1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
|
# mypy: allow-untyped-defs
import functools
import math
import operator
from typing import * # noqa: F403
from typing import List, Optional
import torch
import torch.nn.functional as F
from torch.fx.operator_schemas import normalize_function
from torch.nested._internal.sdpa import jagged_scaled_dot_product_attention
from .nested_tensor import NestedTensor
__all__: List[Any] = []
JAGGED_OPS_TABLE: Dict[Any, Any] = {}
def _outer_to_inner_dim(ndim, dim, ragged_dim, canonicalize=False):
from torch._prims_common import canonicalize_dims
if isinstance(dim, (tuple, list)):
output = type(dim)(_outer_to_inner_dim(ndim, d, ragged_dim) for d in dim)
# ensure no duplicates, which can result from both batch and ragged mapping to 0
return type(output)(dict.fromkeys(output))
if canonicalize:
dim = canonicalize_dims(ndim, dim)
assert dim >= 0 and dim < ndim
# Map dim=0 (AKA batch dim) -> packed dim i.e. outer ragged dim - 1.
# For other dims, subtract 1 to convert to inner space.
return ragged_dim - 1 if dim == 0 else dim - 1
def _wrap_jagged_dim(
ndim,
dim,
ragged_dim,
op_name,
convert_to_inner_dim=True,
allow_ragged_dim=False,
allow_batch_dim=False,
):
from torch._prims_common import canonicalize_dims
wrapped = canonicalize_dims(ndim, dim)
if wrapped == ragged_dim and not allow_ragged_dim:
raise RuntimeError(f"{op_name}(): not supported for NestedTensor on ragged dim")
elif wrapped == 0 and not allow_batch_dim:
raise RuntimeError(f"{op_name}(): not supported for NestedTensor on dim=0")
ret = (
_outer_to_inner_dim(ndim, wrapped, ragged_dim)
if convert_to_inner_dim
else wrapped
)
if allow_batch_dim:
# Need to disambiguate whether we're operating on the batch dim or not.
# Operating on dim=1 -> dim=0 after the inner dim conversion.
operating_on_batch = wrapped == 0
return (ret, operating_on_batch)
return ret
def _wrap_jagged_dims(ndim, dims, op_name, ragged_idx=1):
"""
For NestedTensor operators,
wraps dimensions to non-negative values,
and returns metadata related to reduction dimension(s).
"""
from torch._prims_common import canonicalize_dims
assert isinstance(
dims, (tuple, list)
), f"_wrap_jagged_dims(): cannot iterate over dimensions of type {type(dims)}"
wrapped_dims = [
canonicalize_dims(ndim, d) for d in dims
] # convert all indices to non-negative values
operate_on_batch = 0 in wrapped_dims
operate_on_ragged = ragged_idx in wrapped_dims
operate_on_non_batch = any(d != 0 and d != ragged_idx for d in wrapped_dims)
# ensure no duplicates, which can result from both batch and ragged mapping to 0
outer_to_inner_dim = tuple(
dict.fromkeys(_outer_to_inner_dim(ndim, d, ragged_idx) for d in wrapped_dims)
)
return outer_to_inner_dim, operate_on_batch, operate_on_ragged, operate_on_non_batch
def check_schema(schema_str: str, func, *args, **kwargs) -> None:
named_arg_types = schema_str.split(", ")
num_optional_args = [x.endswith("?") for x in named_arg_types].count(True)
min_args = len(named_arg_types) - num_optional_args
# special case: ellipses allows for any number of unchecked args at the end
if named_arg_types[-1] == "...":
named_arg_types = named_arg_types[:-1]
else:
if not (len(args) >= min_args and len(args) <= len(named_arg_types)):
raise ValueError(
f"NestedTensor {func.__name__}({schema_str}): expected at least {min_args} "
f"arguments and at most {len(named_arg_types)} arguments, but got: "
f"{len(args)} arguments"
)
arg_type_check_fns = {
"t": lambda x: isinstance(x, torch.Tensor) and not isinstance(x, NestedTensor),
"jt": lambda x: isinstance(x, NestedTensor)
and x._lengths is None
and x._ragged_idx == 1, # ops with "jt" require contiguous JT only
"jt_all": lambda x: isinstance(
x, NestedTensor
), # ops with "jt_all" can accept all kinds of JT
"any": lambda x: True,
}
for i, named_arg_type in enumerate(named_arg_types):
name, arg_type = named_arg_type.split(": ")
is_optional = arg_type.endswith("?")
normalized_arg_type = arg_type[:-1] if is_optional else arg_type
if normalized_arg_type not in arg_type_check_fns.keys():
raise AssertionError(f"Unknown arg type: {normalized_arg_type}")
if i >= len(args):
if not is_optional:
raise ValueError(
f"NestedTensor {func.__name__}({schema_str}) "
f"missing required argument: {name}"
)
continue
_check_fn = arg_type_check_fns[normalized_arg_type]
def check_fn(x, is_optional=is_optional):
if is_optional:
return x is None or _check_fn(x)
else:
return _check_fn(x)
if not check_fn(args[i]):
type_to_desc = {
"t": "tensor",
"t?": "optional tensor",
"jt": "contiguous jagged layout NestedTensor",
"jt_all": "jagged layout NestedTensor",
"any": "<any type>",
}
raise ValueError(
f"NestedTensor {func.__name__}({schema_str}): expected {name} to be a "
f"{type_to_desc[arg_type]}"
)
def check_ragged_dim_same(
func, a: NestedTensor, a_name: str, b: NestedTensor, b_name: str
) -> None:
# Calling into .shape here
if a._size[a._ragged_idx] != b._size[b._ragged_idx]:
raise RuntimeError(
f"NestedTensor {func.__name__}: expected {a_name} and {b_name} to have the "
"same exact offsets tensor."
)
# returns True if the raggedness-relevant portions of the NT shape
# match those of the specified size
def raggedness_matches(nt, size):
end = nt._ragged_idx + 1
nt_ragged = nt._size[:end]
size_ragged = size[:end]
return len(nt_ragged) == len(size_ragged) and (
all(ns == s or s == -1 for ns, s in zip(nt_ragged, size_ragged))
)
def squeeze_leading_ones(t):
# Note: [ Squeezing leading ones ]
#
# Squeeze leading ones from t.
#
# We want:
# (B, j0, ?, ?) + (1, 1, ?, ?) -> (B, j0, ?, ?)
# (B, j0, ?, ?) + (1, 1, 1, ?, ?) -> (1, B, j0, ?, ?) (not yet supported)
#
# 1) Squeeze extra ones and grab values from NT
# (1, 1, ?, ?) -> (?, ?) and (sum(*), ?, ?) -> (B, j0, ?, ?)
# 2) Do dense broadcasting:
# (sum(*), ?, ?) + (?, ?) -> (sum(*), ?, ?)
# 3) Construct nested tensor
# (sum(*), ?, ?) -> (B, j0, ?, ?)
#
# If unsqueezing on the 0th dim becomes supported, we would unsqueeze
# at step (4) and we would need to update this function to record how
# many ones we unsqueezed.
while t.dim() > 0 and t.shape[0] == 1:
t = t.squeeze(0)
return t
def register_func(tables, aten_ops, schema_str):
if not isinstance(aten_ops, list):
aten_ops = [aten_ops]
if not isinstance(tables, list):
tables = [tables]
def wrapper(func):
for aten_op in aten_ops:
def get_inner(aten_op):
def inner(*args, **kwargs):
check_schema(schema_str, func, *args, **kwargs)
return func(aten_op, *args, **kwargs)
return inner
for table in tables:
table[aten_op] = get_inner(aten_op)
return func
return wrapper
register_jagged_func = functools.partial(register_func, JAGGED_OPS_TABLE)
def lookup_jagged(func, *args, **kwargs) -> Optional[Callable]:
dispatch_func = JAGGED_OPS_TABLE.get(func, None)
if dispatch_func is not None:
return dispatch_func
# Handle pointwise fallbacks
if torch.Tag.pointwise in func.tags:
from torch.fx.experimental.symbolic_shapes import is_nested_int
# No pointwise ops legitimately accept nested int inputs. Without this check,
# they will be incorrectly interpreted as tensors.
# See https://github.com/pytorch/pytorch/issues/138496
for arg in args:
if is_nested_int(arg):
raise RuntimeError(
f"NestedTensor {func.__name__}: invalid argument {arg}"
)
# Assume there aren't additional tensors that aren't the "unary/binary" args
num_tensor_args = sum(isinstance(x, torch.Tensor) for x in args)
if num_tensor_args == 1:
# Build up the check schema string. The first tensor arg is assumed to be
# an NJT and other args are sent through as-is.
schema_parts = []
for arg in func._schema.arguments:
if isinstance(arg.type, torch.TensorType):
schema_parts.append(f"{arg.name}: jt_all")
break
else:
schema_parts.append(f"{arg.name}: any")
schema_parts.append("...")
