1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
import re
from typing import Any, DefaultDict, Dict, List, Tuple, Union
import numpy as np
import sympy as sp
import torch
square_brackets_pattern = r"\[([^]]+)\]"
parentheses_pattern = r"\((.*?)\)"
s_pattern = r"s\d+"
def infer_symbol_values(
symints: List[Union[torch.SymInt, int]],
init_symints: List[Union[torch.SymInt, int]],
symbol_idx_dict: Dict[str, int],
padding_constraints: DefaultDict[torch.SymInt, List[Union[sp.Expr, int]]],
constraint: str,
) -> None:
if constraint.find("non-singleton") != -1:
left_expression, right_expression = re.findall(parentheses_pattern, constraint)
calculate_value(left_expression, right_expression, symints, symbol_idx_dict)
elif constraint.find("first two dimensions of batch2 tensor to be") != -1:
matches = re.findall(square_brackets_pattern, constraint)
left_expression, right_expression = (
matches[i].split(",")[1].strip() for i in (0, 1)
)
calculate_value(left_expression, right_expression, symints, symbol_idx_dict)
elif constraint.find("a and b must have same reduction dim") != -1:
matches = re.findall(square_brackets_pattern, constraint)
left_expression = matches[0].split(",")[1].strip()
right_expression = matches[1].split(",")[0].strip()
calculate_value(left_expression, right_expression, symints, symbol_idx_dict)
elif constraint.find("Split sizes add up to") != -1:
match_1 = re.search(r"to\s+(.*?)\s+but", constraint)
extracted_value_1 = match_1.group(1) if match_1 else None
match_2 = re.search(r"of\s+(.*?)$", constraint)
extracted_value_2 = match_2.group(1) if match_2 else None
calculate_value(extracted_value_1, extracted_value_2, symints, symbol_idx_dict)
elif constraint.find("is invalid for input of size") != -1:
matches = re.findall(square_brackets_pattern, constraint)
left_elements = matches[0].split(",")
left_equation = sp.sympify(1)
left_num = 1
right_equation = sp.sympify(constraint.split("size")[1].strip())
for left_element in left_elements:
if sp.sympify(left_element) == sp.sympify("-1"):
continue
elif sp.sympify(left_element).is_number:
left_num *= int(left_element)
else:
left_equation *= sp.sympify(left_element)
right_equation = sp.cancel(right_equation / left_equation)
right_vars = list(right_equation.free_symbols)
for right_var in right_vars:
if sp.sympify(right_var) == sp.sympify("s0"):
right_equation = sp.cancel(right_equation / right_var)
right_vars.remove(right_var)
var = right_vars[0]
idx = symbol_idx_dict[str(var)]
if var not in padding_constraints:
padding_constraints[var].append(right_equation)
update_equation(
symints,
init_symints,
padding_constraints,
padding_constraints[var][0], # type: ignore[arg-type]
left_num,
var,
idx,
)
def calculate_value(
left_expression: Union[str, Any, None],
right_expression: Union[str, Any, None],
symints: List[Union[torch.SymInt, int]],
symbol_idx_dict: Dict[str, int],
) -> None:
var, val = solve_equation(left_expression, right_expression)
idx = symbol_idx_dict[var]
pre_equation = sp.sympify(f"{symints[idx]}")
symints[idx] = pre_equation.subs(sp.sympify(var), val)
def solve_equation(
left_expression: Union[str, Any, None],
right_expression: Union[str, Any, None],
) -> Tuple[str, int]:
expression = f"{left_expression} - {right_expression}"
var = re.findall(s_pattern, expression)[0]
if re.findall(parentheses_pattern, expression):
sub_expression = re.findall(parentheses_pattern, expression)[0]
var, coeff = sub_expression.split("//")
x = sp.symbols("x")
sub_equation = sp.sympify(f"{var} - {coeff} * {x}")
modified_equation = (
sp.sympify(x) + sp.sympify(expression) - sp.sympify(sub_expression)
)
solution = sp.solve((modified_equation, sub_equation), (x, var))
return (var, int(solution[sp.sympify(var)]))
else:
solution = sp.solve(expression, var)
val = int(solution[0])
return (var, val)
def update_equation(
symints: List[Union[torch.SymInt, int]],
init_symints: List[Union[torch.SymInt, int]],
padding_constraints: DefaultDict[torch.SymInt, List[Union[sp.Expr, int]]],
init_eq: sp.Expr,
new_mod_num: int,
var: torch.SymInt,
idx: int,
) -> None:
padding_constraints[var].append(new_mod_num)
mod_num = np.lcm.reduce(padding_constraints[var][1:]) # type: ignore[arg-type]
eq = mod_num * init_symints[idx]
eq_const = [arg for arg in init_eq.args if arg.is_number]
if eq_const:
rem = int(eq_const[0] % mod_num)
eq -= rem
symints[idx] = eq
|