File: __init__.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (38 lines) | stat: -rw-r--r-- 1,286 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from torch._C._monitor import *  # noqa: F403
from typing import TYPE_CHECKING

from torch._C._monitor import _WaitCounter  # type: ignore[attr-defined]

if TYPE_CHECKING:
    from torch.utils.tensorboard import SummaryWriter


STAT_EVENT = "torch.monitor.Stat"


class TensorboardEventHandler:
    """
    TensorboardEventHandler is an event handler that will write known events to
    the provided SummaryWriter.

    This currently only supports ``torch.monitor.Stat`` events which are logged
    as scalars.

    Example:
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_MONITOR)
        >>> # xdoctest: +REQUIRES(module:tensorboard)
        >>> from torch.utils.tensorboard import SummaryWriter
        >>> from torch.monitor import TensorboardEventHandler, register_event_handler
        >>> writer = SummaryWriter("log_dir")
        >>> register_event_handler(TensorboardEventHandler(writer))
    """
    def __init__(self, writer: "SummaryWriter") -> None:
        """
        Constructs the ``TensorboardEventHandler``.
        """
        self._writer = writer

    def __call__(self, event: Event) -> None:
        if event.name == STAT_EVENT:
            for k, v in event.data.items():
                self._writer.add_scalar(k, v, walltime=event.timestamp.timestamp())