
return default
else:
value = tracker[obj]
res = transform(value)
return res
def snapshot_fake(val: Tensor) -> Optional[Tensor]:
# val.detach() will also eventually call fast_detach(),
# but this saves us a full trip into __torch_dispatch__
# (snapshot_fake is called a lot)
if isinstance(val, FakeTensor):
return fast_detach(val.fake_mode, val)
else:
return val.detach()
_ExtractValType = Optional[
Union[
PySymType,
_AnyScriptObjectType,
BackwardState,
List["_ExtractValType"],
Tuple["_ExtractValType", ...],
Dict[str, "_ExtractValType"],
Tensor,
int,
float,
bool,
]
]
def extract_val(val: _ExtractValType) -> _ExtractValType:
if is_fake(val):
return snapshot_fake(val)
elif isinstance(val, py_sym_types):
return val
elif isinstance(val, _AnyScriptObject):
return val
elif isinstance(val, BackwardState):
return val
elif isinstance(val, (list, tuple)):
return val.__class__([extract_val(x) for x in val])
elif isinstance(val, dict):
return {k: extract_val(v) for k, v in val.items()}
elif isinstance(val, Tensor):
if not val.is_sparse:
# NB: Kinda hacky, but we should try to get val as the metadata
# everywhere
# TODO: This doesn't properly track storages. A more robust
# approach would be to maintain a per-trace FakeTensorMode and
# from_real_tensor to create fake values (don't forget to
# snapshot_fake)
fake_tensor_mode = FakeTensorMode(allow_fallback_kernels=True)
with fake_tensor_mode:
return torch.empty_strided(
val.shape, val.stride(), device=val.device, dtype=val.dtype
)
else:
return None
elif isinstance(val, (int, float, bool)):
return val
elif val is None:
return None
typing_extensions.assert_never(val)
@contextmanager
def _enable_thunkify(
tracer: _ProxyTracer, *, enable: bool = True
) -> Generator[None, None, None]:
"""
Enable thunkification inside the context manager. Thunkification prevents
SymNode computation from directly being traced into an FX graph; instead,
the compute is only added to the graph if it is actually used. This helps
us track SymNode compute when it is computed (since we need /something/
to put in the tracker) even if it is unlikely to be used.
"""
old = tracer.enable_thunkify
tracer.enable_thunkify = enable
try:
yield
finally:
tracer.enable_thunkify = old
@contextmanager
def maybe_disable_thunkify() -> Generator[None, None, None]:
"""Within a context, disable thunkification. See :func:`maybe_enable_thunkify`
for more details. This is helpful if you have a wrapper function which
you want to enable thunkification on, but in some segment on the inside (say,
the original user function), you want to disable thunkification as you know
it is not needed there.
"""
proxy_mode = get_proxy_mode()
if proxy_mode is not None:
with _enable_thunkify(proxy_mode.tracer, enable=False):
yield
else:
yield
@contextmanager
def maybe_enable_thunkify() -> Generator[None, None, None]:
"""Within this context manager, if you are doing make_fx tracing, we will thunkify
all SymNode compute and avoid tracing it into the graph unless it is actually needed.
You should prefer to avoid using this as much as possible, as lazy evaluation of
SymNode tracing can lead to long chains of thunks which will stack overflow
if you evaluate them. However, this is currently sometimes necessary as there
are buggy parts of PT2 which will fail with "s0 is not tracked with proxy" error
due to insufficient tracing of SymNode computation.
"""
proxy_mode = get_proxy_mode()
if proxy_mode is not None:
with _enable_thunkify(proxy_mode.tracer):
yield
else:
yield
# Note [invariants for node meta 'val']
# What invariants do we have for the 'val' set on the FX node? It has accurate
# metadata... but only for metadata that exists "below" all other subsystems
# (most notably autograd, but also vmap, functorch transforms, etc). This means
# you can get the dtype, shape, stride, storage, but you CANNOT get requires_grad,
# grad_fn, _base (_base actually may be set due to recursive call to
# ADInplaceOrView, but you shouldn't rely on it.)
def set_meta(proxy: Proxy, val: _ExtractValType) -> Proxy:
proxy.node.meta["val"] = extract_val(val)
with _enable_thunkify(proxy.tracer): # type: ignore[arg-type]
# Best effort tensor_meta setting; prefer using val!
if is_fake(val):
proxy.node.meta["tensor_meta"] = _extract_tensor_metadata(val)
elif isinstance(val, Tensor) and not val.is_sparse:
proxy.node.meta["tensor_meta"] = _extract_tensor_metadata(val)
return proxy
def thunkify(
tracer: _ProxyTracer, f: Callable[_P, R], *args: _P.args, **kwargs: _P.kwargs
) -> Thunk[R]:
"""
Delays computation of f until it's called again
Also caches the result
"""
if tracer.enable_thunkify:
return Thunk(functools.partial(f, *args, **kwargs))
else:
r = f(*args, **kwargs)
return Thunk(lambda: r)
def track_tensor(
tensor: Tensor, proxy: Proxy, *, constant: Optional[Tensor], tracer: _ProxyTracer
) -> None:
def try_set_proxy_slot(
outer_s: IntLikeType,
proxy_callable: Callable[Concatenate[PySymType, _P], Proxy],
*args: _P.args,
**kwargs: _P.kwargs,
) -> None:
assert callable(proxy_callable)
if isinstance(outer_s, SymInt):
with _enable_thunkify(tracer):
set_proxy_slot(
outer_s,
tracer,
thunkify(tracer, proxy_callable, outer_s, *args, **kwargs),
)
# The basic idea is that we need to associate each tensor/SymInt
# with a Proxy. How do we setup this association? We just store
# the proxy on the proxy slot of the object, keyed on the tracer
# (so that if we have multiple tracers at the same time, they
# don't clobber each other.)
for i, s in enumerate(tensor.shape):
try_set_proxy_slot(
s,
lambda x, i: set_meta(
tracer.create_proxy(
"call_function", torch.ops.aten.sym_size.int, (proxy, i), {}
),
x,
),
i,
)
if not is_sparse_any(tensor):
for i, s in enumerate(tensor.stride()):
try_set_proxy_slot(
s,
lambda x, i: set_meta(
tracer.create_proxy(
"call_function", torch.ops.aten.sym_stride.int, (proxy, i), {}
),
x,
),
i,
)
try_set_proxy_slot(
tensor.numel(),
lambda x: set_meta(
tracer.create_proxy(
"call_function", torch.ops.aten.sym_numel.default, (proxy,), {}
),
x,
),
)
if not is_sparse_any(tensor):
try_set_proxy_slot(
tensor.storage_offset(),
lambda x: set_meta(
tracer.create_proxy(
"call_function",
torch.ops.aten.sym_storage_offset.default,
(proxy,),
{},
),
x,
),
)
set_proxy_slot(tensor, tracer, _ProxyTensor(proxy, constant))
_NestedProxys = Union[
Proxy, Sequence["_NestedProxys"], Mapping[object, "_NestedProxys"]
]
_NestedTensors = Union[
Tensor, Sequence["_NestedTensors"], Mapping[object, "_NestedTensors"]
]
def track_tensor_tree(
inner_res: T,
proxy_res: _NestedProxys,
*,
constant: Optional[_NestedTensors],
tracer: _ProxyTracer,
) -> T:
