File: ops.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (2563 lines) | stat: -rw-r--r-- 91,144 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
# mypy: allow-untyped-defs
import functools
import math
import operator
from typing import *  # noqa: F403
from typing import List, Optional

import torch
import torch.nn.functional as F
from torch.fx.operator_schemas import normalize_function
from torch.nested._internal.sdpa import jagged_scaled_dot_product_attention

from .nested_tensor import NestedTensor


__all__: List[Any] = []

JAGGED_OPS_TABLE: Dict[Any, Any] = {}


def _outer_to_inner_dim(ndim, dim, ragged_dim, canonicalize=False):
    from torch._prims_common import canonicalize_dims

    if isinstance(dim, (tuple, list)):
        output = type(dim)(_outer_to_inner_dim(ndim, d, ragged_dim) for d in dim)
        # ensure no duplicates, which can result from both batch and ragged mapping to 0
        return type(output)(dict.fromkeys(output))

    if canonicalize:
        dim = canonicalize_dims(ndim, dim)

    assert dim >= 0 and dim < ndim

    # Map dim=0 (AKA batch dim) -> packed dim i.e. outer ragged dim - 1.
    # For other dims, subtract 1 to convert to inner space.
    return ragged_dim - 1 if dim == 0 else dim - 1


def _wrap_jagged_dim(
    ndim,
    dim,
    ragged_dim,
    op_name,
    convert_to_inner_dim=True,
    allow_ragged_dim=False,
    allow_batch_dim=False,
):
    from torch._prims_common import canonicalize_dims

    wrapped = canonicalize_dims(ndim, dim)
    if wrapped == ragged_dim and not allow_ragged_dim:
        raise RuntimeError(f"{op_name}(): not supported for NestedTensor on ragged dim")
    elif wrapped == 0 and not allow_batch_dim:
        raise RuntimeError(f"{op_name}(): not supported for NestedTensor on dim=0")
    ret = (
        _outer_to_inner_dim(ndim, wrapped, ragged_dim)
        if convert_to_inner_dim
        else wrapped
    )
    if allow_batch_dim:
        # Need to disambiguate whether we're operating on the batch dim or not.
        # Operating on dim=1 -> dim=0 after the inner dim conversion.
        operating_on_batch = wrapped == 0
        return (ret, operating_on_batch)
    return ret


def _wrap_jagged_dims(ndim, dims, op_name, ragged_idx=1):
    """
    For NestedTensor operators,
    wraps dimensions to non-negative values,
    and returns metadata related to reduction dimension(s).
    """
    from torch._prims_common import canonicalize_dims

    assert isinstance(
        dims, (tuple, list)
    ), f"_wrap_jagged_dims(): cannot iterate over dimensions of type {type(dims)}"

    wrapped_dims = [
        canonicalize_dims(ndim, d) for d in dims
    ]  # convert all indices to non-negative values

    operate_on_batch = 0 in wrapped_dims
    operate_on_ragged = ragged_idx in wrapped_dims
    operate_on_non_batch = any(d != 0 and d != ragged_idx for d in wrapped_dims)

    # ensure no duplicates, which can result from both batch and ragged mapping to 0
    outer_to_inner_dim = tuple(
        dict.fromkeys(_outer_to_inner_dim(ndim, d, ragged_idx) for d in wrapped_dims)
    )

    return outer_to_inner_dim, operate_on_batch, operate_on_ragged, operate_on_non_batch


def check_schema(schema_str: str, func, *args, **kwargs) -> None:
    named_arg_types = schema_str.split(", ")
    num_optional_args = [x.endswith("?") for x in named_arg_types].count(True)
    min_args = len(named_arg_types) - num_optional_args

    # special case: ellipses allows for any number of unchecked args at the end
    if named_arg_types[-1] == "...":
        named_arg_types = named_arg_types[:-1]
    else:
        if not (len(args) >= min_args and len(args) <= len(named_arg_types)):
            raise ValueError(
                f"NestedTensor {func.__name__}({schema_str}): expected at least {min_args} "
                f"arguments and at most {len(named_arg_types)} arguments, but got: "
                f"{len(args)} arguments"
            )

    arg_type_check_fns = {
        "t": lambda x: isinstance(x, torch.Tensor) and not isinstance(x, NestedTensor),
        "jt": lambda x: isinstance(x, NestedTensor)
        and x._lengths is None
        and x._ragged_idx == 1,  # ops with "jt" require contiguous JT only
        "jt_all": lambda x: isinstance(
            x, NestedTensor
        ),  # ops with "jt_all" can accept all kinds of JT
        "any": lambda x: True,
    }
    for i, named_arg_type in enumerate(named_arg_types):
        name, arg_type = named_arg_type.split(": ")
        is_optional = arg_type.endswith("?")
        normalized_arg_type = arg_type[:-1] if is_optional else arg_type
        if normalized_arg_type not in arg_type_check_fns.keys():
            raise AssertionError(f"Unknown arg type: {normalized_arg_type}")

        if i >= len(args):
            if not is_optional:
                raise ValueError(
                    f"NestedTensor {func.__name__}({schema_str}) "
                    f"missing required argument: {name}"
                )
            continue