check_schema_str = ", ".join(schema_parts)
check_schema(check_schema_str, func, *args, **kwargs)
return functools.partial(jagged_unary_pointwise, func)
elif num_tensor_args == 2:
check_schema("lhs: any, rhs: any, ...", func, *args, **kwargs)
return functools.partial(jagged_binary_pointwise, func)
return None
def extract_kwargs(arg):
kwargs = {
"offsets": arg.offsets(),
"lengths": arg.lengths(),
"_metadata_cache": arg._metadata_cache,
"_ragged_idx": arg._ragged_idx,
}
return kwargs
def jagged_unary_pointwise(func, *args, **kwargs):
# assume if we get here that there is a single NJT input in the args
njt = next(arg for arg in args if isinstance(arg, NestedTensor))
return NestedTensor(
func(*(arg._values if arg is njt else arg for arg in args), **kwargs),
**extract_kwargs(njt),
)
def jagged_binary_pointwise(func, *args, **kwargs):
a, b = args[0], args[1]
assert isinstance(a, NestedTensor) or isinstance(b, NestedTensor)
mismatch_error_msg = (
"cannot call binary pointwise function {} with inputs of shapes {} and {}"
)
# a is NT, b is NT
if isinstance(a, NestedTensor) and isinstance(b, NestedTensor):
# ex: (B, j0, D) + (B, j0, D)
# ex: (B, j0, D) + (B, j0, 1)
if raggedness_matches(a, b._size):
return NestedTensor(
func(a._values, b._values, *args[2:], **kwargs), **extract_kwargs(a)
)
raise RuntimeError(mismatch_error_msg.format(func.__name__, a._size, b._size))
# either a is NT or b is NT at this point
a_is_nt = isinstance(a, NestedTensor)
extracted_kwargs = extract_kwargs(a) if a_is_nt else extract_kwargs(b)
# === Handle broadcasting across the batch / ragged dims ===
# Easy case: take advantage of pre-existing broadcasting logic
# ex: (B, j0, ?, ?) + (?) -> (B, j0, ?, ?)
# ex: (B, j0, ?, ?) + (?, ?) -> (B, j0, ?, ?)
# ex: (B, j0, ?, ?) + (1, 1, ?, ?) -> (B, j0, ?, ?)
nt, t = (a, b) if a_is_nt else (b, a)
# See Note: [ Squeezing leading ones ]
if t.dim() > nt.dim():
raise NotImplementedError("NYI: broadcasting NT with T with larger dim")
t_squeezed = squeeze_leading_ones(t)
if nt.dim() >= t_squeezed.dim() + 2:
lhs, rhs = (nt._values, t_squeezed) if a_is_nt else (t_squeezed, nt._values)
return NestedTensor(func(lhs, rhs, *args[2:], **kwargs), **extracted_kwargs)
# Harder case: do manual broadcasting when NT dim == non-NT dim
# ex: (B, j0, D_0, D_1) + (B, 1, D_0, D_1) -> (B, j0, D_0, D_1)
if a.dim() == b.dim():
# ex: (B, j0, D_0, D_1) + (1, 1, D_0, D_1) -> should
# be (B, j0, D_0, D_1) but not yet supported
if a.shape[0] != b.shape[0]:
raise RuntimeError(
mismatch_error_msg.format(func.__name__, a.shape, b.shape)
)
from .nested_tensor import nested_from_padded
# handle broadcasting via padded dense -> jagged conversion
min_seqlen = nt._maybe_min_seqlen
max_seqlen = nt._maybe_max_seqlen
padded_max_S = max_seqlen
total_L = nt._values.shape[nt._ragged_idx - 1]
if padded_max_S is None:
# use upper bound on max seqlen if it's not present
padded_max_S = total_L
# convert dense tensor -> jagged
t = t.expand(
[x if i != nt._ragged_idx else padded_max_S for i, x in enumerate(t.shape)]
)
t_as_nt = nested_from_padded(
t,
offsets=nt._offsets,
ragged_idx=nt._ragged_idx,
sum_S=total_L,
min_seqlen=min_seqlen,
max_seqlen=max_seqlen,
)
# function call with two NJTs
lhs, rhs = (nt, t_as_nt) if a_is_nt else (t_as_nt, nt)
return func(lhs, rhs, *args[2:], **kwargs)
# ex: (B, j0, D_0, D_1) + (A, B, 1, D_0, D_1) -> error because this breaks the invariant
# that ragged dim is wrt left-most batch dim
raise RuntimeError(mismatch_error_msg.format(func.__name__, a.shape, b.shape))
def jagged_torch_function(func, *args, **kwargs):
# SDPA has special kernels that handle nested tensors.
# Dispatch to the correct implementation here
if func is torch._C._nn.scaled_dot_product_attention:
return jagged_scaled_dot_product_attention(*args, **kwargs)
if func.__name__ == "apply_":
func(args[0]._values, *args[1:], **kwargs)
return args[0]
# Handle flatten() here because it's CompositeImplicit.
if func.__name__ == "flatten":
def _flatten_sig(input, start_dim=0, end_dim=-1):
pass
_, new_kwargs = normalize_function( # type: ignore[misc]
_flatten_sig, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
# NB: stay in outer dim space because we're going to redispatch on a NT input
start_dim = _wrap_jagged_dim(
inp.dim(),
new_kwargs["start_dim"],
inp._ragged_idx,
"flatten",
convert_to_inner_dim=False,
)
end_dim = _wrap_jagged_dim(
inp.dim(),
new_kwargs["end_dim"],
inp._ragged_idx,
"flatten",
convert_to_inner_dim=False,
)
if start_dim == end_dim:
return inp
product = functools.reduce(operator.mul, inp.shape[start_dim : end_dim + 1])
new_shape = (*inp.shape[:start_dim], product, *inp.shape[end_dim + 1 :])
return inp.reshape(*new_shape)
# Handle nested-specific input validation for CompositeImplicit rms_norm
if func.__name__ == "rms_norm":
def _rms_norm_sig(input, normalized_shape, weight=None, eps=None):
pass
_, new_kwargs = normalize_function( # type: ignore[misc]
_rms_norm_sig, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
normalized_shape = new_kwargs.pop("normalized_shape")
# can't normalize over the ragged dim (yet)
max_normalizable = inp.dim() - inp._ragged_idx - 1
if len(normalized_shape) > max_normalizable:
raise ValueError(
"rms_norm(): Normalization over the ragged dim not supported for nested tensors"
)
with torch._C.DisableTorchFunctionSubclass():
return func(*args, **kwargs)
raise NotImplementedError(func)
@register_jagged_func(
[
torch.ops.aten.is_non_overlapping_and_dense.default,
torch.ops.aten.sym_size.default,
torch.ops.aten.dim.default,
torch.ops.aten.numel.default,
torch.ops.aten.sym_numel.default,
torch.ops.aten.sym_stride.default,
torch.ops.aten.sym_storage_offset.default,
],
"self: jt_all",
)
def tensor_attr_supported_getter(func, *args, **kwargs):
if func == torch.ops.aten.is_non_overlapping_and_dense.default:
return False
if func == torch.ops.aten.sym_size.default:
return args[0]._size
if func == torch.ops.aten.dim.default:
return len(args[0]._size)
if func in (torch.ops.aten.sym_numel.default, torch.ops.aten.numel.default):
if args[0]._lengths is not None:
return int(sum(args[0]._lengths) * math.prod(args[0]._size[2:]))
return args[0]._values.numel()
if func == torch.ops.aten.sym_stride.default:
return args[0]._strides
if func == torch.ops.aten.sym_storage_offset.default:
return args[0]._values.storage_offset()
@register_jagged_func(torch.ops.prim.layout.default, "self: jt_all")
def prim_layout_default(func, *args, **kwargs):
return torch.jagged
@register_jagged_func(
[torch.ops.aten.size.default],
"self: jt_all",
)
def tensor_attr_unsupported_getter(func, *args, **kwargs):
if func == torch.ops.aten.size.default:
raise RuntimeError(
"NestedTensor does not support directly calling torch.ops.aten.size; "
"please use `nested_tensor.size()` instead."
)
@register_jagged_func(torch.ops.aten.is_contiguous.default, "self: jt_all")
def is_contiguous_general(func, *args, **kwargs):
from torch._prims_common import is_contiguous_for_memory_format
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
# If created from narrow() check for lengths
if inp.lengths() is not None:
return False
new_kwargs["memory_format"] = new_kwargs.get(
"memory_format", torch.contiguous_format
)
if new_kwargs["memory_format"] == torch.preserve_format:
return True
return is_contiguous_for_memory_format(inp._values, **new_kwargs)
register_jagged_func(
torch.ops.aten.is_contiguous.memory_format, "self: jt_all, memory_format: any?"
)(is_contiguous_general)
@register_jagged_func(
torch.ops.aten.clone.default, "input: jt_all, memory_format: any?"