# NB: We call set_unbacked_bindings only on the *topmost* call to
# track_tensor_tree, not recursive calls. This is because there must
# be only ONE unbacked_binding proxy call, and it should be the one
# where all of the unbacked SymInts actually first come into existence.
# If you call this again on the inner proxies for the tuple projections,
# you will have multiple unbacked_bindings for the same symbol, but
# they're not going to show up anywhere.
#
# I was briefly deceived into setting unbacked bindings recursively when
# working on https://github.com/pytorch/pytorch/pull/133585 because I
# observed that some extra unbacked bindings were needed to handle some
# higher order operator code. But actually it looks like this was
# just an unrelated bug that needed to be fixed separately.
_set_unbacked_bindings(inner_res, proxy_res)
def wrap_with_proxy(
e: object, proxy: _NestedProxys, constant: Optional[_NestedTensors]
) -> None:
if isinstance(e, Tensor):
assert isinstance(proxy, Proxy)
assert constant is None or isinstance(constant, Tensor)
track_tensor(e, proxy, tracer=tracer, constant=constant)
set_meta(proxy, e)
elif isinstance(e, py_sym_types):
assert isinstance(proxy, Proxy)
# NB: eagerly set meta here, so that the numbering is in order
set_meta(proxy, e)
set_proxy_slot(e, tracer, thunkify(tracer, lambda: proxy))
elif isinstance(e, _AnyScriptObject):
assert isinstance(proxy, Proxy)
set_proxy_slot(e, tracer, proxy)
set_meta(proxy, e)
elif isinstance(e, (tuple, list)):
# example use case: allreduce_ returns ([tensor], work)
if isinstance(proxy, fx.Proxy):
set_meta(proxy, e)
def get_constant(
c: Optional[_NestedTensors], idx: int
) -> Optional[_NestedTensors]:
if c is None:
return None
else:
assert isinstance(c, (list, tuple))
return c[idx]
for idx, ee in enumerate(e):
# Use an indexer here - if proxy is a List then it will unwrap
# it. If it's a Proxy then it will proxy the getelem.
wrap_with_proxy(ee, proxy[idx], get_constant(constant, idx)) # type: ignore[index]
elif isinstance(e, dict):
# example use case: triton_kernel_wrapper takes arguments as kwargs
# In theory we could support const-prop when proxy-tensor-tracing
# operators that returns dicts of tensors, but we have no use case
# for it today (since the only op we currently trace that can
# return a dict is triton_kernel_wrapper_functional/mutation,
# which does not participate in const-prop)
assert constant is None
if isinstance(proxy, fx.Proxy):
set_meta(proxy, e)
for key, val in e.items():
wrap_with_proxy(val, proxy[key], None) # type: ignore[index]
elif isinstance(e, BackwardState):
assert isinstance(proxy, Proxy)
set_meta(proxy, e)
e.proxy = proxy
else:
# intentionally pass on primitives
pass
wrap_with_proxy(inner_res, proxy_res, constant)
return inner_res
@dataclass
class _ProxyTensor:
proxy: Proxy
constant: Optional[Tensor]
def fetch_sym_proxy(
tracer: _ProxyTracer,
) -> Callable[[PySymType], Union[bool, int, float, Proxy]]:
def inner(e: PySymType) -> Union[int, bool, float, Proxy]:
n = e.node
if n.constant is not None:
return n.constant
if e.node.expr.is_number:
if isinstance(e, SymBool):
return bool(e.node.expr)
elif isinstance(e, SymInt):
return int(e.node.expr)
return float(e.node.expr)
else:
assert isinstance(e, py_sym_types)
# NB: we REQUIRE all symints to be tracked
return get_proxy_slot(e, tracer).force()
return inner
@overload
def fetch_object_proxy(tracer: _ProxyTracer, t: Tensor) -> Union[_ProxyTensor, Tensor]:
...
@overload
def fetch_object_proxy(
tracer: _ProxyTracer, t: _AnyScriptObjectType
) -> Union[Proxy, _AnyScriptObjectType]:
...
@overload
def fetch_object_proxy(
tracer: _ProxyTracer, t: PySymType
) -> Union[_PySymProxyType, PySymType]:
...
def fetch_object_proxy(
tracer: _ProxyTracer, t: Union[Tensor, _AnyScriptObjectType, PySymType]
) -> object:
return get_proxy_slot(t, tracer, t)
HANDLED_TYPES = (Tensor, torch.nn.Parameter, FakeTensor)
def _maybe_record_pointwise_barrier(
func: object, proxy_mode: ProxyTorchDispatchMode
) -> None:
"""
Records pointwise operators in user program (non decomposed) that were output in fp16/bf16
"""
if proxy_mode.decomp_layers or not proxy_mode.emulate_precision_casts:
return
if (
not isinstance(func, torch._ops.OpOverload)
or torch.Tag.pointwise not in func.tags
):
return
last_node = next(iter(reversed(proxy_mode.tracer.graph.nodes)))
t = last_node.meta.get("val")
if not isinstance(t, torch.Tensor) or t.dtype not in (
torch.bfloat16,
torch.float16,
):
return
last_node.meta["low_precision_pointwise_barrier"] = True
def proxy_call(
proxy_mode: ProxyTorchDispatchMode,
func: OpOverload,
pre_dispatch: bool,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
unrecognized_types: List[Type] = []
flat_args_kwargs, spec = pytree.tree_flatten((args, kwargs))
def can_handle_tensor(x: Tensor) -> bool:
r = type(x) in HANDLED_TYPES or has_proxy_slot(x, proxy_mode.tracer)
if proxy_mode._allow_fake_constant:
r = r or type(x) in (torch._subclasses.FakeTensor,)
if not r:
unrecognized_types.append(type(x))
return r
# If there are any tensor subclasses, we need to handle those tensor subclasses first
# TODO: we could use types to test this
if not all(can_handle_tensor(x) for x in flat_args_kwargs if isinstance(x, Tensor)):
not_implemented_log.debug(
"ProxyTensorMode tensors without proxy had unrecognized subclasses: %s",
unrecognized_types,
)
return NotImplemented
r = maybe_handle_decomp(proxy_mode, func, args, kwargs)
if r is not NotImplemented:
_maybe_record_pointwise_barrier(func, proxy_mode)
return r
# For pre-autograd tracing, we do not want to run CompositeImplicit decomps.
if not pre_dispatch and func not in [
torch.ops.aten.size.default,
torch.ops.aten.stride.default,
torch.ops.aten.storage_offset.default,
]:
with proxy_mode:
r = func.decompose(*args, **kwargs)
if r is not NotImplemented:
return r
if func is torch.ops.aten.is_nonzero.default:
with proxy_mode:
return (args[0] != 0).item() # type: ignore[attr-defined]
tracer = proxy_mode.tracer
f_flat_args_kwargs = [
(
fetch_object_proxy(tracer, x)
if isinstance(x, (Tensor, _AnyScriptObject))
else x
)
for x in flat_args_kwargs
]
# If there are SymInts, we also should not consider this constant.
# However, fake tensor handling of SymInts is sufficiently broken that
# I couldn't write a test for this case
all_constant = (
not any(
t.constant is None
for t in f_flat_args_kwargs
if isinstance(t, _ProxyTensor)
)
# TODO: maybe constant SymInts should also be allowed? Not sure if
# this can happen
and not any(isinstance(x, py_sym_types) for x in flat_args_kwargs)
)
if torch.Tag.data_dependent_output in func.tags:
# Check if all of the Tensor inputs are constants
if all_constant:
const_flat_args_kwargs = [
t.constant if isinstance(t, _ProxyTensor) else t
for t in f_flat_args_kwargs
]
const_args, const_kwargs = pytree.tree_unflatten(
const_flat_args_kwargs, spec
)
with unset_fake_temporarily():
return func(*const_args, **const_kwargs)
# If any of the Tensor inputs are "real" (not FakeTensor), we may
# incorrectly burn in constants by allowing this access. Raise
# an error in this case
if proxy_mode._error_on_data_dependent_ops and pytree.tree_all_only(
Tensor, lambda t: not is_fake(t), (args, kwargs)
):
raise RuntimeError(
f"It appears that you're trying to get value out of a tracing tensor with {func} - erroring out! "
"It's likely that this is caused by data-dependent control flow or similar. "
"It may be possible to trace this with dynamic shapes; try setting tracing_mode='symbolic' "
"in your make_fx call."
