File: graph_drawer.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (489 lines) | stat: -rw-r--r-- 18,736 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# mypy: allow-untyped-defs

import hashlib
from itertools import chain
from typing import Any, Dict, Optional, TYPE_CHECKING

import torch
import torch.fx
from torch.fx._compatibility import compatibility
from torch.fx.graph import _parse_stack_trace
from torch.fx.node import _format_arg, _get_qualified_name
from torch.fx.operator_schemas import normalize_function
from torch.fx.passes.shape_prop import TensorMetadata


try:
    import pydot

    HAS_PYDOT = True
except ModuleNotFoundError:
    HAS_PYDOT = False
    pydot = None


__all__ = ["FxGraphDrawer"]

_COLOR_MAP = {
    "placeholder": '"AliceBlue"',
    "call_module": "LemonChiffon1",
    "get_param": "Yellow2",
    "get_attr": "LightGrey",
    "output": "PowderBlue",
}

_HASH_COLOR_MAP = [
    "CadetBlue1",
    "Coral",
    "DarkOliveGreen1",
    "DarkSeaGreen1",
    "GhostWhite",
    "Khaki1",
    "LavenderBlush1",
    "LightSkyBlue",
    "MistyRose1",
    "MistyRose2",
    "PaleTurquoise2",
    "PeachPuff1",
    "Salmon",
    "Thistle1",
    "Thistle3",
    "Wheat1",
]

_WEIGHT_TEMPLATE = {
    "fillcolor": "Salmon",
    "style": '"filled,rounded"',
    "fontcolor": "#000000",
}

if HAS_PYDOT:

    @compatibility(is_backward_compatible=False)
    class FxGraphDrawer:
        """
        Visualize a torch.fx.Graph with graphviz
        Basic usage:
            g = FxGraphDrawer(symbolic_traced, "resnet18")
            g.get_dot_graph().write_svg("a.svg")
        """

        def __init__(
            self,
            graph_module: torch.fx.GraphModule,
            name: str,
            ignore_getattr: bool = False,
            ignore_parameters_and_buffers: bool = False,
            skip_node_names_in_args: bool = True,
            parse_stack_trace: bool = False,
            dot_graph_shape: Optional[str] = None,
            normalize_args: bool = False,
        ):
            self._name = name
            self.dot_graph_shape = (
                dot_graph_shape if dot_graph_shape is not None else "record"
            )
            self.normalize_args = normalize_args
            _WEIGHT_TEMPLATE["shape"] = self.dot_graph_shape

            self._dot_graphs = {
                name: self._to_dot(
                    graph_module,
                    name,
                    ignore_getattr,
                    ignore_parameters_and_buffers,
                    skip_node_names_in_args,
                    parse_stack_trace,
                )
            }

            for node in graph_module.graph.nodes:
                if node.op != "call_module":
                    continue

                leaf_node = self._get_leaf_node(graph_module, node)

                if not isinstance(leaf_node, torch.fx.GraphModule):
                    continue

                self._dot_graphs[f"{name}_{node.target}"] = self._to_dot(
                    leaf_node,
                    f"{name}_{node.target}",
                    ignore_getattr,
                    ignore_parameters_and_buffers,
                    skip_node_names_in_args,
                    parse_stack_trace,
                )

        def get_dot_graph(self, submod_name=None) -> pydot.Dot:
            """
            Visualize a torch.fx.Graph with graphviz
            Example:
                >>> # xdoctest: +REQUIRES(module:pydot)
                >>> # xdoctest: +REQUIRES(module:ubelt)
                >>> # define module
                >>> class MyModule(torch.nn.Module):
                >>>     def __init__(self) -> None:
                >>>         super().__init__()
                >>>         self.linear = torch.nn.Linear(4, 5)
                >>>     def forward(self, x):
                >>>         return self.linear(x).clamp(min=0.0, max=1.0)
                >>> module = MyModule()
                >>> # trace the module
                >>> symbolic_traced = torch.fx.symbolic_trace(module)
                >>> # setup output file
                >>> import ubelt as ub
                >>> dpath = ub.Path.appdir("torch/tests/FxGraphDrawer").ensuredir()
                >>> fpath = dpath / "linear.svg"
                >>> # draw the graph
                >>> g = FxGraphDrawer(symbolic_traced, "linear")
                >>> g.get_dot_graph().write_svg(fpath)
            """
            if submod_name is None:
                return self.get_main_dot_graph()
            else:
                return self.get_submod_dot_graph(submod_name)