)
def clone_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
new_meta = extract_kwargs(inp)
if inp._lengths is not None:
if new_kwargs["memory_format"] == torch.contiguous_format:
# need to copy to remove "holes" non-contiguity / lengths metadata
# TODO: write a kernel for this
from .nested_tensor import jagged_from_list
# TODO: We probably want the output to have the same ragged structure / nested int.
assert (
inp._ragged_idx == 1
), "NJT with ragged_idx != 1 not supported for contiguous clone"
contig, _ = jagged_from_list(inp.unbind(), offsets=None)
return contig
return NestedTensor(func(inp._values, **new_kwargs), **new_meta)
@register_jagged_func(torch.ops.aten.linear.default, "input: jt, weight: t, bias: t?")
def linear_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
@register_jagged_func(
torch.ops.aten.linear_backward.default,
"self: jt, grad_output: jt, weight: t, output_mask: any",
)
def linear_backward_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
grad_output = new_kwargs.pop("grad_output")
weight = new_kwargs.pop("weight")
output_mask = new_kwargs.pop("output_mask")
ds, dw, db = None, None, None
check_ragged_dim_same(func, inp, "self", grad_output, "grad_output")
if output_mask[0]:
ds = NestedTensor(
torch.matmul(grad_output._values, weight), **extract_kwargs(grad_output)
)
if output_mask[1]:
# NB: Fold dims of values for input and grad_output to treat them as 2D. This
# trick avoids materializing large intermediates and immediately reducing over
# them via sum(). This is equivalent to computing:
# torch.matmul(grad_output._values.transpose(-2, -1), inp._values)
# and then summing over the leading dimensions to get a 2D weight grad.
grad_2d = grad_output._values.reshape(-1, weight.size(0))
input_2d = inp._values.reshape(-1, weight.size(1))
dw = torch.matmul(grad_2d.t(), input_2d)
if output_mask[2]:
# NB: autograd engine will sum over all but the last dim to get a 1D bias grad.
db = grad_output._values
return (ds, dw, db)
@register_jagged_func(torch.ops.aten.to.dtype, "input: jt_all, dtype: any")
def to_dtype(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
@register_jagged_func(torch.ops.aten._to_copy.default, "self: jt_all")
def to_copy_default(func, *args, **kwargs):
from .nested_tensor import _tensor_symint_registry
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
# don't change layout
new_kwargs.pop("layout")
new_values = func(inp._values, **new_kwargs)
new_offsets = inp._offsets.to(device=new_values.device)
new_lengths = None
if inp._lengths is not None:
new_lengths = inp._lengths.to(device=new_values.device)
from torch._subclasses.fake_tensor import FakeTensor
from torch._subclasses.functional_tensor import (
FunctionalTensor,
mb_unwrap_functional_tensor,
)
ragged_source = inp._offsets if inp._lengths is None else inp._lengths
new_thing = new_offsets if new_lengths is None else new_lengths
if isinstance(new_thing, (FakeTensor, FunctionalTensor)):
# Temporary hack until we have the union find
tgt = mb_unwrap_functional_tensor(new_thing)
src = mb_unwrap_functional_tensor(ragged_source)
tgt.nested_int_memo = src.nested_int_memo
else:
_tensor_symint_registry[new_thing] = _tensor_symint_registry[ragged_source]
inp_kwargs = extract_kwargs(inp)
inp_kwargs["offsets"] = new_offsets
inp_kwargs["lengths"] = new_lengths
output = NestedTensor(new_values, **inp_kwargs)
return output
@register_jagged_func(
torch.ops.aten.copy_.default, "self: jt_all, src: jt_all, non_blocking: any?"
)
def copy_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
src = new_kwargs.pop("src")
if inp._size != src._size:
raise RuntimeError(
"copy_ only supports Nested Tensors that have same size and the exact same offset tensor."
)
# AOTD allows mutations of inputs only, (not views of the inputs).
# NJT.values() returns _values.detach() to workaround some issues.
# To keep mutation in the graph, AOTD manually calls copy_ on the input (NJT).
# Here we directly mutate self._values to not emit .detach() in the graph, which would make it non-compilable.
inp._values.copy_(src._values)
return inp
register_jagged_func(torch.ops.aten.detach.default, "self: jt_all")(
jagged_unary_pointwise
)
@register_jagged_func(
[
torch.ops.aten.empty_like.default,
torch.ops.aten.ones_like.default,
torch.ops.aten.zeros_like.default,
torch.ops.aten.randn_like.default,
],
"self: jt_all",
)
def like_factory_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
# Default layout is technically torch.strided but only jagged is supported here.
# Rather than force users to specify the layout, assume jagged.
# This should be set to strided for redispatching on values.
new_kwargs["layout"] = torch.strided
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
@register_jagged_func(torch.ops.aten.zero_.default, "self: jt_all")
def zero__default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
func(inp._values)
return inp
@register_jagged_func(
torch.ops.aten._softmax.default, "self: jt_all, dim: any, half_to_float: any"
)
def _softmax_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
if isinstance(new_kwargs["dim"], tuple):
raise RuntimeError(
"softmax(): not supported for dimensions of type 'tuple' for NestedTensor"
)
inp = new_kwargs.pop("input")
(
new_kwargs["dim"],
reduce_on_batch,
reduce_on_ragged,
_reduce_on_non_batch,
) = _wrap_jagged_dims(
inp.dim(),
(new_kwargs["dim"],),
"softmax",
inp._ragged_idx,
)
if reduce_on_batch:
raise RuntimeError(
"softmax(): not supported when reducing across the batch dimension for NestedTensor"
)
if reduce_on_ragged and inp._ragged_idx > 1:
raise RuntimeError(
"softmax(): not supported when reducing along the ragged dimension for ragged_idx > 1 for NestedTensor"
)
if reduce_on_ragged and inp._lengths is not None:
raise RuntimeError(
"softmax(): not supported where lengths is not None "
+ "if reducing across the ragged dimension for NestedTensor"
)
new_kwargs["dim"] = new_kwargs["dim"][
0
] # torch.softmax takes in the reduction dimension as an integer
if reduce_on_ragged:
padded_softmax_values = torch.nn.functional.softmax(
torch.ops.aten._jagged_to_padded_dense_forward(
inp._values.reshape(
inp._values.shape[0], -1
), # values are required to be 2D tensors for j2pd
[inp._offsets],
max_lengths=[inp._max_seqlen], # max length of ragged dimension
padding_value=float("-inf"), # e^-inf = 0
),
dim=inp._ragged_idx,
)
softmax_values = torch.ops.aten._padded_dense_to_jagged_forward(
padded_softmax_values,
[inp._offsets],
total_L=inp._values.shape[
0
], # providing this parameter helps avoid a GPU/CPU sync
).reshape(
-1, *inp._values.shape[1:]
) # expand softmax_values back to original shape (inp._values.shape)
return NestedTensor(softmax_values, **extract_kwargs(inp))
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
@register_jagged_func(
torch.ops.aten._softmax_backward_data.default,
"grad_output: jt, output: jt, dim: any, input_dtype: any",
)
def _softmax_backward(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
grad_out = new_kwargs.pop("grad_output")
output = new_kwargs.pop("output")
return NestedTensor(
func(grad_out._values, output._values, **new_kwargs), **extract_kwargs(grad_out)
)
@register_jagged_func(
torch.ops.aten.native_dropout.default, "self: jt, float: any, train: any?"
)
def native_dropout_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
out1, out2 = func(inp._values, **new_kwargs)
return (
NestedTensor(out1, **extract_kwargs(inp)),
NestedTensor(out2, **extract_kwargs(inp)),
)
@register_jagged_func(
torch.ops.aten.native_dropout_backward.default,
"grad_output: jt, mask: jt, scale: any",
)
def native_dropout_backward_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
grad_output = new_kwargs.pop("grad_output")
mask = new_kwargs.pop("mask")
return NestedTensor(
func(grad_output._values, mask._values, **new_kwargs),
**extract_kwargs(grad_output),
)
@register_jagged_func(
torch.ops.aten.prod.dim_int,
"self: jt_all, dim: any, keepdim: any?, dtype: any?",
)
def prod_dim_int(func, *args, **kwargs):
return _apply_reduction(func, "prod", 1, *args, **kwargs)
@register_jagged_func(torch.ops.aten.prod.default, "self: jt_all, dtype: any?")
def prod_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return func(inp._values, **new_kwargs)
@register_jagged_func(
torch.ops.aten.split.Tensor, "self: jt, split_size: any, dim: any?"
)
def split_tensor(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
new_kwargs["dim"] = _wrap_jagged_dim(
inp.dim(), new_kwargs["dim"], inp._ragged_idx, "split"
)
return tuple(
NestedTensor(values=x, **extract_kwargs(inp))
for x in func(inp._values, **new_kwargs)
)
@register_jagged_func(
torch.ops.aten.split_with_sizes.default, "self: jt, split_sizes: any, dim: any?"
)
def split_with_sizes_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
new_kwargs["dim"] = _wrap_jagged_dim(
inp.dim(), new_kwargs["dim"], inp._ragged_idx, "split_with_sizes"
)
return [
NestedTensor(values=x, **extract_kwargs(inp))
for x in func(inp._values, **new_kwargs)
]
@register_jagged_func(
torch.ops.aten.narrow.default, "self: jt, dim: any, start: any, length: any"
)
def narrow(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
dim = _wrap_jagged_dim(inp.dim(), new_kwargs["dim"], inp._ragged_idx, "narrow")
values = func(
inp._values,
dim=dim,
start=new_kwargs["start"],
length=new_kwargs["length"],
)
return NestedTensor(values, **extract_kwargs(inp))
@register_jagged_func(torch.ops.aten.chunk.default, "self: jt, chunks: any, dim: any?")
def chunk_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
new_kwargs["dim"], operating_on_batch = _wrap_jagged_dim(
inp.dim(), new_kwargs["dim"], inp._ragged_idx, "chunk", allow_batch_dim=True
)
if operating_on_batch:
chunks = new_kwargs["chunks"]
dim0_size = inp._size[0]
chunk_size = math.ceil(dim0_size / chunks)
# get _offsets of the chunks
lengths = inp._offsets.diff()
chunked_lengths = lengths.chunk(chunks)
chunked_offsets = [torch.cumsum(x, dim=0) for x in chunked_lengths]
chunked_offsets = [F.pad(x, (1, 0), value=0) for x in chunked_offsets] # type: ignore[arg-type]
nested_kwargs = [
{"offsets": per_offsets, "_ragged_idx": inp._ragged_idx}
for per_offsets in chunked_offsets
]
# get _values of the chunks
split_sizes = [x.sum().item() for x in chunked_lengths]
chunk_values = inp._values.split(split_sizes)
# Note that the actual number of chunks returned is not necessarily the same as
# the input number; it can be counter-intuitive, but it matches dense behavior.
return [
NestedTensor(values=chunk_values[i], **(nested_kwargs[i]))
for i in range(0, len(chunk_values))
]
else:
return [
NestedTensor(values=x, **extract_kwargs(inp))
for x in func(inp._values, **new_kwargs)
]
@register_jagged_func(torch.ops.aten.unbind.int, "self: jt_all, dim: any?")