)
proxy_flat_args_kwargs = [
e.proxy if isinstance(e, _ProxyTensor) else e for e in f_flat_args_kwargs
]
proxy_flat_args_kwargs = [
(fetch_sym_proxy(proxy_mode.tracer)(e) if isinstance(e, py_sym_types) else e)
for e in proxy_flat_args_kwargs
]
proxy_args, proxy_kwargs = pytree.tree_unflatten(proxy_flat_args_kwargs, spec)
# When we trace through a torch.tensor invocation, you never actually
# see a torch.ops.aten.tensor call. Instead, the way this function is
# implemented internally is that we allocate a plain tensor (this is
# *guaranteed* to be a plain tensor, we disable all modes when doing
# so), and then call at::lift_fresh on it (to give modes a chance to do
# their stuff). Furthermore, the tensor argument to lift_fresh is guaranteed
# to be freshly allocated, so we want lift_fresh to be a no-op (directly
# returning the input argument).
#
# Here is the basic problem: when we trace this sequence of executions
# into an FX graph, what happens to this call sequence? Traditionally,
# tensor constants get interned as buffers on the FX GraphModule. But
# this is dangerous. Consider:
#
# x = torch.tensor(1)
# x.add_(2)
#
# Naively, this traces into:
#
# t = self._tensor_constant0 # initialized to torch.tensor(1)
# x = torch.ops.aten.lift_fresh(t)
# x.add_(2)
#
# If lift_fresh returns t directly, the subsequent add_ call will
# modify the tensor constant. Really, the problem is we've violated
# the invariant the argument to lift is fresh. So what we should
# preserve the invariant by replacing lift_fresh with lift_fresh_copy:
#
# t = self._tensor_constant0 # initialized to torch.tensor(1)
# x = torch.ops.aten.lift_fresh_copy(t)
# x.add_(2)
#
# This is what the overload modification does.
if func is torch.ops.aten.lift_fresh.default:
func = torch.ops.aten.lift_fresh_copy.default
proxy_out = proxy_mode.tracer.create_proxy(
"call_function",
func,
proxy_args,
proxy_kwargs,
name=proxy_mode.tracer.graph._target_to_str(func.overloadpacket.__name__),
)
with _enable_thunkify(proxy_mode.tracer):
out = func(*args, **kwargs)
# In some circumstances, we will be tracing in a situation where a tensor
# is *statically* known to be a constant (currently, this only happens if
# you run torch.tensor; deterministic factory functions like torch.arange
# don't get this treatment). When the tensor in question is small, it's
# helpful to due constant propagation in case we call item() (in which
# case we can return the constant value that is known, rather than give
# an error.) The logic here tests if constant propagation is possible
# (because all of the inputs are constant). If so, we disable fake tensor
# mode (if it is on) and do true compute on the constant.
#
# It's worth highlighting that we're making a policy decision here.
# There is a potential that the tensor is actually quite large, and we
# don't actually want to run the compute. The tensor being quite large
# is one of the reasons why factory functions don't get this treatment
# (since they can be quite large; if a parameter is initialized to a
# constant value it will be!) Similarly, there is also a potential
# to run an operator that blows up the size of a small tensor; we don't
# protect against this case, but we could force, e.g., only single
# element constant computation by testing the numel of the result before
# propagating const-ness. Similarly, we don't require the constant to
# live on CPU, but we could.
any_constant = any(
t.constant is not None
for t in f_flat_args_kwargs
if isinstance(t, _ProxyTensor)
)
constant = None
def tensor_numel_in_limit(t: Tensor) -> bool:
return t.numel() <= CONSTANT_NUMEL_LIMIT
# If this is a lift, the input tensor is guaranteed to be a
# constant, so we keep a copy of the original argument along so
# we can query it if we're asked to item() it at some later point
if (
func is torch.ops.aten.lift_fresh_copy.default
and out.numel() <= CONSTANT_NUMEL_LIMIT
):
with unset_fake_temporarily():
assert isinstance(args[0], (Proxy, Tensor)), type(args[0])
constant = args[0].clone()
elif (
torch.Tag.nondeterministic_seeded not in func.tags
and all_constant
and any_constant
and pytree.tree_all_only(Tensor, tensor_numel_in_limit, out)
):
# NB: do NOT include factories as constants
with unset_fake_temporarily():
const_flat_args_kwargs = [
t.constant if isinstance(t, _ProxyTensor) else t
for t in f_flat_args_kwargs
]
const_args, const_kwargs = pytree.tree_unflatten(
const_flat_args_kwargs, spec
)
constant = func(*const_args, **const_kwargs)
else:
constant = None
track_tensor_tree(out, proxy_out, constant=constant, tracer=tracer)
_maybe_record_pointwise_barrier(func, proxy_mode)
return out
class _SymNodeDict:
"""
Wrapper around a dictionary that will hash SymInts with their nodes
"""
def __init__(self) -> None:
self.sym_node_dict: Dict[PySymType, _PySymProxyType] = {}
def __setitem__(self, key: PySymType, value: _PySymProxyType) -> None:
self.sym_node_dict[key.node] = value
def __getitem__(self, key: PySymType) -> _PySymProxyType:
return self.sym_node_dict[key.node]
def __contains__(self, key: PySymType) -> bool:
return key.node in self.sym_node_dict
def get(
self, key: PySymType, default: Optional[_PySymProxyType] = None
) -> _PySymProxyType:
# dict.get()'s annotation doesn't accept `None` when the value type
# isn't Optional.
return self.sym_node_dict.get(key.node, default) # type: ignore[arg-type]
def __iter__(self) -> Any:
raise NotImplementedError
def __len__(self) -> int:
return len(self.sym_node_dict)
class PythonKeyTracer(Tracer):
script_object_tracker: MutableMapping[_AnyScriptObjectType, Proxy]
symnode_tracker: _SymNodeDict
sympy_expr_tracker: Dict[sympy.Symbol, object]
tensor_tracker: MutableMapping[Tensor, _ProxyTensor]
torch_fn_counts: Dict[OpOverload, int]
enable_thunkify: bool = False
def __init__(self) -> None:
super().__init__(autowrap_modules=()) # type: ignore[arg-type]
self.tensor_tracker = WeakTensorKeyDictionary()
self.symnode_tracker = _SymNodeDict()
self.script_object_tracker = WeakIdKeyDictionary(
dict=None, ref_type=_WeakHashRef
)
self.sympy_expr_tracker = dict()
# Stores the torch function that was called during tracing
self.torch_fn_metadata = None
# Stores the counts for every torch function called. This is to help
# distinguish between different calls to the same torch function.
self.torch_fn_counts = {}
self.enable_thunkify = False
# In general, we don't want to make modules leaves. In principle, users of
# this tracer might want to override this in order to turn a couple specific
# modules into leaves in the traced graph.
def call_module(
self,
m: Module,
forward: Callable[..., Any],
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
) -> Any:
return forward(*args, **kwargs)
# We don't want to turn getattr calls into proxies. So we just return the actual value.
def getattr(
self, attr: str, attr_val: object, parameter_proxy_cache: Dict[str, Proxy]
) -> object:
return attr_val
def create_arg(self, a: object) -> fx.node.Node:
if isinstance(a, torch.nn.Parameter):
for n, p in self.root.named_parameters():
if a is p:
return self.create_node("get_attr", n, (), {})
qualname = self.get_fresh_qualname("_param_constant")
setattr(self.root, qualname, a)
return self.create_node("get_attr", qualname, (), {})
elif isinstance(a, py_sym_types):
assert a.node.constant is not None
return a.node.constant
return super().create_arg(a) # type: ignore[return-value]
@overload
def unwrap_proxy(self, e: Tensor) -> Union[Proxy, Tensor]:
...
@overload
def unwrap_proxy(self, e: PySymType) -> Union[Proxy, PySymType]:
...
@overload
def unwrap_proxy(
self, e: _AnyScriptObjectType
) -> Union[Proxy, _AnyScriptObjectType]:
...