        _check_fn = arg_type_check_fns[normalized_arg_type]

        def check_fn(x, is_optional=is_optional):
            if is_optional:
                return x is None or _check_fn(x)
            else:
                return _check_fn(x)

        if not check_fn(args[i]):
            type_to_desc = {
                "t": "tensor",
                "t?": "optional tensor",
                "jt": "contiguous jagged layout NestedTensor",
                "jt_all": "jagged layout NestedTensor",
                "any": "<any type>",
            }

            raise ValueError(
                f"NestedTensor {func.__name__}({schema_str}): expected {name} to be a "
                f"{type_to_desc[arg_type]}"
            )


def check_ragged_dim_same(
    func, a: NestedTensor, a_name: str, b: NestedTensor, b_name: str
) -> None:
    # Calling into .shape here
    if a._size[a._ragged_idx] != b._size[b._ragged_idx]:
        raise RuntimeError(
            f"NestedTensor {func.__name__}: expected {a_name} and {b_name} to have the "
            "same exact offsets tensor."
        )


# returns True if the raggedness-relevant portions of the NT shape
# match those of the specified size
def raggedness_matches(nt, size):
    end = nt._ragged_idx + 1
    nt_ragged = nt._size[:end]
    size_ragged = size[:end]
    return len(nt_ragged) == len(size_ragged) and (
        all(ns == s or s == -1 for ns, s in zip(nt_ragged, size_ragged))
    )


def squeeze_leading_ones(t):
    # Note: [ Squeezing leading ones ]
    #
    # Squeeze leading ones from t.
    #
    # We want:
    #   (B, j0, ?, ?) + (1, 1, ?, ?) -> (B, j0, ?, ?)
    #   (B, j0, ?, ?) + (1, 1, 1, ?, ?) -> (1, B, j0, ?, ?)  (not yet supported)
    #
    # 1) Squeeze extra ones and grab values from NT
    #   (1, 1, ?, ?) -> (?, ?)   and   (sum(*), ?, ?) -> (B, j0, ?, ?)
    # 2) Do dense broadcasting:
    #   (sum(*), ?, ?) + (?, ?) -> (sum(*), ?, ?)
    # 3) Construct nested tensor
    #   (sum(*), ?, ?) -> (B, j0, ?, ?)
    #
    # If unsqueezing on the 0th dim becomes supported, we would unsqueeze
    # at step (4) and we would need to update this function to record how
    # many ones we unsqueezed.
    while t.dim() > 0 and t.shape[0] == 1:
        t = t.squeeze(0)
    return t


def register_func(tables, aten_ops, schema_str):
    if not isinstance(aten_ops, list):
        aten_ops = [aten_ops]
    if not isinstance(tables, list):
        tables = [tables]

    def wrapper(func):
        for aten_op in aten_ops:

            def get_inner(aten_op):
                def inner(*args, **kwargs):
                    check_schema(schema_str, func, *args, **kwargs)
                    return func(aten_op, *args, **kwargs)

                return inner

            for table in tables:
                table[aten_op] = get_inner(aten_op)
        return func

    return wrapper


register_jagged_func = functools.partial(register_func, JAGGED_OPS_TABLE)


def lookup_jagged(func, *args, **kwargs) -> Optional[Callable]:
    dispatch_func = JAGGED_OPS_TABLE.get(func, None)
    if dispatch_func is not None:
        return dispatch_func

    # Handle pointwise fallbacks
    if torch.Tag.pointwise in func.tags:
        from torch.fx.experimental.symbolic_shapes import is_nested_int

        # No pointwise ops legitimately accept nested int inputs. Without this check,
        # they will be incorrectly interpreted as tensors.
        # See https://github.com/pytorch/pytorch/issues/138496
        for arg in args:
            if is_nested_int(arg):
                raise RuntimeError(
                    f"NestedTensor {func.__name__}: invalid argument {arg}"
                )