def unbind_int(func, *args, **kwargs):
# Note that this specializes on the length of the offsets
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
dim = new_kwargs["dim"]
if dim != 0:
raise RuntimeError("unbind(): only supported for NestedTensor on dim=0")
inp = new_kwargs.pop("input")
values = inp.values()
offsets = inp.offsets()
lengths = inp.lengths()
ragged_idx = inp._ragged_idx
def _torch_check(_lengths: List[int], _offsets: Optional[List[int]] = None):
# This torch._check and torch._check_is_size are needed for torch.compile
# symbolic shapes processing.
# offsets and lengths are symbolic variables during compilation,
# we guarantee the correct offsets/lengths correspondence:
# sum of lengths <= total ragged_dim_size
# every length and offset are size-like variable (allows sym shapes to reason it as [2, inf))
# offset[i] + length[i] <= ragged_dim_size, for unbind and split dim correctness
# offsets[i] <= ragged_dim_size
lengths_sum = 0
ragged_dim_size = values.shape[ragged_idx - 1]
for i in range(len(_lengths)):
torch._check_is_size(_lengths[i])
torch._check(_lengths[i] <= ragged_dim_size)
lengths_sum += _lengths[i]
if _offsets is not None:
torch._check(
_offsets[i] + _lengths[i] <= ragged_dim_size,
lambda: "unbind(): nested tensor offsets and lengths do not match ragged_idx dimension",
)
torch._check(lengths_sum <= ragged_dim_size)
if _offsets is not None:
for i in range(len(_offsets)):
torch._check_is_size(_offsets[i])
torch._check(_offsets[i] <= ragged_dim_size)
if lengths is None:
lengths_scalars = offsets.diff().tolist()
_torch_check(lengths_scalars)
return torch.split(values, lengths_scalars, dim=(ragged_idx - 1))
if ragged_idx <= 0:
raise RuntimeError(
"unbind(): nested tensor ragged_idx out of bounds (should be >= 1)"
)
lengths_scalars = lengths.tolist()
offsets_scalars = offsets.tolist()
_torch_check(lengths_scalars, offsets_scalars)
return [
torch.narrow(
values,
dim=(ragged_idx - 1),
start=offsets_scalars[i],
length=lengths_scalars[i],
)
for i in range(lengths.shape[0])
]
@register_jagged_func(torch.ops.aten.squeeze.dim, "self: jt, dim: any")
def squeeze_dim(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
values = inp._values
new_kwargs["dim"] = _wrap_jagged_dim(
len(inp._size), new_kwargs["dim"], inp._ragged_idx, "squeeze"
)
return NestedTensor(func(values, **new_kwargs), **extract_kwargs(inp))
@register_jagged_func(torch.ops.aten.unsqueeze.default, "self: jt_all, dim: any")
def unsqueeze_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
values = inp._values
# Account for collapsed jagged dim
dim = new_kwargs["dim"]
new_kwargs["dim"] = _wrap_jagged_dim(
len(inp._size) + 1, dim, inp._ragged_idx, "unsqueeze", allow_ragged_dim=True
)
# ragged_idx changes if a dimension is added before it
output_kwargs = extract_kwargs(inp)
if new_kwargs["dim"] <= inp._ragged_idx - 1:
output_kwargs["_ragged_idx"] += 1
return NestedTensor(func(values, **new_kwargs), **output_kwargs)
@register_jagged_func(torch.ops.aten.cat.default, "tensors: any, dim: any")
def cat_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
tensors = new_kwargs.pop("tensors")
# Convert any non-nested to nested
nested = [t for t in tensors if t.is_nested]
assert len(nested) > 0
first = nested[0]
tensors = [t if t.is_nested else t.expand_as(first) for t in tensors]
# Account for collapsed jagged dim
dim = new_kwargs["dim"]
new_kwargs["dim"] = _wrap_jagged_dim(
len(first.shape), dim, first._ragged_idx, "cat"
)
return NestedTensor(
func([t._values for t in tensors], **new_kwargs), **extract_kwargs(tensors[0])
)
@register_jagged_func(torch.ops.aten.matmul.default, "self: jt_all, other: any")
def matmul_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
other = new_kwargs.pop("other")
def _unbind_impl(a, b):
return [
func(a_comp, b_comp) for (a_comp, b_comp) in zip(a.unbind(), b.unbind())
]
def _padded_impl(a, b):
assert a.is_nested and not b.is_nested
nt = a
from .nested_tensor import nested_from_padded
min_seqlen = nt._maybe_min_seqlen
max_seqlen = nt._maybe_max_seqlen
padded_max_S = max_seqlen
total_L = nt._values.shape[nt._ragged_idx - 1]
if padded_max_S is None:
# use upper bound on max seqlen if it's not present
padded_max_S = total_L
padded_shape = (
*nt.shape[: nt._ragged_idx],
padded_max_S,
*nt.shape[nt._ragged_idx + 1 :],
)
padded_nt = nt.to_padded_tensor(0.0, output_size=padded_shape)
return nested_from_padded(
func(padded_nt, b),
offsets=nt._offsets,
ragged_idx=nt._ragged_idx,
sum_S=total_L,
min_seqlen=min_seqlen,
max_seqlen=max_seqlen,
)
# TODO: Back these with proper kernels (e.g. grouped GEMM)
# NJT x dense
if inp.is_nested and not other.is_nested:
# (B, j1, D) x (B, D, E) => (B, j1, E)
if inp.dim() >= 3 and inp.dim() == other.dim():
# convert to padded for this
return _padded_impl(inp, other)
# Support broadcasting the dense:
# (B, j1, D) x (D, E) => (B, j1, E)
# (B, j1, D, E) x (E, F) => (B, j1, D, F)
# etc.
elif other.dim() == 2 and inp.dim() > other.dim():
return NestedTensor(
func(inp._values, other, **new_kwargs), **extract_kwargs(inp)
)
# NJT x NJT
elif inp.is_nested and other.is_nested:
# Support ragged batch dim:
# (B, j1, D, E) x (B, j1, E, F) => (B, j1, D, F), etc.
if inp.dim() > 3 and other.dim() > 3 and raggedness_matches(inp, other._size):
return NestedTensor(func(inp._values, other._values), **extract_kwargs(inp))
# Support reducing over ragged with dense output:
# (B, D, j1) x (B, j1, E) => (B, D, E)
elif (
inp.dim() == 3
and other.dim() == 3
and inp._ragged_idx == 2
and other._ragged_idx == 1
and inp.size(inp._ragged_idx) == other.size(other._ragged_idx)
):
# do unbind for this; can't use padded conversion due to j1 in last dim
return torch.stack(_unbind_impl(inp, other))
raise RuntimeError(
f"matmul(): not supported between inputs of shapes {inp._size} and {other.shape}"
)
@register_jagged_func(torch.ops.aten.bmm.default, "self: jt_all, mat2: any")
def bmm_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
other = new_kwargs.pop("mat2")
if inp.dim() != 3:
raise ValueError("bmm(): input must be 3D")
if other.dim() != 3:
raise ValueError("bmm(): mat2 must be 3D")
return matmul_default(torch.ops.aten.matmul.default, inp, other)
@register_jagged_func(
torch.ops.aten.expand.default, "self: jt_all, size: any, implicit: any?"
)
def expand_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
size = new_kwargs["size"]
assert ("implicit" not in new_kwargs) or (not new_kwargs.pop("implicit"))
if not raggedness_matches(inp, size):
raise RuntimeError(f"expand(): cannot expand shape {inp._size} -> {size}")
expand_arg = [-1 if d == inp._ragged_idx else size[d] for d in range(1, inp.dim())]
return NestedTensor(func(inp._values, expand_arg), **extract_kwargs(inp))
@register_jagged_func(torch.ops.aten.expand_as.default, "self: t, other: jt")
def expand_as_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
other = new_kwargs.pop("other")
return NestedTensor(func(inp, other._values), **extract_kwargs(other))
@register_jagged_func(torch.ops.aten.broadcast_to.default, "self: jt_all, size: any")
def broadcast_to(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
size = new_kwargs.pop("size")
if len(size) <= inp.dim():
return inp.expand([*(1 for _ in range(inp.dim() - len(size))), *size])
raise ValueError(
"broadcast_to(): broadcasting to a higher-dim shape is currently not supported "
"for nested tensors with the jagged layout"
)
@register_jagged_func(torch.ops.aten.broadcast_tensors.default, "tensors: any")
def broadcast_tensors(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
tensors = new_kwargs.pop("tensors")
if len(tensors) == 0:
raise ValueError("broadcast_tensors(): expected at least one tensor input")
if len(tensors) == 1:
return tensors[0]
outs = []
broadcast_shape = torch.broadcast_shapes(*(t.shape for t in tensors))
# Pull out the first NJT. If broadcast_shapes() worked, the nested ints are compatible.
njt = next(t for t in tensors if isinstance(t, NestedTensor))
for t in tensors:
if t.is_nested:
outs.append(t.broadcast_to(broadcast_shape))
elif t.dim() < len(broadcast_shape):
outs.append(
NestedTensor(t.broadcast_to(njt._values.shape), **extract_kwargs(njt))
)
else:
raise ValueError(
"broadcast_tensors(): broadcasting nested tensors with dense tensors of equal "
"or higher dim is not currently supported"
)
return tuple(outs)
@register_jagged_func(
torch.ops.aten.where.self, "condition: jt_all, self: any, other: any"
)
def where_self(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
condition = new_kwargs.pop("condition")
inp = new_kwargs.pop("input")
other = new_kwargs.pop("other")
# if the tensors aren't compatible, broadcast_tensors() will let us know
condition, inp, other = torch.broadcast_tensors(condition, inp, other)
return NestedTensor(
func(condition._values, inp._values, other._values, **new_kwargs),
**extract_kwargs(condition),
)
@register_jagged_func(torch.ops.aten._pin_memory.default, "self: jt, device: any?")