        def get_main_dot_graph(self) -> pydot.Dot:
            return self._dot_graphs[self._name]

        def get_submod_dot_graph(self, submod_name) -> pydot.Dot:
            return self._dot_graphs[f"{self._name}_{submod_name}"]

        def get_all_dot_graphs(self) -> Dict[str, pydot.Dot]:
            return self._dot_graphs

        def _get_node_style(self, node: torch.fx.Node) -> Dict[str, str]:
            template = {
                "shape": self.dot_graph_shape,
                "fillcolor": "#CAFFE3",
                "style": '"filled,rounded"',
                "fontcolor": "#000000",
            }
            if node.op in _COLOR_MAP:
                template["fillcolor"] = _COLOR_MAP[node.op]
            else:
                # Use a random color for each node; based on its name so it's stable.
                target_name = node._pretty_print_target(node.target)
                target_hash = int(hashlib.md5(target_name.encode()).hexdigest()[:8], 16)
                template["fillcolor"] = _HASH_COLOR_MAP[
                    target_hash % len(_HASH_COLOR_MAP)
                ]
            return template

        def _get_leaf_node(
            self, module: torch.nn.Module, node: torch.fx.Node
        ) -> torch.nn.Module:
            py_obj = module
            assert isinstance(node.target, str)
            atoms = node.target.split(".")
            for atom in atoms:
                if not hasattr(py_obj, atom):
                    raise RuntimeError(
                        str(py_obj) + " does not have attribute " + atom + "!"
                    )
                py_obj = getattr(py_obj, atom)
            return py_obj

        def _typename(self, target: Any) -> str:
            if isinstance(target, torch.nn.Module):
                ret = torch.typename(target)
            elif isinstance(target, str):
                ret = target
            else:
                ret = _get_qualified_name(target)

            # Escape "{" and "}" to prevent dot files like:
            # https://gist.github.com/SungMinCho/1a017aab662c75d805c5954d62c5aabc
            # which triggers `Error: bad label format (...)` from dot
            return ret.replace("{", r"\{").replace("}", r"\}")

        # shorten path to avoid drawing long boxes
        # for full path = '/home/weif/pytorch/test.py'
        # return short path = 'pytorch/test.py'
        def _shorten_file_name(
            self,
            full_file_name: str,
            truncate_to_last_n: int = 2,
        ):
            splits = full_file_name.split("/")
            if len(splits) >= truncate_to_last_n:
                return "/".join(splits[-truncate_to_last_n:])
            return full_file_name

        def _get_node_label(
            self,
            module: torch.fx.GraphModule,
            node: torch.fx.Node,
            skip_node_names_in_args: bool,
            parse_stack_trace: bool,
        ) -> str:
            def _get_str_for_args_kwargs(arg):
                if isinstance(arg, tuple):
                    prefix, suffix = r"|args=(\l", r",\n)\l"
                    arg_strs_list = [_format_arg(a, max_list_len=8) for a in arg]
                elif isinstance(arg, dict):
                    prefix, suffix = r"|kwargs={\l", r",\n}\l"
                    arg_strs_list = [
                        f"{k}: {_format_arg(v, max_list_len=8)}" for k, v in arg.items()
                    ]
                else:  # Fall back to nothing in unexpected case.
                    return ""

                # Strip out node names if requested.
                if skip_node_names_in_args:
                    arg_strs_list = [a for a in arg_strs_list if "%" not in a]
                if len(arg_strs_list) == 0:
                    return ""
                arg_strs = prefix + r",\n".join(arg_strs_list) + suffix
                if len(arg_strs_list) == 1:
                    arg_strs = arg_strs.replace(r"\l", "").replace(r"\n", "")
                return arg_strs.replace("{", r"\{").replace("}", r"\}")

            label = "{" + f"name=%{node.name}|op_code={node.op}\n"