def unwrap_proxy(self, e: T) -> object:
if isinstance(e, Tensor):
return get_proxy_slot(e, self, e, lambda x: x.proxy)
elif isinstance(e, py_sym_types):
return get_proxy_slot(e, self, e, lambda e: e.force())
elif isinstance(e, _AnyScriptObject):
return get_proxy_slot(e, self, e)
else:
return e
def _make_temp_remove_mode_context_manager(
mode_ty: Type[TorchFunctionMode],
) -> Callable[[], _GeneratorContextManager[Optional[TorchFunctionMode]]]:
@contextmanager
def context_manager_fn() -> Generator[Optional[TorchFunctionMode], None, None]:
from torch.overrides import _len_torch_function_stack, _pop_mode, _push_mode
temp_elements = []
removed_mode = None
while _len_torch_function_stack() > 0:
mode = _pop_mode()
if isinstance(mode, mode_ty):
removed_mode = mode
break
else:
temp_elements.append(mode)
for mode in reversed(temp_elements):
_push_mode(mode)
try:
yield removed_mode
finally:
if removed_mode is not None:
count = len(temp_elements)
while count > 0:
mode = _pop_mode()
count -= 1
temp_elements.append(removed_mode)
for mode in reversed(temp_elements):
_push_mode(mode)
return context_manager_fn
@torch._disable_dynamo
def dispatch_trace(
root: Union[Module, Callable],
tracer: Tracer,
concrete_args: Optional[Tuple[Any, ...]] = None,
) -> GraphModule:
graph = tracer.trace(root, concrete_args) # type: ignore[arg-type]
# NB: be careful not to DCE .item() calls
def impure_pred(n: fx.Node) -> bool:
from .symbolic_shapes import is_accessor_node
# Always defer to the built-in notion of impure
if n.is_impure():
return True
# Accessors always OK to DCE
if is_accessor_node(n):
return False
# If the operator in question takes SymInt args to SymInt output,
# we assume it's pure and OK to DCE
if (
isinstance(n.meta.get("val"), py_sym_types)
and
# NB: constant args ok
all(
isinstance(a.meta.get("val"), py_sym_types)
for a in n.args
if isinstance(a, fx.Node)
)
):
return False
# No idea, just assume it's not OK
return True
graph.eliminate_dead_code(impure_pred)
from torch._inductor.fx_passes.dedupe_symint_uses import dedupe_symints
dedupe_symints(graph)
name = root.__class__.__name__ if isinstance(root, Module) else root.__name__
return fx._lazy_graph_module._make_graph_module(tracer.root, graph, name)
def wrap_key(
f: Callable[_P, R], tensors: _P.args, tracer: _ProxyTracer, pre_dispatch: bool
) -> Callable[_P, R]:
flat_tensors, _tensors_spec = pytree.tree_flatten(tensors)
@functools.wraps(f)
def wrapped(*proxies: _P.args, **_unused: _P.kwargs) -> R:
flat_proxies, _proxies_spec = pytree.tree_flatten(proxies)
assert len(flat_proxies) == len(flat_tensors)
with disable_proxy_modes_tracing() as m:
assert isinstance(m, ProxyTorchDispatchMode)
track_tensor_tree(flat_tensors, flat_proxies, constant=None, tracer=tracer)
def get_tensor_proxy_slot(t: Tensor) -> Union[Tensor, Proxy]:
return get_proxy_slot(t, tracer, t, lambda x: x.proxy)
out = f(*tensors) # type:ignore[call-arg]
out = pytree.tree_map_only(Tensor, get_tensor_proxy_slot, out)
out = pytree.tree_map_only(
_AnyScriptObject, lambda t: get_proxy_slot(t, tracer, t, lambda x: x), out
)
def get_sym_proxy_slot(t: PySymType) -> Proxy:
return get_proxy_slot(t, tracer).force()
out = pytree.tree_map_only(py_sym_types, get_sym_proxy_slot, out)
return out
return wrapped
# TODO: Make downstream users of this work with OperatorBase
ORIGINAL_ATEN: Optional[object] = None
@contextmanager
def set_original_aten_op(func: OpOverload) -> Generator[None, None, None]:
global ORIGINAL_ATEN
if ORIGINAL_ATEN is None and fx_traceback.has_preserved_node_meta():
ORIGINAL_ATEN = func
fx_traceback.current_meta["original_aten"] = func
try:
yield
finally:
ORIGINAL_ATEN = None
fx_traceback.current_meta["original_aten"] = None
else:
yield
class TorchFunctionMetadataMode(TorchFunctionMode):
def __init__(self, tracer: _ProxyTracer) -> None:
self.tracer = tracer
def __torch_function__(
self,
func: OpOverload,
types: Tuple[torch._C._TensorMeta, ...],
args: Tuple[object, ...] = (),
kwargs: Optional[Dict[str, object]] = None,
) -> object:
kwargs = kwargs or {}
self.tracer.torch_fn_metadata = func
self.tracer.torch_fn_counts[func] = self.tracer.torch_fn_counts.get(func, 0) + 1
return func(*args, **kwargs)
_temp_remove_metadata_torch_function_mode = _make_temp_remove_mode_context_manager(
TorchFunctionMetadataMode
)
# This mode is **only** used for pre_dispatch tracing.
# In particular, we need to make sure that autograd/autocast API's
# that do not desugar into dispatcher operators stay in the graph.
class PreDispatchTorchFunctionMode(TorchFunctionMode):
def __init__(self, tracer: _ProxyTracer) -> None:
self.tracer = tracer
# The input to torch.amp.autocast_mode._exit_autocast graph node should be the
# enter_autocast node. So we have to save the enter autocast node here, and assign it
# to the exit_autocast call_function node.
self.enter_autocast_nodes: List[torch.fx.Node] = []
def __torch_function__(
self,
func: Union[OpOverload, Callable],
types: Tuple[torch._C._TensorMeta, ...],
args: Tuple[object, ...] = (),
kwargs: Optional[Dict[str, object]] = None,
) -> object:
kwargs = kwargs or {}
if func in _side_effectful_need_to_be_preserved_pre_dispatch:
# It's for passing the export verifier which needs to verify the meta['val']
# TODO(tmanlaibaatar): we should systematically couple it with expoert verifier,
# instead of hardcoding it here.
# T203648563
if func == torch.amp.autocast_mode._exit_autocast:
enter_node = self.enter_autocast_nodes.pop()
args = (enter_node,)
node = self.tracer.create_node("call_function", func, args, {}) # type: ignore[arg-type]
if func == torch.amp.autocast_mode._enter_autocast:
self.enter_autocast_nodes.append(node)
if func in [
torch._C._set_grad_enabled,
torch.amp.autocast_mode._enter_autocast,
torch.amp.autocast_mode._exit_autocast,
]:
node.meta["val"] = None
return node
# Don't actually run the function! We just want to trace the calls
# into a graph. We don't actualy want to change global autograd state.
return func(*args, **kwargs)
_temp_remove_pre_dispatch_torch_function_mode = _make_temp_remove_mode_context_manager(
PreDispatchTorchFunctionMode
)
class ProxyTorchDispatchMode(TorchDispatchMode):
# Ensure this is read-only; this exists only for legacy reasons
@property
def enable_tracing(self) -> bool:
return True
def __init__(
self,
tracer: _ProxyTracer,
tracing_mode: str,
pre_dispatch: bool = False,
_allow_fake_constant: bool = False,
_error_on_data_dependent_ops: bool = True,
) -> None:
dk = torch._C.DispatchKey.PreDispatch if pre_dispatch else None
super().__init__(dk)
self.tracer = tracer
self.tracing_mode = tracing_mode
self.pre_dispatch = pre_dispatch
self._allow_fake_constant = _allow_fake_constant
self._error_on_data_dependent_ops = _error_on_data_dependent_ops
# Indicates to our torch_dispatch dispatching infra that
# this is an "infra" mode with lower dispatching precedence.
self._mode_key = torch._C._TorchDispatchModeKey.PROXY
# Every time we enter a mode, we maintain a stack telling us what the previous
# ProxyTorchDispatchMode state was (if there was any).
# This lets us properly reset the state on exit.
self.enter_stack: List[Optional[ProxyTorchDispatchMode]] = []
self.decomp_layers = 0
from torch._inductor import config
self.emulate_precision_casts = config.emulate_precision_casts
@count
def __torch_dispatch__(
self,
func: OpOverload,
types: Tuple[torch._C._TensorMeta, ...],
args: Tuple[object, ...] = (),
kwargs: Optional[Dict[str, object]] = None,
) -> object:
with set_original_aten_op(func):
kwargs = kwargs or {}
if func in (prim.device.default,):
return func(*args, **kwargs)
return proxy_call(self, func, self.pre_dispatch, args, kwargs)
def __enter__(self) -> Self:
# Stash and store the previous proxy mode (there may or may not be one)
maybe_prev_proxy_mode = _unset_infra_mode(torch._C._TorchDispatchModeKey.PROXY)
self.enter_stack.append(maybe_prev_proxy_mode)
return super().__enter__()
def __exit__(
self,
exc_type: Optional[Type[BaseException]],
exc_value: Optional[BaseException],
traceback: Optional[types.TracebackType],
) -> Optional[bool]:
b = super().__exit__(exc_type, exc_value, traceback)
# Re-enable the previous proxy mode, if there was one.
mb_previous_proxy_mode = self.enter_stack.pop()
if mb_previous_proxy_mode is not None:
_push_mode(mb_previous_proxy_mode)
return b
@classmethod
def is_infra_mode(cls) -> bool:
return True
def _compute_proxy(
self, func: OpOverload, args: Tuple[object, ...], out: PySymType
) -> Proxy:
# Handle torch.sym_sum
n_args: Tuple[object, ...]