def _pin_memory_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
@register_jagged_func(torch.ops.aten.is_pinned.default, "self: jt, device: any?")
def is_pinned_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return func(inp._values, **new_kwargs)
@register_jagged_func(
torch.ops.aten.is_same_size.default, "self: jt_all, other: jt_all"
)
def is_same_size_default(func, *args, **kwargs):
return args[0]._size == args[1]._size
def _apply_reduction(func, func_name, identity_element, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
# some ops use dim=None to indicate a full reduction; some use an empty dim list
full_reduction = new_kwargs["dim"] is None or (
isinstance(new_kwargs["dim"], (tuple, list)) and len(new_kwargs["dim"]) == 0
)
if full_reduction:
out = func(inp._values, **new_kwargs)
if new_kwargs.get("keepdim", False):
if isinstance(out, (tuple, list)):
# some ops return multiple things; unsqueeze all of them
out = type(out)(o.unsqueeze(inp._ragged_idx) for o in out)
else:
out = out.unsqueeze(inp._ragged_idx)
return out
# some ops support lists of dims; some don't
dim_to_convert = new_kwargs["dim"]
is_dimlist = isinstance(new_kwargs["dim"], (tuple, list))
if not is_dimlist:
dim_to_convert = [dim_to_convert]
(
converted_dim,
reduce_on_batch,
reduce_on_ragged,
reduce_on_non_batch,
) = _wrap_jagged_dims(
inp.dim(),
dim_to_convert,
f"{func_name}",
inp._ragged_idx,
)
if not is_dimlist:
# convert back from list
converted_dim = converted_dim[0]
new_kwargs["dim"] = converted_dim
if reduce_on_ragged and inp._lengths is not None:
raise RuntimeError(
f"{func_name}(): reducing across the ragged dimension is not supported "
"for non-contiguous nested tensors with holes"
)
from torch.utils._pytree import tree_map
# raggedness reduced away --> return dense tensor
if reduce_on_ragged:
# reduction cases: (batch, ragged), (batch, ragged, non-batch), etc.
if reduce_on_batch:
# no need to read offsets --> apply sum directly on values
out = func(inp._values, **new_kwargs)
if new_kwargs.get("keepdim", False):
# some ops return multiple things; unsqueeze all of them
out = tree_map(lambda o: o.unsqueeze(0), out)
return out
else:
# invalid reduction cases: (ragged, non-batch), etc.
if reduce_on_non_batch:
raise RuntimeError(
f"{func_name}(): reducing along a ragged and non-batch dimension "
"is not supported for nested tensors"
)
# reduction cases: (ragged)
# convert to padded dense and reduce
new_kwargs.pop("dim")
dim_to_pass = [inp._ragged_idx] if is_dimlist else inp._ragged_idx
return func(
inp.to_padded_tensor(identity_element), dim=dim_to_pass, **new_kwargs
)
# raggedness preserved --> return nested tensor
else:
# invalid reduction cases: (batch), (batch, non-batch), etc.
if reduce_on_batch:
raise RuntimeError(
f"{func_name}(): reducing along the batch dimension but not "
"the ragged dimension is not supported for nested tensors"
)
# reduction cases: (non-batch), (non-batch, non-batch), etc.
# apply sum directly on values
out = func(inp._values, **new_kwargs)
out_kwargs = extract_kwargs(inp)
if not new_kwargs.get("keepdim", False):
# dims are reduced away -> ragged_idx of output needs to be reevaluated
dimlist = (
new_kwargs["dim"]
if isinstance(new_kwargs["dim"], (tuple, list))
else [new_kwargs["dim"]]
)
for d in dimlist:
# adjust for all dims reduced before the ragged dim
if d < inp._ragged_idx - 1:
out_kwargs["_ragged_idx"] -= 1
# some ops return multiple things; wrap each of them as an NJT
return tree_map(lambda o: NestedTensor(o, **out_kwargs), out)
@register_jagged_func(torch.ops.aten.sum.default, "self: jt_all, dtype: any?")
def sum_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return func(inp._values, **new_kwargs)
@register_jagged_func(
torch.ops.aten.sum.dim_IntList,
"self: jt_all, dim: any?, keepdim: any?, dtype: any?",
)
def sum_dim_IntList(func, *args, **kwargs):
return _apply_reduction(func, "sum", 0, *args, **kwargs)
@register_jagged_func(
torch.ops.aten.transpose.int, "self: jt_all, dim0: any, dim1: any"
)
def transpose_int(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
from torch._prims_common import canonicalize_dims
inp = new_kwargs.pop("input")
dim0, dim1 = canonicalize_dims(inp.dim(), (new_kwargs["dim0"], new_kwargs["dim1"]))
# To support the SDPA API, inputs need to have the ragged idx transposed to dim 2
# instead of 1, although the internal Flash and mem-effn implementations will
# use the inputs with raggedness in dim 1.
if dim0 == inp._ragged_idx or dim1 == inp._ragged_idx:
if dim0 == 0 or dim1 == 0:
raise ValueError(
"Transpose is not supported on the batch dimension for jagged NT"
)
if dim0 == inp._ragged_idx:
to_dim = dim1
else:
to_dim = dim0
inp_kwargs = extract_kwargs(inp)
inp_kwargs["_ragged_idx"] = to_dim
return NestedTensor(
inp.values().transpose(
_outer_to_inner_dim(len(inp._size), dim0, inp._ragged_idx),
_outer_to_inner_dim(len(inp._size), dim1, inp._ragged_idx),
),
**inp_kwargs,
)
new_kwargs["dim0"] = _wrap_jagged_dim(
inp.dim(), new_kwargs["dim0"], inp._ragged_idx, "transpose"
)
new_kwargs["dim1"] = _wrap_jagged_dim(
inp.dim(), new_kwargs["dim1"], inp._ragged_idx, "transpose"
)
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
@register_jagged_func(torch.ops.aten.permute.default, "self: jt_all, dims: any")
def permute_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
dims = new_kwargs.pop("dims")
inp_kwargs = extract_kwargs(inp)
inp_dim = len(inp._size)
# The first two checks are the same as the checks in the normal permute implementation
if inp_dim != len(dims):
raise ValueError(
f"permute(): number of dimensions in the tensor input ({inp_dim}) "
+ f"does not match the length of the desired ordering of dimensions ({len(dims)}).",
)
from torch._prims_common import canonicalize_dims
canonicalized_dims = canonicalize_dims(inp_dim, dims)
if len(canonicalized_dims) != len(set(canonicalized_dims)):
raise ValueError("permute(): duplicate dims are not allowed.")
if inp._lengths is not None:
raise ValueError(
"permute(): not supported on jagged layout nested tensor with holes"
)
if canonicalized_dims[0] != 0:
raise ValueError(
"Permute is not supported on the batch dimension for jagged NT"
)
inp_kwargs["_ragged_idx"] = canonicalized_dims.index(inp._ragged_idx)
inner_dims = [
_outer_to_inner_dim(inp_dim, dim, inp._ragged_idx)
for dim in canonicalized_dims[1:]
]
new_kwargs["dims"] = inner_dims
return NestedTensor(func(inp._values, **new_kwargs), **inp_kwargs)
@register_jagged_func(
[torch.ops.aten.view.default, torch.ops.aten._unsafe_view.default],
"self: jt_all, size: any",
)
def view_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
size = new_kwargs.pop("size")
if inp._ragged_idx != 1 and tuple(inp._size) != tuple(size):
raise RuntimeError(
f"view(): does not support ragged_idx != 1 except when inp._size == size. "
f"inp._size is ({inp._size}) and size is ({size})."