            if node.op == "call_module":
                leaf_module = self._get_leaf_node(module, node)
                label += r"\n" + self._typename(leaf_module) + r"\n|"
                extra = ""
                if hasattr(leaf_module, "__constants__"):
                    extra = r"\n".join(
                        [
                            f"{c}: {getattr(leaf_module, c)}"
                            for c in leaf_module.__constants__  # type: ignore[union-attr]
                        ]  # type: ignore[union-attr]
                    )
                label += extra + r"\n"
            else:
                label += f"|target={self._typename(node.target)}" + r"\n"
                if self.normalize_args:
                    try:
                        args, kwargs = normalize_function(  # type: ignore[misc]
                            node.target,  # type: ignore[arg-type]
                            node.args,  # type: ignore[arg-type]
                            node.kwargs,
                            normalize_to_only_use_kwargs=True,
                        )
                    except Exception:
                        # Fallback to not normalizing if there's an exception.
                        # Some functions need overloads specified to normalize.
                        args, kwargs = node.args, node.kwargs
                else:
                    args, kwargs = node.args, node.kwargs
                if len(args) > 0:
                    label += _get_str_for_args_kwargs(args)
                if len(kwargs) > 0:
                    label += _get_str_for_args_kwargs(kwargs)
                label += f"|num_users={len(node.users)}" + r"\n"

            tensor_meta = node.meta.get("tensor_meta")
            label += self._tensor_meta_to_label(tensor_meta)

            # for original fx graph
            # print buf=buf0, n_origin=6
            buf_meta = node.meta.get("buf_meta", None)
            if buf_meta is not None:
                label += f"|buf={buf_meta.name}" + r"\n"
                label += f"|n_origin={buf_meta.n_origin}" + r"\n"

            # for original fx graph
            # print file:lineno code
            if parse_stack_trace and node.stack_trace is not None:
                parsed_stack_trace = _parse_stack_trace(node.stack_trace)
                fname = self._shorten_file_name(parsed_stack_trace.file)
                label += (
                    f"|file={fname}:{parsed_stack_trace.lineno} {parsed_stack_trace.code}"
                    + r"\n"
                )

            return label + "}"

        def _tensor_meta_to_label(self, tm) -> str:
            if tm is None:
                return ""
            elif isinstance(tm, TensorMetadata):
                return self._stringify_tensor_meta(tm)
            elif isinstance(tm, list):
                result = ""
                for item in tm:
                    result += self._tensor_meta_to_label(item)
                return result
            elif isinstance(tm, dict):
                result = ""
                for v in tm.values():
                    result += self._tensor_meta_to_label(v)
                return result
            elif isinstance(tm, tuple):
                result = ""
                for item in tm:
                    result += self._tensor_meta_to_label(item)
                return result
            else:
                raise RuntimeError(f"Unsupported tensor meta type {type(tm)}")

        def _stringify_tensor_meta(self, tm: TensorMetadata) -> str:
            result = ""
            if not hasattr(tm, "dtype"):
                print("tm", tm)
            result += "|" + "dtype" + "=" + str(tm.dtype) + r"\n"
            result += "|" + "shape" + "=" + str(tuple(tm.shape)) + r"\n"
            result += "|" + "requires_grad" + "=" + str(tm.requires_grad) + r"\n"
            result += "|" + "stride" + "=" + str(tm.stride) + r"\n"
            if tm.is_quantized:
                assert tm.qparams is not None
                assert "qscheme" in tm.qparams
                qscheme = tm.qparams["qscheme"]
                if qscheme in {
                    torch.per_tensor_affine,
                    torch.per_tensor_symmetric,
                }:
                    result += "|" + "q_scale" + "=" + str(tm.qparams["scale"]) + r"\n"
                    result += (
                        "|"
                        + "q_zero_point"
                        + "="
                        + str(tm.qparams["zero_point"])
                        + r"\n"
                    )
                elif qscheme in {
                    torch.per_channel_affine,
                    torch.per_channel_symmetric,
                    torch.per_channel_affine_float_qparams,
                }:
                    result += (
                        "|"
                        + "q_per_channel_scale"
                        + "="
                        + str(tm.qparams["scale"])
                        + r"\n"
                    )
                    result += (
                        "|"
                        + "q_per_channel_zero_point"
                        + "="
                        + str(tm.qparams["zero_point"])
                        + r"\n"
                    )
                    result += (
                        "|"
                        + "q_per_channel_axis"
                        + "="
                        + str(tm.qparams["axis"])
                        + r"\n"
                    )
                else:
                    raise RuntimeError(f"Unsupported qscheme: {qscheme}")
                result += "|" + "qscheme" + "=" + str(tm.qparams["qscheme"]) + r"\n"
            return result

        def _get_tensor_label(self, t: torch.Tensor) -> str:
            return str(t.dtype) + str(list(t.shape)) + r"\n"