if len(args) == 1 and isinstance(args[0], (list, tuple)):
n_args = (
tuple(
get_proxy_slot(a, self.tracer).force().node
if isinstance(a, py_sym_types)
else a
for a in args[0]
),
)
else:
n_args = tuple(
get_proxy_slot(a, self.tracer).force().node
if isinstance(a, py_sym_types)
else a
for a in args
)
# func doesn't have a __torch_function__ that Proxy can interpose, so
# we gotta do it manually
n_out = self.tracer.create_node("call_function", func, n_args, {}) # type: ignore[arg-type]
p_out = fx.Proxy(n_out, self.tracer)
set_meta(p_out, out)
return p_out
def __sym_dispatch__(
self,
func: OpOverload,
types: Tuple[torch._C._TensorMeta, ...],
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
# Peephole optimize multiply by one
# NB: be careful not to trigger guards here!
if func == operator.mul:
if isinstance(args[1], int) and args[1] == 1:
return args[0]
elif isinstance(args[0], int) and args[0] == 1:
return args[1]
# For speed, we assume there are no nested data structures
# (otherwise we could use tree_map)
# We also assume there are no keyword arguments.
assert not kwargs
out = func(*args, **kwargs)
# If func returned a constant, we don't need to trace; we have
# determined that the result is constant (no matter if the inputs
# were symbolic) and it is no longer necessary to trace the
# computation. This could occur if func triggered some guards.
if isinstance(out, py_sym_types):
p_out_thunk = thunkify(
self.tracer, self._compute_proxy, func=func, args=args, out=out
)
set_proxy_slot(out, self.tracer, p_out_thunk)
return out
class _GraphAppendingTracerEx(fx.proxy.GraphAppendingTracer):
script_object_tracker: MutableMapping[_AnyScriptObjectType, Proxy]
symnode_tracker: MutableMapping[PySymType, _PySymProxyType]
tensor_tracker: MutableMapping[Tensor, _ProxyTensor]
sympy_expr_tracker: Dict[sympy.Symbol, object]
torch_fn_metadata: Optional[OpOverload]
torch_fn_counts: Dict[OpOverload, int]
enable_thunkify: bool = False
def __init__(self, graph: fx.graph.Graph) -> None:
super().__init__(graph)
self.symnode_tracker = weakref.WeakKeyDictionary()
self.tensor_tracker = WeakTensorKeyDictionary()
self.sympy_expr_tracker = {}
self.script_object_tracker = WeakIdKeyDictionary(
dict=None, ref_type=_WeakHashRef
)
# Stores the torch function that was called during tracing
self.torch_fn_metadata = None
# Stores the counts for every torch function called. This is to help
# distinguish between different calls to the same torch function.
self.torch_fn_counts = {}
# TODO: I'm not sure what the point of this class is; you can just
# make_fx through a regular Interpreter
class DecompositionInterpreter(fx.Interpreter):
def __init__(
self,
module: fx.GraphModule,
new_graph: fx.Graph,
decomposition_table: Optional[Mapping[OpOverload, Callable]] = None,
**kwargs: object,
) -> None:
super().__init__(module, **kwargs) # type: ignore[arg-type]
self.new_graph = new_graph
self.tracer = _GraphAppendingTracerEx(self.new_graph)
# Blegh
self.decomposition_table = decomposition_table or {}
self.mode = ProxyTorchDispatchMode(self.tracer, tracing_mode="real")
def placeholder(
self, target: str, args: Tuple[object, ...], kwargs: Dict[str, object] # type: ignore[override]
) -> object:
out = super().placeholder(target, args, kwargs) # type: ignore[arg-type]
proxy = fx.Proxy(self.new_graph.placeholder(target), self.tracer)
track_tensor_tree(out, proxy, constant=None, tracer=self.tracer)
# TODO handle case where the first character of target is '*'
return out
def get_attr(
self, target: str, args: Tuple[object, ...], kwargs: Dict[str, object] # type: ignore[override]
) -> object:
out = super().get_attr(target, args, kwargs) # type: ignore[arg-type]
proxy = fx.Proxy(self.new_graph.get_attr(target), self.tracer)
track_tensor_tree(out, proxy, constant=None, tracer=self.tracer)
return out
# call_function, call_method, call_module get traced automatically by the outer mode.
def output(
self, target: str, args: Tuple[object, ...], kwargs: Dict[str, object] # type: ignore[override]
) -> object:
out = super().output(target, args, kwargs) # type: ignore[arg-type]
def get_proxy_node(x: _ProxyTensor) -> fx.node.Node:
return x.proxy.node
def unwrap(e: Tensor) -> Union[Tensor, fx.Node]:
return get_proxy_slot(e, self.tracer, e, get_proxy_node)
self.new_graph.output(pytree.tree_map(unwrap, out))
return out
def run(self, *args: object, **kwargs: object) -> object:
# Should enter the mode at least once for being able to restore it later
# See: https://github.com/pytorch/pytorch/pull/82549#discussion_r934782025
with decompose(self.decomposition_table), self.mode:
return super().run(*args, **kwargs) # type: ignore[arg-type]
def wrapper_and_args_for_make_fx(
func: Callable[..., R], args: Tuple[object, ...], kwargs: Dict[str, object]
) -> Tuple[Callable[[List[object]], R], List[object]]:
# make_fx doesn't support kwargs, so we need to do this flattening
# and then unflatten the args before calling func
flat_args, spec = pytree.tree_flatten((args, kwargs))
def wrapped(flat_args: List[object]) -> R:
fn_args, fn_kwargs = pytree.tree_unflatten(flat_args, spec)
return func(*fn_args, **fn_kwargs)
return wrapped, flat_args
@contextmanager
def disable_autocast_cache() -> Generator[None, None, None]:
old_value = torch.is_autocast_cache_enabled()
torch.set_autocast_cache_enabled(False)
try:
yield
finally:
torch.set_autocast_cache_enabled(old_value)
class _ModuleNotInstalledAsSubmoduleError(NameError):
pass
# Base class for inline _ModuleStackTracer.__init__.AttrProxy
class _AttrProxy:
def reset_proxy_mapping(self, base: Module, path: str) -> None:
pass
class _ModuleStackTracer(PythonKeyTracer):
r"""Customized version of PythonKeyTracer that retains module stack
information in node.meta["nn_module_stack"].
FX symbolic trace actually does this already, but it relies on `self.root`
being the actual module being traced. Since make_fx traces a lambda of our
creation, things don't work properly.
So for this version we hold onto a reference to the original module
(scope_root) and use that to match the path. Also when we see,
A
/ \
B C
\ /
D
we want to record the path as A.B.D by recording only one path.
See Note [Preserving the nn module stack metadata during export non-strict mode] # noqa: W605
"""
def __init__(self, scope_root: GraphModule) -> None:
super().__init__()
self.scope_root = scope_root
self.enable_attr_proxy = False
self.submodule_paths = {}
for name, m in self.scope_root.named_modules(remove_duplicate=False):
if m in self.submodule_paths:
self.enable_attr_proxy = True
else:
self.submodule_paths[m] = name
self.proxy_paths: WeakKeyDictionary[_AttrProxy, str] = WeakKeyDictionary()
self.attr_proxy_map: WeakKeyDictionary[Module, _AttrProxy] = WeakKeyDictionary()
self.proxy_modules: WeakKeyDictionary[_AttrProxy, Module] = WeakKeyDictionary()
self.counter = 0
self.module_id_cache = defaultdict(list)
for name, mod in self.scope_root.named_modules(remove_duplicate=False):
self.module_id_cache[id(mod)].append(name)
# Build a wrapper around _AttrProxy to provide the tracer. We can't
# store it on _AttrProxy itself beceause we mimic the underlying class
# (including its attributes).
tracer = self
class AttrProxy(_AttrProxy):
def __init__(self, base: Module, path: str) -> None:
# Class is modified to be a subclass of torch.nn.Module
# Warning: We blow away our own attributes here to mimic the base class
# - so don't expect `self.x` to do anything useful.
self.__class__ = type(
base.__class__.__name__,
(self.__class__, base.__class__),
{},
)
self.__dict__ = base.__dict__
self.__class__.__module__ = base.__class__.__module__
self.__class__.__qualname__ = base.__class__.__qualname__
self.reset_proxy_mapping(base, path)
def reset_proxy_mapping(self, base: Module, path: str) -> None:
tracer.proxy_paths[self] = path
tracer.proxy_modules[self] = base
def __getattr__(self, name: str) -> AttrProxy:
assert isinstance(self, Module)