)
# Ensure specified size still includes batch and ragged dims
if len(size) < 3 or not raggedness_matches(inp, size):
raise RuntimeError(f"view(): cannot view shape {inp._size} as {size}")
# outer size: the size of the NT, e.g. [3, j0, 10]
# inner size: the size of the values, e.g. [8, 10] (e.g. for offsets = [0, 3, 5, 8])
# this function gets inner_size[inner_idx] for a given inner_idx.
#
# example: for outer size [a, b, c, j0, d, e, f]
# assume that j0 is ragged, other are concrete integers
# and ragged_idx=3
# inner size will be [b, c, inp._values.size(ragged_idx), d, e, f]
# therefore:
# inner_size[0] = outer_size[1]
# inner_size[1] = outer_size[2]
# inner_size[0] = inp._values.size(ragged_idx - 1)
# inner_size[3] = outer_size[4]
# inner_size[4] = outer_size[5]
def get_inner_size(inner_idx):
nonlocal inp, size
if inner_idx == inp._ragged_idx - 1:
return inp._values.size(inner_idx)
else:
return size[inner_idx + 1]
inner_size = [get_inner_size(i) for i in range(len(size) - 1)]
# Preserve inference-mode-ness of input.
# TODO: Do this for all other views!
with torch.inference_mode(inp.is_inference()):
return NestedTensor(func(inp._values, inner_size), **extract_kwargs(inp))
@register_jagged_func(
torch.ops.aten.native_layer_norm.default,
"input: jt_all, normalized_shape: any, weight: any?, bias: any?, eps: any",
)
def native_layer_norm_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
if inp.dim() <= 2:
raise RuntimeError(
"layer_norm(): not supported for NestedTensor objects with 2 or fewer dimensions"
)
normalized_shape = new_kwargs["normalized_shape"]
ragged_size = inp.shape[inp._ragged_idx]
num_dims_not_normalized = inp.dim() - len(normalized_shape)
if (
num_dims_not_normalized == 0
): # error if trying to normalize over the batch dimension
raise RuntimeError(
"layer_norm(): not supported when normalizing over the batch dimension for NestedTensor"
)
if ragged_size in normalized_shape and inp._lengths is not None:
raise RuntimeError(
"layer_norm(): not supported where lengths is not None if operating on the ragged dimension for NestedTensor"
)
if (
ragged_size in normalized_shape
): # special handling for normalizing over the ragged dimension
padded_input = torch.ops.aten._jagged_to_padded_dense_forward(
inp._values.flatten(
start_dim=inp._ragged_idx
), # _jagged_to_padded_dense_forward requires values to be a 2D tensor
[inp._offsets],
max_lengths=[inp._max_seqlen], # max length of ragged dimension
)
padded_mask = torch.ops.aten._jagged_to_padded_dense_forward(
torch.ones((inp._values.shape[0], 1), device=inp.device, dtype=inp.dtype),
[inp._offsets],
max_lengths=[inp._max_seqlen], # max length of ragged dimension
).expand(
padded_input.shape
) # mask elements outside of the ragged dimension and expand to the same shape as padded input (3D dense tensor)
ragged_lengths = (
inp._offsets.diff().unsqueeze(1).unsqueeze(1) * padded_input.shape[2]
) # ragged dim * inner dim, since we sum over dims (1, 2) (the layer on which we normalize)
mean = (
torch.sum(
padded_input,
dim=(1, 2),
keepdim=True,
)
/ ragged_lengths
) # a sum over (1, 2) ensures layer norm, whereas a sum over (1) would be an instance norm
padded_normalized = (
padded_input - mean
) * padded_mask # mask elements outside of the ragged dimension size for correct variance calculation
variance = (
torch.sum(
torch.square(padded_normalized),
dim=(1, 2),
keepdim=True,
)
/ ragged_lengths
) # a sum over (1, 2) ensures layer norm, whereas a sum over (1) would be an instance norm
std = torch.sqrt(variance + new_kwargs["eps"])
padded_layer_norm = padded_normalized / std
jagged_layer_norm_values = torch.ops.aten._padded_dense_to_jagged_forward(
padded_layer_norm,
[inp._offsets],
total_L=inp._values.shape[
0
], # providing this parameter helps avoid a GPU/CPU sync
).unflatten(
-1, inp.shape[inp._ragged_idx + 1 :]
) # unflatten last dimension back into original nested tensor shape, e.g. (B, *, WH) --> (B, *, W, H)
return (
NestedTensor(jagged_layer_norm_values, **extract_kwargs(inp)),
mean,
std,
)
output, mean, std = func(inp._values, **new_kwargs)
return (NestedTensor(output, **extract_kwargs(inp)), mean, std)
@register_jagged_func(
torch.ops.aten.native_layer_norm_backward.default,
"grad_out: jt, input: jt, normalized_shape: any, mean: any, rstd: any, weight: any?, bias: any?, output_mask: any",
)
def native_layer_norm_backward_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
grad_out = new_kwargs.pop("grad_out")
inp = new_kwargs.pop("input")
d_input, d_gamma, d_beta = func(grad_out._values, inp._values, **new_kwargs)
if d_input is None:
return (None, d_gamma, d_beta)
return (NestedTensor(d_input, **extract_kwargs(inp)), d_gamma, d_beta)
@register_jagged_func(torch.ops.aten.select.int, "self: jt_all, dim: any, index: any")
def select_int(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
new_kwargs["dim"], operating_on_batch = _wrap_jagged_dim(
inp.dim(), new_kwargs["dim"], inp._ragged_idx, "select", allow_batch_dim=True
)
# handle batch dim slicing via unbind() for now
# TODO: make this more efficient
if operating_on_batch:
return inp.unbind()[new_kwargs["index"]]
if inp._lengths is not None:
raise ValueError(
"select(): not yet supported on dim != 0 for non-contiguous nested tensor with holes"
)
# if selecting before the ragged dim, adjust output ragged_idx
out_kwargs = extract_kwargs(inp)
if new_kwargs["dim"] < inp._ragged_idx - 1:
out_kwargs["_ragged_idx"] -= 1
return NestedTensor(func(inp._values, **new_kwargs), **out_kwargs)
@register_jagged_func(
torch.ops.aten.slice.Tensor,
"self: jt, dim: any?, start: any?, end: any?, step: any?",
)
def slice_tensor(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
new_kwargs["dim"] = _wrap_jagged_dim(
inp.dim(), new_kwargs["dim"], inp._ragged_idx, "slice"
)
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
@register_jagged_func(
torch.ops.aten.index_put.default,
"input: jt_all, indices: any, values: t, accumulate: any?",
)
@register_jagged_func(
torch.ops.aten.index_put_.default,
"input: jt_all, indices: any, values: t, accumulate: any?",
)
def index_put_(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp: NestedTensor = new_kwargs.pop("input")
# For index_put_ to work, we add together the indices of the ragged dimension
# and the batch dimension, adding the offsets of each ragged dimension to its
# indices
indices = new_kwargs.pop("indices")
assert len(indices) <= inp.dim()
if len(indices) < inp._ragged_idx + 1:
if not inp.is_contiguous():
raise RuntimeError(
"index_put(): If ragged dimension is not part of indices, this only works on contiguous NJTs"
)
# Ragged dim is NOT part of indices, we need to pad the nested tensor to apply func
from .nested_tensor import nested_from_padded
min_seqlen = inp._maybe_min_seqlen
max_seqlen = inp._maybe_max_seqlen
padded_max_S = max_seqlen
total_L = inp._values.shape[inp._ragged_idx - 1]
if padded_max_S is None:
# use upper bound on max seqlen if it's not present
padded_max_S = total_L
padded_shape = (
*inp.shape[: inp._ragged_idx],
padded_max_S,
*inp.shape[inp._ragged_idx + 1 :],
)
padded_inp = inp.to_padded_tensor(0.0, output_size=padded_shape)
new_njt = nested_from_padded(
func(padded_inp, indices, **new_kwargs),
offsets=inp._offsets,
ragged_idx=inp._ragged_idx,
sum_S=total_L,
min_seqlen=min_seqlen,
max_seqlen=max_seqlen,
)
if func == torch.ops.aten.index_put_.default:
inp._values.copy_(new_njt.values())
return inp
return new_njt
# We can run on the underlying values directly
# Validate indices
if inp.lengths() is None:
lengths = inp.offsets().diff()
else:
lengths = inp.lengths()
torch._assert_async(
torch.all(indices[inp._ragged_idx] < lengths),
"Some indices in the ragged dimension are out of bounds!",
)
# Recompute indices for _values
ragged_indices = inp.offsets()[indices[0]] + indices[inp._ragged_idx]
func_indices = (
# before ragged dim
indices[1 : inp._ragged_idx]
# ragged dim (combined with batch)
+ [ragged_indices]
# after ragged dim
+ indices[inp._ragged_idx + 1 :]
)
if func == torch.ops.aten.index_put_.default:
inp._values = func(inp._values, func_indices, **new_kwargs)
return inp
return NestedTensor(
func(inp._values, func_indices, **new_kwargs),
**extract_kwargs(inp),
)
@register_jagged_func(
torch.ops.aten.convolution.default,
"input: jt, weight: t, bias: t?, stride: any, padding: any, "
"dilation: any, transposed: any, output_padding: any, groups: any",
)
def convolution_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
@register_jagged_func(
torch.ops.aten.mean.dim, "self: jt_all, dim: any?, keepdim: any?, dtype: any?"
)
def mean_dim(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs["input"]
(_, reduce_on_batch, reduce_on_ragged, reduce_on_non_batch) = _wrap_jagged_dims(
inp.dim(),
new_kwargs["dim"],
"mean",
inp._ragged_idx,
)
if reduce_on_ragged and not reduce_on_batch:
assert not reduce_on_non_batch
# calculate an intermediate sum and leave the dim in for normalization purposes
keepdim = new_kwargs["keepdim"]
new_kwargs["keepdim"] = True
intermediate_sum = _apply_reduction(
torch.ops.aten.sum.dim_IntList, "mean", 0, **new_kwargs
)
# normalize by sequence lengths
lengths = inp._lengths if inp._lengths is not None else inp._offsets.diff()
for _ in range(intermediate_sum.dim() - 1):
lengths = lengths.unsqueeze(-1)
out = intermediate_sum / lengths
if not keepdim:
out = out.squeeze(inp._ragged_idx)
return out
# at this point, we're just redispatching on the values buffer
# since we expect it to be unused, specify a weird intermediate value to
# hopefully make errors obvious
intermediate_value = 0.42
return _apply_reduction(func, "mean", intermediate_value, **new_kwargs)
@register_jagged_func(torch.ops.aten.mean.default, "self: jt_all, dtype: any?")
def mean_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return func(inp._values, **new_kwargs)
@register_jagged_func(torch.ops.aten.any.dims, "self: jt_all, dim: any?, keepdim: any?")