        # when parse_stack_trace=True
        # print file:lineno code
        def _to_dot(
            self,
            graph_module: torch.fx.GraphModule,
            name: str,
            ignore_getattr: bool,
            ignore_parameters_and_buffers: bool,
            skip_node_names_in_args: bool,
            parse_stack_trace: bool,
        ) -> pydot.Dot:
            """
            Actual interface to visualize a fx.Graph. Note that it takes in the GraphModule instead of the Graph.
            If ignore_parameters_and_buffers is True, the parameters and buffers
            created with the module will not be added as nodes and edges.
            """

            # "TB" means top-to-bottom rank direction in layout
            dot_graph = pydot.Dot(name, rankdir="TB")

            buf_name_to_subgraph = {}

            for node in graph_module.graph.nodes:
                if ignore_getattr and node.op == "get_attr":
                    continue

                style = self._get_node_style(node)
                dot_node = pydot.Node(
                    node.name,
                    label=self._get_node_label(
                        graph_module, node, skip_node_names_in_args, parse_stack_trace
                    ),
                    **style,
                )

                current_graph = dot_graph

                buf_meta = node.meta.get("buf_meta", None)
                if buf_meta is not None and buf_meta.n_origin > 1:
                    buf_name = buf_meta.name
                    if buf_name not in buf_name_to_subgraph:
                        buf_name_to_subgraph[buf_name] = pydot.Cluster(
                            buf_name, label=buf_name
                        )
                    current_graph = buf_name_to_subgraph.get(buf_name)

                current_graph.add_node(dot_node)

                def get_module_params_or_buffers():
                    for pname, ptensor in chain(
                        leaf_module.named_parameters(), leaf_module.named_buffers()
                    ):
                        pname1 = node.name + "." + pname
                        label1 = (
                            pname1 + "|op_code=get_" + "parameter"
                            if isinstance(ptensor, torch.nn.Parameter)
                            else "buffer" + r"\l"
                        )
                        dot_w_node = pydot.Node(
                            pname1,
                            label="{" + label1 + self._get_tensor_label(ptensor) + "}",
                            **_WEIGHT_TEMPLATE,
                        )
                        dot_graph.add_node(dot_w_node)
                        dot_graph.add_edge(pydot.Edge(pname1, node.name))

                if node.op == "call_module":
                    leaf_module = self._get_leaf_node(graph_module, node)

                    if not ignore_parameters_and_buffers and not isinstance(
                        leaf_module, torch.fx.GraphModule
                    ):
                        get_module_params_or_buffers()

            for subgraph in buf_name_to_subgraph.values():
                subgraph.set("color", "royalblue")
                subgraph.set("penwidth", "2")
                dot_graph.add_subgraph(subgraph)

            for node in graph_module.graph.nodes:
                if ignore_getattr and node.op == "get_attr":
                    continue

                for user in node.users:
                    dot_graph.add_edge(pydot.Edge(node.name, user.name))

            return dot_graph

else:
    if not TYPE_CHECKING:

        @compatibility(is_backward_compatible=False)
        class FxGraphDrawer:
            def __init__(
                self,
                graph_module: torch.fx.GraphModule,
                name: str,
                ignore_getattr: bool = False,
                ignore_parameters_and_buffers: bool = False,
                skip_node_names_in_args: bool = True,
                parse_stack_trace: bool = False,
                dot_graph_shape: Optional[str] = None,
                normalize_args: bool = False,
            ):
                raise RuntimeError(
                    "FXGraphDrawer requires the pydot package to be installed. Please install "
                    "pydot through your favorite Python package manager."
                )