# Calling into torch.nn.Module.__getattr__ with super(),
# That __getattr__ is patched to be module_getattr_wrapper in _symbolic_trace.py.
# which then calls into _ModuleStackTracer.getattr
attr_val = super().__getattr__(name) # type: ignore[misc]
if isinstance(attr_val, AttrProxy):
attr_val = tracer.proxy_modules[attr_val]
elif not isinstance(attr_val, Module):
return attr_val
if attr_val not in tracer.attr_proxy_map:
tracer.attr_proxy_map[attr_val] = AttrProxy(
attr_val, tracer.proxy_paths[self] + "." + name
)
else:
# NOTE [caching AttrProxy]. Caching ensures a 1-1 mapping between AttrProxy and the actual attr_val.
# 1. We reset the proxy_mapping to solve the diamond shape reference problem: we want to record the
# path as A.B.D instead of A.C.D (the purpose of _ModuleStackTracer).
# 2. Instead of creating a new AttrProxy, we just reset the proxy_mapping of existing one. This is to avoid
# dynamo creating multiple guards for the same attr_val but different AttrProxy when exporting
# a model that calls torch.compile (e.g when a model uses torch.cond.)
tracer.attr_proxy_map[attr_val].reset_proxy_mapping(
attr_val, tracer.proxy_paths[self] + "." + name
)
return tracer.attr_proxy_map[attr_val]
def get_base(self) -> Module:
return tracer.proxy_modules[self]
@property
def _modules(self) -> Dict[str, AttrProxy]:
assert "_modules" in self.__dict__
submodules = self.__dict__["_modules"]
assert isinstance(submodules, dict)
return {
key: (
AttrProxy(value, tracer.proxy_paths[self] + "." + str(key)) # type: ignore[misc]
if value is not None
else value
)
for key, value in submodules.items()
}
self.proxy_type = AttrProxy
def path_of_module(self, mod: Module) -> str:
"""
Use tracked access path during tracing instead of the default BFS behavior.
Still use all the possible module paths to verify the result.
"""
if mod is self.scope_root:
return ""
if isinstance(mod, _AttrProxy):
return self.proxy_paths[mod]
try:
return Tracer.path_of_module(self, mod)
except NameError as e:
raise _ModuleNotInstalledAsSubmoduleError from e
def getattr(
self, attr: str, attr_val: object, parameter_proxy_cache: Dict[str, Proxy]
) -> object:
if (
not isinstance(attr_val, Module)
or isinstance(attr_val, fx.GraphModule)
or not self.enable_attr_proxy
):
return super().getattr(attr, attr_val, parameter_proxy_cache)
if isinstance(attr_val, _AttrProxy):
return attr_val
# See NOTE [caching AttrProxy].
if attr_val not in self.attr_proxy_map:
self.attr_proxy_map[attr_val] = self.proxy_type(attr_val, attr)
else:
self.attr_proxy_map[attr_val].reset_proxy_mapping(attr_val, attr)
return self.attr_proxy_map[attr_val]
def trace( # type: ignore[override]
self, root: Union[Module, Callable], concrete_args: Optional[Dict[str, object]]
) -> fx.Graph:
res = super().trace(root, concrete_args)
# Since we are making _AttrProxy mimic the original
# submodule, when someone registers a module directly
# to the tracer while tracing, the proxy object gets registered
# first. So we need to replace the proxy modules with the real ones
# This can happen during HOO tracing
proxy_module_names_to_be_replaced: List[Tuple[str, _AttrProxy]] = []
for name, module in self.root.named_modules():
if module in self.proxy_modules:
proxy_module_names_to_be_replaced.append((name, module))
def _delete_proxy_attr(obj: Module, target: str) -> bool:
# Copied from fx/graph_module.py
# Customized it for proxy type
atoms = target.split(".")
path, target_submod = atoms[:-1], atoms[-1]
assert isinstance(obj, Module)
mod = obj
# Get the parent module
for item in path:
if not hasattr(mod, item):
return False
mod = getattr(mod, item)
if not isinstance(mod, (_AttrProxy, Module)):
return False
if not hasattr(mod, target_submod):
return False
# At least the leaf module should be proxy type.
if not isinstance(getattr(mod, target_submod), _AttrProxy):
return False
delattr(mod, target_submod)
return True
for proxy_module_name, proxy_module in proxy_module_names_to_be_replaced:
_delete_proxy_attr(self.root, proxy_module_name)
actual_module = self.proxy_modules[proxy_module]
_assign_attr(actual_module, self.root, proxy_module_name)
return res
def call_module(
self,
m: Module,
forward: Callable,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> None:
"""PythonKeyTracer overrides call_module to avoid the scope handling,
but we actually want it.
"""
from torch._dynamo import OptimizedModule
# FIXME (tmanlaibaatar)
# When we call torch.compile inside HOO, we will end up
# invoking a module that is not registered on the root. For
# now, we just inline them. But once we start supporting
# mark_strict in export, we do need to properly handle this.
# Right now, it doesn't matter because current non-strict
# use cases don't need to work with HOO.
if isinstance(m, (OptimizedModule, GraphModule)):
return forward(*args, **kwargs)
try:
return Tracer.call_module(self, m, forward, args, kwargs)
except _ModuleNotInstalledAsSubmoduleError:
warnings.warn(
f"Unable to find the path of the module {m}. "
"This might be because the module was not properly registered "
"as a submodule, which is not good practice. We will trace "
"through the module without recording stack information."
)
return forward(*args, **kwargs)
def is_leaf_module(self, m: Module, module_qualified_name: str) -> bool:
return False
def create_node(self, *args: object, **kwargs: object) -> fx.node.Node:
"""
Create node and add on metadata.
Add nn_module_stack here instead of TracerBase,
since calls to make_fx() might not want to record module stack metadata.
Add torch_fn by looking at torch_fn_metadata and torch_fn_counts.
Add stack_trace by filtering out forward() stack frames.
"""
node = super().create_node(*args, **kwargs) # type: ignore[arg-type]
# nn_module_stack
if node.op not in ["placeholder", "output"]:
if "nn_module_stack" not in node.meta:
node.meta["nn_module_stack"] = self.module_stack
# convert nn_module_stack from Dict[key, (FQN, class)] -> Dict[str, Tuple[str, str]]
for key, (fqn, mod_cls) in node.meta["nn_module_stack"].items():
if isinstance(mod_cls, type):
node.meta["nn_module_stack"][key] = (
fqn,
mod_cls.__module__ + "." + mod_cls.__qualname__,
)
# torch_fn
if (
node.op == "call_function"
and self.torch_fn_metadata is not None
and "torch_fn" not in node.meta
):
node.meta["torch_fn"] = (
f"{self.torch_fn_metadata.__name__}_{self.torch_fn_counts[self.torch_fn_metadata]}",
f"{self.torch_fn_metadata.__class__.__name__}.{self.torch_fn_metadata.__name__}",
)
# stack_trace
if "stack_trace" not in node.meta and node.op not in ["placeholder", "output"]:
user_frame_summary = CapturedTraceback.extract().summary()
if user_frame_summary:
# we retain frames from forward() calls, or ops
# located in torch/__init__.py (e.g. sym_int, sym_constrain_range, vmap)
stack_trace = [
frame
for frame in user_frame_summary
if (
frame.name == "forward"
or frame.filename.endswith("torch/__init__.py")
)
]
# filter out forward() frames from fx/_symbolic_trace.py, export/_trace.py
# this is hardcoded, but leads to a much cleaner stack trace
stack_trace = [
frame
for frame in stack_trace
if not (
frame.filename.endswith("fx/_symbolic_trace.py")
or frame.filename.endswith("export/_trace.py")
)
]
if (
stack_trace
): # empty list for strict mode, dynamo should handle stack_trace
stack_trace = traceback.StackSummary.from_list(stack_trace)
node.meta["stack_trace"] = "".join(stack_trace.format()).strip()
return node
class _MakefxTracer:
def __init__(
self,
decomposition_table: Optional[Mapping[OpOverload, Callable]],
tracing_mode: str,
_allow_non_fake_inputs: bool,
pre_dispatch: bool,
record_module_stack: bool,
_allow_fake_constant: bool,
_error_on_data_dependent_ops: bool,
) -> None:
# Configurations that are used to initialize the context managers and their states.
# Should not modify them during tracing.
self.decomposition_table: Dict[OpOverload, Callable] = dict(
decomposition_table or {}
)
self.decomposition_table.setdefault(
torch.ops.aten.sym_numel.default, torch._decomp.decompositions.sym_numel
)
self.tracing_mode: str = tracing_mode
self._allow_non_fake_inputs: bool = _allow_non_fake_inputs
self.pre_dispatch: bool = pre_dispatch
self.record_module_stack: bool = record_module_stack
self._allow_fake_constant: bool = _allow_fake_constant
self._error_on_data_dependent_ops: bool = _error_on_data_dependent_ops
# All context managers and their states should be initialized before tracing based on the inputs
# and configurations. After tracing, their states should be cleaned except for shape_env.
# Remember to specify how to intialize it from user inputs and from parent tracer whenever
# adding new modes in _MakefxTracer.
self.fake_tensor_mode: Optional[FakeTensorMode] = None
self.proxy_mode: Union[nullcontext, ProxyTorchDispatchMode] = nullcontext()
self.proxy_function_mode: Union[
nullcontext, PreDispatchTorchFunctionMode
] = nullcontext()
self.fx_tracer: Optional[PythonKeyTracer] = None
self.python_dispatcher_mode: Union[nullcontext, Any] = nullcontext()
self.torch_fn_metadata_mode: Union[
nullcontext, TorchFunctionMetadataMode
] = nullcontext()
def _checkpoint_modes(self) -> List[Any]:
return [
self.fake_tensor_mode,
self.proxy_mode,
self.proxy_function_mode,
self.fx_tracer,
self.python_dispatcher_mode,
self.torch_fn_metadata_mode,
]
def _restore_modes(
self,
prev_fake_tensor_mode: Optional[FakeTensorMode],
prev_proxy_mode: Union[nullcontext, ProxyTorchDispatchMode],
prev_proxy_function_mode: Union[nullcontext, PreDispatchTorchFunctionMode],
prev_fx_tracer: Optional[PythonKeyTracer],
prev_python_dispatcher_mode: Union[nullcontext, Any],
prev_torch_fn_metadata_mode: Union[nullcontext, TorchFunctionMetadataMode],
) -> None:
self.fake_tensor_mode = prev_fake_tensor_mode
self.proxy_mode = prev_proxy_mode
self.proxy_function_mode = prev_proxy_function_mode
self.fx_tracer = prev_fx_tracer
self.python_dispatcher_mode = prev_python_dispatcher_mode
self.torch_fn_metadata_mode = prev_torch_fn_metadata_mode
@contextmanager
def _init_modes_from_inputs(
self, f: Callable, args: Tuple[object, ...]
) -> Generator[None, None, None]:
prev_modes = self._checkpoint_modes()
try:
# Avoid importing sympy at a module level
from .symbolic_shapes import ShapeEnv
if hasattr(f, "_orig_mod") and self.record_module_stack:
scope_root = f._orig_mod
self.fx_tracer = _ModuleStackTracer(scope_root)
else:
self.fx_tracer = PythonKeyTracer()
if self.tracing_mode == "fake":
import torch._dynamo
fake_tensor_mode = torch._dynamo.utils.detect_fake_mode(args)
if fake_tensor_mode is None:
import torch._functorch.config as _config
with _config.patch(fake_tensor_allow_unsafe_data_ptr_access=False):
fake_tensor_mode = FakeTensorMode(
allow_fallback_kernels=True,
allow_non_fake_inputs=self._allow_non_fake_inputs,
shape_env=ShapeEnv(),
static_shapes=True,
)
self.fake_tensor_mode = fake_tensor_mode
elif self.tracing_mode == "symbolic":
import torch._dynamo
fake_tensor_mode = torch._dynamo.utils.detect_fake_mode(args)
if fake_tensor_mode is None:
shape_env = ShapeEnv()
import torch._functorch.config as _config
with _config.patch(fake_tensor_allow_unsafe_data_ptr_access=False):
fake_tensor_mode = FakeTensorMode(
allow_fallback_kernels=False,
allow_non_fake_inputs=self._allow_non_fake_inputs,
shape_env=shape_env,
)
assert (
fake_tensor_mode.shape_env is not None
), "shape_env should be set if tracing with 'symbolic'"
self.fake_tensor_mode = fake_tensor_mode
else:
if not self.tracing_mode == "real":
raise AssertionError(
f"Unexpected tracing type: {self.tracing_mode}"
)
self._construct_modes_with_fx_tracer(self.fx_tracer)
yield
finally:
self._restore_modes(*prev_modes)
def _construct_modes_with_fx_tracer(self, fx_tracer: _ProxyTracer) -> None:
self.proxy_mode = ProxyTorchDispatchMode(
fx_tracer,
self.tracing_mode,
pre_dispatch=self.pre_dispatch,
_allow_fake_constant=self._allow_fake_constant,
_error_on_data_dependent_ops=self._error_on_data_dependent_ops,
)
if self.pre_dispatch:
self.proxy_function_mode = PreDispatchTorchFunctionMode(fx_tracer)
# pre-autograd tracing uses per-dispatch-key modes,
# which requires the python dispatcher
if self.tracing_mode == "symbolic" or self.pre_dispatch:
self.python_dispatcher_mode = enable_python_dispatcher()
self.torch_fn_metadata_mode = TorchFunctionMetadataMode(fx_tracer)
@contextmanager
def _init_modes_from_parent(
self, parent_tracer: _MakefxTracer
) -> Generator[None, None, None]:
# By default, subtracer creates new modes based on parent tracer's config.
# However, there are cases where we want to share the same modes with parent tracer
# For example, fake_tensor_mode, we want the example value's fake_mode of parent graph and subgraphs to be the same.
prev_modes = self._checkpoint_modes()
try:
self.fake_tensor_mode = parent_tracer.fake_tensor_mode
def _create_sub_fx_tracer(parent_tracer: _ProxyTracer) -> PythonKeyTracer:
if type(parent_tracer) == PythonKeyTracer:
return PythonKeyTracer()
elif type(parent_tracer) == _ModuleStackTracer:
return _ModuleStackTracer(parent_tracer.scope_root)
else:
raise RuntimeError(
f"Unexpected tracer type: {type(parent_tracer)}."
)
assert parent_tracer.fx_tracer is not None
self.fx_tracer = _create_sub_fx_tracer(parent_tracer.fx_tracer)
self._construct_modes_with_fx_tracer(self.fx_tracer)
yield
finally:
self._restore_modes(*prev_modes)
def _trace_inner(self, f: Callable, *args: object) -> GraphModule:
# TODO: We need to explicitly import torch._dynamo before calling dispatch_trace,
# because dispatch_trace will introduce the lazy import of torch._dynamo,
# and some contexts set before calling dispatch_trace will cause problems with the import of torch._dynamo,
# such as some torch API(torch.ones and so on) in populate_builtin_to_tensor_fn_map() will be affected
# by the context set before dispatch_trace.
import torch._dynamo
phs = pytree.tree_map(lambda _: torch.fx._symbolic_trace.PH, args)
def _wrap_fake(args: T) -> T:
arg_count = 0
def inner_wrap_fake(x: object) -> object:
nonlocal arg_count
# TODO: it would be nice to line these up with the names
# FX will choose for the placeholders, but we don't
# actually know what the names will be at this point yet
# NB: the Source here is actually meaningless
from torch._dynamo.source import ConstantSource
assert self.fake_tensor_mode is not None
source = ConstantSource(f"input{arg_count}")
if isinstance(x, Tensor):
arg_count += 1
return self.fake_tensor_mode.from_tensor(x, source=source)
# NB: don't match on bools
elif type(x) is int and self.tracing_mode == "symbolic":
assert (
self.fake_tensor_mode.shape_env is not None
), "shape_env should be set if tracing with 'symbolic'"
return self.fake_tensor_mode.shape_env.create_symintnode(
self.fake_tensor_mode.shape_env.create_symbol(
x, source, positive=None
),
hint=x,
source=source,
)
elif isinstance(x, torch.ScriptObject):
return torch._library.fake_class_registry.maybe_to_fake_obj(
self.fake_tensor_mode, x
)
assert not isinstance(
x, FakeScriptObject
), f"ScriptObject {x} has been fakified. Cannot wrap_fake it again."