def any_dims(func, *args, **kwargs):
return _apply_reduction(func, "any", False, *args, **kwargs)
@register_jagged_func(torch.ops.aten.any.dim, "self: jt_all, dim: any, keepdim: any?")
def any_dim(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
# wrap dim in list to redispatch to dims overload
new_kwargs["dim"] = [new_kwargs["dim"]]
return any_dims(torch.ops.aten.any.dims, **new_kwargs)
@register_jagged_func(torch.ops.aten.all.dims, "self: jt_all, dim: any?, keepdim: any?")
def all_dims(func, *args, **kwargs):
return _apply_reduction(func, "all", True, *args, **kwargs)
@register_jagged_func(torch.ops.aten.all.dim, "self: jt_all, dim: any, keepdim: any?")
def all_dim(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
# wrap dim in list to redispatch to dims overload
new_kwargs["dim"] = [new_kwargs["dim"]]
return all_dims(torch.ops.aten.all.dims, **new_kwargs)
@register_jagged_func(
[
torch.ops.aten.all.default,
torch.ops.aten.any.default,
torch.ops.aten.max.default,
torch.ops.aten.min.default,
],
"self: jt_all",
)
def all_any_max_min_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return func(inp._values, **new_kwargs)
@register_jagged_func(torch.ops.aten.min.dim, "self: jt_all, dim: any, keepdim: any?")
def min_dim(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
dtype_max = torch.finfo(new_kwargs["input"].dtype).max
return _apply_reduction(func, "min", dtype_max, *args, **kwargs)
@register_jagged_func(torch.ops.aten.max.dim, "self: jt_all, dim: any, keepdim: any?")
def max_dim(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
dtype_min = torch.finfo(new_kwargs["input"].dtype).min
return _apply_reduction(func, "max", dtype_min, *args, **kwargs)
@register_jagged_func(
torch.ops.aten.amin.default, "self: jt_all, dim: any?, keepdim: any?"
)
def amin_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
dtype_max = torch.finfo(new_kwargs["input"].dtype).max
return _apply_reduction(func, "amin", dtype_max, *args, **kwargs)
@register_jagged_func(
torch.ops.aten.amax.default, "self: jt_all, dim: any?, keepdim: any?"
)
def amax_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
dtype_min = torch.finfo(new_kwargs["input"].dtype).min
return _apply_reduction(func, "amax", dtype_min, *args, **kwargs)
@register_jagged_func(
torch.ops.aten.argmin.default, "self: jt_all, dim: any?, keepdim: any?"
)
def argmin_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
dtype_max = torch.finfo(new_kwargs["input"].dtype).max
return _apply_reduction(func, "argmin", dtype_max, *args, **kwargs)
@register_jagged_func(
torch.ops.aten.argmax.default, "self: jt_all, dim: any?, keepdim: any?"
)
def argmax_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
dtype_min = torch.finfo(new_kwargs["input"].dtype).min
return _apply_reduction(func, "argmax", dtype_min, *args, **kwargs)
@register_jagged_func(torch.ops.aten.stack.default, "tensors: any, dim: any")
def stack_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
# guaranteed this is non-empty if we got here
tensors = new_kwargs.pop("tensors")
for t in tensors:
if not isinstance(t, NestedTensor):
raise RuntimeError("stack(): expected all nested tensors inputs")
if t.dim() != tensors[0].dim():
raise RuntimeError(
"stack(): expected all nested tensors to have the same dim"
)
if not raggedness_matches(t, tensors[0].shape):
raise RuntimeError(
"stack(): expected all nested tensors to have the same nested structure"
)
new_kwargs["dim"] = _wrap_jagged_dim(
tensors[0].dim() + 1, new_kwargs["dim"], tensors[0]._ragged_idx, "stack"
)
return NestedTensor(
func([t._values for t in tensors], **new_kwargs), **extract_kwargs(tensors[0])
)
@register_jagged_func(
torch.ops.aten.embedding.default,
"weight: t, indices: jt, padding_idx: any?, scale_grad_by_freq: any?, sparse: any?",
)
def embedding_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
# guaranteed this is non-empty if we got here
indices = new_kwargs.pop("indices")
weight = new_kwargs.pop("weight")
return NestedTensor(
func(weight, indices._values, **new_kwargs), **extract_kwargs(indices)
)
@register_jagged_func(
torch.ops.aten.embedding_dense_backward.default,
"grad_output: jt, indices: jt, num_weights: any, padding_idx: any, scale_grad_by_freq: any",
)
def embedding_dense_backward_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
indices = new_kwargs.pop("indices")
grad_output = new_kwargs.pop("grad_output")
return func(grad_output._values, indices._values, **new_kwargs)
@register_jagged_func(
[
torch.ops.aten.values.default,
torch.ops.aten._nested_get_values.default,
],
"self: jt_all",
)
def values_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
# TODO: Handle inference mode properly.
# See https://github.com/pytorch/pytorch/issues/112024#issuecomment-1779554292
return inp._values.detach()
@register_jagged_func(torch.ops.aten.all.default, "self: jt_all")
def all_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return func(inp._values)
@register_jagged_func(
torch.ops.aten.to_padded_tensor.default,
"self: jt_all, padding: any, output_size: any?",
)
def to_padded_tensor_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
if inp._lengths is not None:
raise RuntimeError(
"to_padded_tensor(): not supported for nested tensors with holes"
)
# TODO: Handle the rest of output_size
output_size = new_kwargs["output_size"]
if output_size is not None:
max_seq_len = output_size[inp._ragged_idx]
else:
max_seq_len = (
inp._max_seqlen
if inp._max_seqlen_tensor is not None
else inp._values.size(0)
)
# only 2D values with ragged packed dim=0 is supported by the underlying FBGEMM
# kernel so do shape gymnastics if needed
values = inp.values()
if inp._ragged_idx > 1:
values = values.transpose(inp._ragged_idx - 1, 0)
values_shape = values.shape
if values.dim() > 2:
values = values.flatten(start_dim=1)
elif values.dim() == 1:
values = values.unsqueeze(-1)
# NB: The CUDA kernel for jagged -> padded dense conversion does not support
# integer / bool types; work around this by casting to half.
is_bool = values.dtype is torch.bool
if is_bool and values.is_cuda:
values = values.to(torch.half)
padded_out = torch.ops.aten._jagged_to_padded_dense_forward(
values,
[inp._offsets],
[max_seq_len],
new_kwargs["padding"],
)
if is_bool and padded_out.is_cuda:
padded_out = padded_out.to(torch.bool)
# shape gymnastics part 2
if len(values_shape) > 2:
padded_out = padded_out.unflatten(-1, values_shape[1:])
elif len(values_shape) == 1:
padded_out = padded_out.squeeze(-1)
if inp._ragged_idx > 1:
padded_out = padded_out.transpose(inp._ragged_idx, 1)
return padded_out
@register_jagged_func(
torch.ops.aten._nested_from_padded_tensor.default,
"padded: t, offsets: t, dummy: jt, ragged_idx: any?, min_seqlen: any?, max_seqlen: any?, sum_S: any?",
)
def _nested_from_padded_tensor_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
padded, offsets = new_kwargs["padded"], new_kwargs["offsets"]
ragged_idx = new_kwargs.get("ragged_idx", 1)
# only 3D padded with ragged packed dim=0 is supported by the underlying FBGEMM
# kernel so do shape gymnastics
if ragged_idx > 1:
padded = padded.transpose(ragged_idx, 1)
padded_ragged_dim1_shape = padded.shape
if padded.dim() > 3:
padded = padded.flatten(start_dim=2)
elif padded.dim() < 3:
padded = padded.unsqueeze(-1)