        # Assume there aren't additional tensors that aren't the "unary/binary" args
        num_tensor_args = sum(isinstance(x, torch.Tensor) for x in args)
        if num_tensor_args == 1:
            # Build up the check schema string. The first tensor arg is assumed to be
            # an NJT and other args are sent through as-is.
            schema_parts = []
            for arg in func._schema.arguments:
                if isinstance(arg.type, torch.TensorType):
                    schema_parts.append(f"{arg.name}: jt_all")
                    break
                else:
                    schema_parts.append(f"{arg.name}: any")
            schema_parts.append("...")
            check_schema_str = ", ".join(schema_parts)
            check_schema(check_schema_str, func, *args, **kwargs)
            return functools.partial(jagged_unary_pointwise, func)
        elif num_tensor_args == 2:
            check_schema("lhs: any, rhs: any, ...", func, *args, **kwargs)
            return functools.partial(jagged_binary_pointwise, func)

    return None


def extract_kwargs(arg):
    kwargs = {
        "offsets": arg.offsets(),
        "lengths": arg.lengths(),
        "_metadata_cache": arg._metadata_cache,
        "_ragged_idx": arg._ragged_idx,
    }
    return kwargs


def jagged_unary_pointwise(func, *args, **kwargs):
    # assume if we get here that there is a single NJT input in the args
    njt = next(arg for arg in args if isinstance(arg, NestedTensor))
    return NestedTensor(
        func(*(arg._values if arg is njt else arg for arg in args), **kwargs),
        **extract_kwargs(njt),
    )


def jagged_binary_pointwise(func, *args, **kwargs):
    a, b = args[0], args[1]
    assert isinstance(a, NestedTensor) or isinstance(b, NestedTensor)

    mismatch_error_msg = (
        "cannot call binary pointwise function {} with inputs of shapes {} and {}"
    )
    # a is NT, b is NT
    if isinstance(a, NestedTensor) and isinstance(b, NestedTensor):
        # ex: (B, j0, D) + (B, j0, D)
        # ex: (B, j0, D) + (B, j0, 1)
        if raggedness_matches(a, b._size):
            return NestedTensor(
                func(a._values, b._values, *args[2:], **kwargs), **extract_kwargs(a)
            )
        raise RuntimeError(mismatch_error_msg.format(func.__name__, a._size, b._size))
    # either a is NT or b is NT at this point
    a_is_nt = isinstance(a, NestedTensor)
    extracted_kwargs = extract_kwargs(a) if a_is_nt else extract_kwargs(b)

    # === Handle broadcasting across the batch / ragged dims ===

    # Easy case: take advantage of pre-existing broadcasting logic
    # ex: (B, j0, ?, ?) + (?) -> (B, j0, ?, ?)
    # ex: (B, j0, ?, ?) + (?, ?) -> (B, j0, ?, ?)
    # ex: (B, j0, ?, ?) + (1, 1, ?, ?) -> (B, j0, ?, ?)
    nt, t = (a, b) if a_is_nt else (b, a)
    # See Note: [ Squeezing leading ones ]
    if t.dim() > nt.dim():
        raise NotImplementedError("NYI: broadcasting NT with T with larger dim")
    t_squeezed = squeeze_leading_ones(t)
    if nt.dim() >= t_squeezed.dim() + 2:
        lhs, rhs = (nt._values, t_squeezed) if a_is_nt else (t_squeezed, nt._values)
        return NestedTensor(func(lhs, rhs, *args[2:], **kwargs), **extracted_kwargs)

    # Harder case: do manual broadcasting when NT dim == non-NT dim
    # ex: (B, j0, D_0, D_1) + (B, 1, D_0, D_1) -> (B, j0, D_0, D_1)
    if a.dim() == b.dim():
        # ex: (B, j0, D_0, D_1) + (1, 1, D_0, D_1) -> should
        # be (B, j0, D_0, D_1) but not yet supported
        if a.shape[0] != b.shape[0]:
            raise RuntimeError(
                mismatch_error_msg.format(func.__name__, a.shape, b.shape)
            )

        from .nested_tensor import nested_from_padded

        # handle broadcasting via padded dense -> jagged conversion
        min_seqlen = nt._maybe_min_seqlen
        max_seqlen = nt._maybe_max_seqlen
        padded_max_S = max_seqlen
        total_L = nt._values.shape[nt._ragged_idx - 1]
        if padded_max_S is None:
            # use upper bound on max seqlen if it's not present
            padded_max_S = total_L

        # convert dense tensor -> jagged
        t = t.expand(
            [x if i != nt._ragged_idx else padded_max_S for i, x in enumerate(t.shape)]
        )
        t_as_nt = nested_from_padded(
            t,
            offsets=nt._offsets,
            ragged_idx=nt._ragged_idx,
            sum_S=total_L,
            min_seqlen=min_seqlen,
            max_seqlen=max_seqlen,
        )