return x
wrap_fn_map = {
"real": lambda x: x,
"fake": inner_wrap_fake,
"symbolic": inner_wrap_fake,
}
return pytree.tree_map(wrap_fn_map[self.tracing_mode], args)
def _wrap_func(f: Callable[_P, R], phs: Sequence[PHBase]) -> Callable[_P, R]:
if (
not hasattr(inspect.unwrap(f), "__code__")
or inspect.unwrap(f).__code__.co_flags & inspect.CO_VARARGS
):
# FX doesn't support varargs, so we gotta fake up a wrapper
# TODO: Would be nice to fix this at the source...
return fake_signature(f, len(phs))
return f
args = _wrap_fake(args)
func = _wrap_func(f, phs)
# We disable the autocast cache as the autocast cache causes type conversions on parameters to
# check a cache, which introduces untracked tensors into the graph
#
# We also disable tracing by any other tensor proxy-based tracers except the current. The
# purpose of `make_fx` is to produce graphmodules as a side effect; its internal execution is
# thus irrelevant to any external functional trace.
proxy_mode: ProxyTorchDispatchMode = typing.cast(
ProxyTorchDispatchMode, self.proxy_mode
)
with ExitStack() as stack:
stack.enter_context(decompose(self.decomposition_table))
if self.fake_tensor_mode:
stack.enter_context(self.fake_tensor_mode)
stack.enter_context(self.python_dispatcher_mode)
stack.enter_context(self.proxy_function_mode)
stack.enter_context(self.torch_fn_metadata_mode)
stack.enter_context(proxy_mode)
stack.enter_context(disable_autocast_cache())
stack.enter_context(_set_make_fx_tracer(self))
assert self.fx_tracer is not None
try:
t = dispatch_trace(
wrap_key(func, args, self.fx_tracer, self.pre_dispatch),
tracer=self.fx_tracer,
concrete_args=tuple(phs),
)
except Exception:
trace_structured(
"artifact",
metadata_fn=lambda: {
"name": "make_fx_fail_partial",
"encoding": "string",
},
payload_fn=lambda: self.fx_tracer.graph.python_code( # type: ignore[union-attr]
root_module="self",
verbose=True,
include_stride=True,
include_device=True,
).src,
)
raise
# TODO: kind of a bad way to do it, should maybe figure out a better way
if self.tracing_mode == "symbolic":
assert self.fake_tensor_mode is not None
t.shape_env = self.fake_tensor_mode.shape_env
return t
def trace(self, f: Callable, *args: object) -> fx.GraphModule:
with self._init_modes_from_inputs(f, args):
return self._trace_inner(f, *args)
def trace_subgraph(self, f: Callable, *args: object) -> GraphModule:
# Create a new tracer based on parent's config
sub_tracer = _MakefxTracer(
self.decomposition_table,
"real",
self._allow_non_fake_inputs,
self.pre_dispatch,
self.record_module_stack,
self._allow_fake_constant,
self._error_on_data_dependent_ops,
)
with sub_tracer._init_modes_from_parent(self):
return sub_tracer._trace_inner(f, *args)
_CURRENT_MAKE_FX_TRACER: Optional[_MakefxTracer] = None
@contextmanager
def _set_make_fx_tracer(tracer: _MakefxTracer) -> Generator[None, None, None]:
global _CURRENT_MAKE_FX_TRACER
prev_tracer = _CURRENT_MAKE_FX_TRACER
try:
_CURRENT_MAKE_FX_TRACER = tracer
yield
finally:
_CURRENT_MAKE_FX_TRACER = prev_tracer
def make_fx(
f: Callable,
decomposition_table: Optional[Mapping[OpOverload, Callable]] = None,
tracing_mode: str = "real",
_allow_non_fake_inputs: bool = False,
*,
pre_dispatch: bool = False,
record_module_stack: bool = False,
_allow_fake_constant: bool = False,
_error_on_data_dependent_ops: bool = True,
) -> Callable[..., GraphModule]:
"""
Given a function f, return a new function which when executed with valid
arguments to f, returns an FX GraphModule representing the set of operations that
were executed during the course of execution.
"""
assert tracing_mode in ["real", "fake", "symbolic"]
make_fx_tracer = _MakefxTracer(
decomposition_table,
tracing_mode,
_allow_non_fake_inputs,
pre_dispatch,
record_module_stack,
_allow_fake_constant,
_error_on_data_dependent_ops,
)
@functools.wraps(f)
def wrapped(*args: object) -> GraphModule:
return make_fx_tracer.trace(f, *args)
return wrapped
def get_torch_dispatch_modes() -> List[TorchDispatchMode]:
return torch.utils._python_dispatch._get_current_dispatch_mode_stack()
# TODO: this is a legacy name, there is only ever one proxy mode as it's an
# infra mode
def get_innermost_proxy_mode() -> Optional[ProxyTorchDispatchMode]:
return get_proxy_mode()
def get_proxy_mode() -> Optional[ProxyTorchDispatchMode]:
"""
Current the currently active proxy tracing mode, or None if
we are not currently tracing. This includes pre-dispatch proxy
tracing.
"""
pre_dispatch_mode = torch._ops._get_dispatch_mode_pre_dispatch(
torch._C._TorchDispatchModeKey.PROXY
)
mode = torch._C._get_dispatch_mode(torch._C._TorchDispatchModeKey.PROXY)
assert (
pre_dispatch_mode is None or mode is None
), f"pre_dispatch_mode={pre_dispatch_mode}, mode={mode}"
return pre_dispatch_mode or mode
def handle_sym_dispatch(func: Callable[_P, R], args: _P.args, kwargs: _P.kwargs) -> R:
"""
Call into the currently active proxy tracing mode to do a
SymInt/SymFloat/SymBool dispatch trace on a function that operates on
these arguments.
"""
mode = get_proxy_mode()
assert mode
# Have to do it manually, because we're not doing the normal torch
# dispatch machinery which disables it for us
with disable_proxy_modes_tracing():
# TODO: properly compute types
types: List[Type] = []
return mode.__sym_dispatch__(func, types, args, kwargs) # type: ignore[arg-type, return-value]
@contextmanager
def disable_proxy_modes_tracing() -> Generator[ProxyTorchDispatchMode, None, None]:
return _disable_infra_mode(torch._C._TorchDispatchModeKey.PROXY)
def maybe_handle_decomp(
proxy_mode: ProxyTorchDispatchMode,
op: OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
from torch._inductor.compiler_bisector import CompilerBisector
if op in CURRENT_DECOMPOSITION_TABLE:
if CompilerBisector.disable_subsystem(
"aot_eager_decomp_partition", "decomposition", lambda: repr(op)
):
return NotImplemented
with proxy_mode:
proxy_mode.decomp_layers += 1
out = CURRENT_DECOMPOSITION_TABLE[op](*args, **kwargs)
proxy_mode.decomp_layers -= 1
return out
return NotImplemented
def get_isolated_graphmodule(
func: Callable,
args: Tuple[object, ...],
kwargs: Dict[str, object],
tracing_mode: str = "real",
decomposition_table: Optional[Mapping[OpOverload, Callable]] = None,
) -> GraphModule:
"""A helper function used to get the GraphModule for the given func.
It's expected to be used in the ProxyTensor tracing context.
It detaches the args and kwargs from the current tracer so that the trace of
the current graph module can be created without any side-effects.
"""
wrapped, all_args = wrapper_and_args_for_make_fx(func, args, kwargs)
with disable_proxy_modes_tracing():
gm = make_fx(
wrapped, decomposition_table=decomposition_table, tracing_mode=tracing_mode
)(all_args)
return gm
def _set_unbacked_bindings(out: object, out_proxy: _NestedProxys) -> None:
"""A helper function for setting up unbacked_bindings on the destination FX graph."""
from .symbolic_shapes import compute_unbacked_bindings
# Can't use detect_fake_mode here,
#
# python test/distributed/_tensor/test_dtensor_compile.py -k
# test_tp_compile_fullgraph_is_seq_parallel_False
#
# will fail. Very strange, it probably isn't right for them to be using
# two fake modes there...
fake_mode = torch._C._get_dispatch_mode(torch._C._TorchDispatchModeKey.FAKE)
if fake_mode and fake_mode.shape_env:
if symbol_to_path := compute_unbacked_bindings(fake_mode.shape_env, out):
assert isinstance(out_proxy, Proxy), out_proxy
out_proxy.node.meta["unbacked_bindings"] = symbol_to_path
|