# NB: The CUDA kernel for padded dense -> jagged conversion does not support
# integer / bool types; work around this by casting to half.
is_bool = padded.dtype is torch.bool
if is_bool and padded.is_cuda:
padded = padded.to(torch.half)
values = torch.ops.aten._padded_dense_to_jagged_forward(
padded, [offsets], new_kwargs["sum_S"]
)
if is_bool and values.is_cuda:
values = values.to(torch.bool)
# shape gymnastics part 2
if len(padded_ragged_dim1_shape) > 3:
values = values.unflatten(-1, padded_ragged_dim1_shape[2:])
elif len(padded_ragged_dim1_shape) < 3:
values = values.squeeze(-1)
if ragged_idx > 1:
values = values.transpose(ragged_idx - 1, 0)
min_seqlen = new_kwargs["min_seqlen"]
max_seqlen = new_kwargs["max_seqlen"]
metadata_cache = {}
if min_seqlen is not None:
metadata_cache["min_seqlen"] = min_seqlen
if max_seqlen is not None:
metadata_cache["max_seqlen"] = max_seqlen
return NestedTensor(
values,
offsets,
_ragged_idx=ragged_idx,
_metadata_cache=metadata_cache,
)
@register_jagged_func(
torch.ops.aten._nested_view_from_jagged.default,
"values: t, offsets: t, dummy: jt_all, lengths: t?, ragged_idx: any?, min_seqlen: t?, max_seqlen: t?",
)
def _nested_view_from_jagged_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
values, offsets, lengths = (
new_kwargs["input"],
new_kwargs["offsets"],
new_kwargs["lengths"],
)
ragged_idx = new_kwargs["ragged_idx"]
min_seqlen = new_kwargs["min_seqlen"]
max_seqlen = new_kwargs["max_seqlen"]
metadata_cache = {}
if min_seqlen is not None:
metadata_cache["min_seqlen"] = min_seqlen
if max_seqlen is not None:
metadata_cache["max_seqlen"] = max_seqlen
return NestedTensor(
values,
offsets,
lengths=lengths,
_ragged_idx=ragged_idx,
_metadata_cache=metadata_cache,
)
@register_jagged_func(torch.ops.aten._nested_get_offsets.default, "self: jt_all")
def _nested_get_offsets(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return inp._offsets
@register_jagged_func(torch.ops.aten._nested_get_lengths.default, "self: jt_all")
def _nested_get_lengths(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return inp._lengths
@register_jagged_func(torch.ops.aten._nested_get_ragged_idx.default, "self: jt_all")
def _nested_get_ragged_idx(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return inp._ragged_idx
@register_jagged_func(torch.ops.aten._nested_get_min_seqlen.default, "self: jt_all")
def _nested_get_min_seqlen(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return inp._metadata_cache.get("min_seqlen", None)
@register_jagged_func(torch.ops.aten._nested_get_max_seqlen.default, "self: jt_all")
def _nested_get_max_seqlen(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
return inp._metadata_cache.get("max_seqlen", None)
# If a section of the Nested Tensor is fully masked out we still retain the section with a length of 0
@register_jagged_func(torch.ops.aten.masked_select.default, "self: jt, mask: any")
def masked_select_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
mask = new_kwargs.pop("mask")
if inp.ndim > 2:
raise RuntimeError("masked_select only support 2-D selections currently")
elif inp.shape != mask.shape:
raise RuntimeError(
f"Mask with shape {mask.shape} is not compatible with input's shape {inp.shape}"
)
res_values = inp._values.masked_select(mask.values())
mask_cumsum = F.pad(mask.values().cumsum(dim=0), (1, 0)) # type: ignore[arg-type]
args = extract_kwargs(inp)
args["offsets"] = mask_cumsum[inp._offsets]
return NestedTensor(
values=res_values,
**args,
)
@register_jagged_func(
torch.ops.aten._nested_select_backward.default,
"grad_output: t, self: jt_all, dim: any, index: any",
)
def _nested_select_backward_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
grad_output = new_kwargs.pop("grad_output")
grad_input = torch.zeros_like(inp, dtype=grad_output.dtype)
grad_input.select(new_kwargs["dim"], new_kwargs["index"]).copy_(grad_output)
return grad_input
@register_jagged_func(torch.ops.aten.record_stream.default, "self: jt_all, s: any")
def record_stream_default(func, *args, **kwargs):
inp = args[0]
stream = args[1]
# ensure all components live until stream computation completes
func(inp._values, stream)
func(inp._offsets, stream)
if inp._lengths is not None:
func(inp._lengths, stream)
@register_jagged_func(
[
torch.ops.aten.new_empty.default,
torch.ops.aten.new_zeros.default,
torch.ops.aten.new_ones.default,
],
"self: jt_all, size: any, dtype: any?, layout: any?, device: any?, pin_memory: any?",
)
def new_empty_default(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
if len(new_kwargs["size"]) == 0:
return func(inp._values, **new_kwargs)
raise RuntimeError("new_empty() not supported for NJT with shape != ()")
@register_jagged_func(
[
torch.ops.aten.elu_backward.default,
torch.ops.aten.hardshrink_backward.default,
torch.ops.aten.hardsigmoid_backward.default,
torch.ops.aten.hardtanh_backward.default,
torch.ops.aten.softplus_backward.default,
torch.ops.aten.softshrink_backward.default,
],
"self: jt_all, ...",
)
def activation_backward(func, *args, **kwargs):
# first NJT arg is expected to be grad_output
grad_output = next(arg for arg in args if isinstance(arg, NestedTensor))
return NestedTensor(
func(
*(arg._values if isinstance(arg, NestedTensor) else arg for arg in args),
**kwargs,
),
**extract_kwargs(grad_output),
)
@register_jagged_func(torch.ops.aten.fill_.Scalar, "self: jt_all, value: any")
def fill__Scalar(func, *args, **kwargs):
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
inp = new_kwargs.pop("input")
func(inp._values, **new_kwargs)
return inp
from torch._higher_order_ops.flex_attention import (
flex_attention as flex_attention_hop,
flex_attention_backward as flex_attention_backward_hop,
)
from torch.fx.graph_module import GraphModule
@flex_attention_hop.py_impl(NestedTensor) # type: ignore[misc]
def flex_njt(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
score_mod: Callable,
block_mask: Tuple,
scale: float,
kernel_options: Dict[str, Any],
score_mod_other_buffers: Tuple = (),
mask_mod_other_buffers: Tuple = (),
) -> Tuple[torch.Tensor, torch.Tensor]:
assert query.dim() == 4 and key.dim() == 4 and value.dim() == 4
# TODO: Support this if needed; determine if NJT buffers need be unwrapped as dense.
if any(
isinstance(buf, torch.Tensor) and buf.is_nested
for buf in score_mod_other_buffers + mask_mod_other_buffers
):
raise RuntimeError(
"flex_attention(): Nested tensor score_mod / mask_mod buffers are not "
"currently supported. Please file an issue if this is important to you."
)
# need to pass dense tensor of shape (B, n_heads, sum(seq_len), D)
output = flex_attention_hop(
query.values().unsqueeze(0),
key.values().unsqueeze(0),
value.values().unsqueeze(0),
score_mod=score_mod,
block_mask=block_mask,
scale=scale,
kernel_options=kernel_options,
score_mod_other_buffers=score_mod_other_buffers,
mask_mod_other_buffers=mask_mod_other_buffers,
)
# wrap outputs as NJT
output_njt = torch.nested.nested_tensor_from_jagged(
output[0].transpose(1, 2).squeeze(0),
query._offsets, # type: ignore[attr-defined]
query._lengths, # type: ignore[attr-defined]
min_seqlen=query._maybe_min_seqlen, # type: ignore[attr-defined]
max_seqlen=query._maybe_max_seqlen, # type: ignore[attr-defined]
).transpose(1, 2)
logsumexp_njt = torch.nested.nested_tensor_from_jagged(
output[1].transpose(1, 2).squeeze(0),
query._offsets, # type: ignore[attr-defined]
query._lengths, # type: ignore[attr-defined]
min_seqlen=query._maybe_min_seqlen, # type: ignore[attr-defined]
max_seqlen=query._maybe_max_seqlen, # type: ignore[attr-defined]
).transpose(1, 2)
return (output_njt, logsumexp_njt)
@flex_attention_backward_hop.py_impl(NestedTensor) # type: ignore[misc]
def flex_njt_backward(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
out: torch.Tensor,
logsumexp: torch.Tensor,
grad_out: torch.Tensor,
grad_logsumexp: torch.Tensor,
fw_graph: Union[Callable, GraphModule],
joint_graph: GraphModule,
block_mask: Tuple,
scale: float,
kernel_options: Dict[str, Any],
score_mod_other_buffers: Tuple = (),
mask_mod_other_buffers: Tuple = (),
) -> Tuple[
torch.Tensor, torch.Tensor, torch.Tensor, Tuple[Optional[torch.Tensor], ...]
]:
output = flex_attention_backward_hop(
query.values().unsqueeze(0),
key.values().unsqueeze(0),
value.values().unsqueeze(0),
out=out.values().unsqueeze(0),
logsumexp=logsumexp.values().unsqueeze(0),
grad_out=grad_out.values().unsqueeze(0),
grad_logsumexp=grad_logsumexp.values().unsqueeze(0),
fw_graph=fw_graph,
joint_graph=joint_graph,
block_mask=block_mask,
scale=scale,
kernel_options=kernel_options,
score_mod_other_buffers=score_mod_other_buffers,
mask_mod_other_buffers=mask_mod_other_buffers,
)
# wrap grads as NJTs
dense_q_grad, dense_k_grad, dense_v_grad, score_mod_other_buffer_grads = output
njt_q_grad = torch.nested.nested_tensor_from_jagged(
dense_q_grad.transpose(1, 2).squeeze(0),
query._offsets, # type: ignore[attr-defined]
query._lengths, # type: ignore[attr-defined]
min_seqlen=query._maybe_min_seqlen, # type: ignore[attr-defined]
max_seqlen=query._maybe_max_seqlen, # type: ignore[attr-defined]
).transpose(1, 2)
njt_k_grad = torch.nested.nested_tensor_from_jagged(
dense_k_grad.transpose(1, 2).squeeze(0),
key._offsets, # type: ignore[attr-defined]
key._lengths, # type: ignore[attr-defined]
min_seqlen=key._maybe_min_seqlen, # type: ignore[attr-defined]
max_seqlen=key._maybe_max_seqlen, # type: ignore[attr-defined]
).transpose(1, 2)
njt_v_grad = torch.nested.nested_tensor_from_jagged(
dense_v_grad.transpose(1, 2).squeeze(0),
value._offsets, # type: ignore[attr-defined]
value._lengths, # type: ignore[attr-defined]
min_seqlen=value._maybe_min_seqlen, # type: ignore[attr-defined]
max_seqlen=value._maybe_max_seqlen, # type: ignore[attr-defined]
).transpose(1, 2)
return (njt_q_grad, njt_k_grad, njt_v_grad, score_mod_other_buffer_grads)
# Make the dummy available on the C++ side.
@register_jagged_func(torch.ops.aten._nested_get_jagged_dummy.default, "self: any")
def _nested_get_jagged_dummy(func, *args, **kwargs):
from torch.nested._internal.nested_tensor import _nt_view_dummy
return _nt_view_dummy()
with torch.library._scoped_library("aten", "IMPL") as aten:
aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "CPU")
aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "CUDA")
aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "Meta")
|