        # function call with two NJTs
        lhs, rhs = (nt, t_as_nt) if a_is_nt else (t_as_nt, nt)
        return func(lhs, rhs, *args[2:], **kwargs)

    # ex: (B, j0, D_0, D_1) + (A, B, 1, D_0, D_1) -> error because this breaks the invariant
    # that ragged dim is wrt left-most batch dim
    raise RuntimeError(mismatch_error_msg.format(func.__name__, a.shape, b.shape))


def jagged_torch_function(func, *args, **kwargs):
    # SDPA has special kernels that handle nested tensors.
    # Dispatch to the correct implementation here
    if func is torch._C._nn.scaled_dot_product_attention:
        return jagged_scaled_dot_product_attention(*args, **kwargs)

    if func.__name__ == "apply_":
        func(args[0]._values, *args[1:], **kwargs)
        return args[0]

    # Handle flatten() here because it's CompositeImplicit.
    if func.__name__ == "flatten":

        def _flatten_sig(input, start_dim=0, end_dim=-1):
            pass

        _, new_kwargs = normalize_function(  # type: ignore[misc]
            _flatten_sig, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
        )

        inp = new_kwargs.pop("input")

        # NB: stay in outer dim space because we're going to redispatch on a NT input
        start_dim = _wrap_jagged_dim(
            inp.dim(),
            new_kwargs["start_dim"],
            inp._ragged_idx,
            "flatten",
            convert_to_inner_dim=False,
        )
        end_dim = _wrap_jagged_dim(
            inp.dim(),
            new_kwargs["end_dim"],
            inp._ragged_idx,
            "flatten",
            convert_to_inner_dim=False,
        )

        if start_dim == end_dim:
            return inp

        product = functools.reduce(operator.mul, inp.shape[start_dim : end_dim + 1])
        new_shape = (*inp.shape[:start_dim], product, *inp.shape[end_dim + 1 :])

        return inp.reshape(*new_shape)

    # Handle nested-specific input validation for CompositeImplicit rms_norm
    if func.__name__ == "rms_norm":

        def _rms_norm_sig(input, normalized_shape, weight=None, eps=None):
            pass

        _, new_kwargs = normalize_function(  # type: ignore[misc]
            _rms_norm_sig, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
        )

        inp = new_kwargs.pop("input")
        normalized_shape = new_kwargs.pop("normalized_shape")

        # can't normalize over the ragged dim (yet)
        max_normalizable = inp.dim() - inp._ragged_idx - 1
        if len(normalized_shape) > max_normalizable:
            raise ValueError(
                "rms_norm(): Normalization over the ragged dim not supported for nested tensors"
            )

        with torch._C.DisableTorchFunctionSubclass():
            return func(*args, **kwargs)

    raise NotImplementedError(func)


@register_jagged_func(
    [
        torch.ops.aten.is_non_overlapping_and_dense.default,
        torch.ops.aten.sym_size.default,
        torch.ops.aten.dim.default,
        torch.ops.aten.numel.default,
        torch.ops.aten.sym_numel.default,
        torch.ops.aten.sym_stride.default,
        torch.ops.aten.sym_storage_offset.default,
    ],
    "self: jt_all",
)
def tensor_attr_supported_getter(func, *args, **kwargs):
    if func == torch.ops.aten.is_non_overlapping_and_dense.default:
        return False

    if func == torch.ops.aten.sym_size.default:
        return args[0]._size

    if func == torch.ops.aten.dim.default:
        return len(args[0]._size)

    if func in (torch.ops.aten.sym_numel.default, torch.ops.aten.numel.default):
        if args[0]._lengths is not None:
            return int(sum(args[0]._lengths) * math.prod(args[0]._size[2:]))
        return args[0]._values.numel()

    if func == torch.ops.aten.sym_stride.default:
        return args[0]._strides

    if func == torch.ops.aten.sym_storage_offset.default:
        return args[0]._values.storage_offset()


@register_jagged_func(torch.ops.prim.layout.default, "self: jt_all")
def prim_layout_default(func, *args, **kwargs):
    return torch.jagged


@register_jagged_func(
    [torch.ops.aten.size.default],
    "self: jt_all",
)
def tensor_attr_unsupported_getter(func, *args, **kwargs):
    if func == torch.ops.aten.size.default:
        raise RuntimeError(
            "NestedTensor does not support directly calling torch.ops.aten.size; "
            "please use `nested_tensor.size()` instead."
        )


@register_jagged_func(torch.ops.aten.is_contiguous.default, "self: jt_all")
def is_contiguous_general(func, *args, **kwargs):
    from torch._prims_common import is_contiguous_for_memory_format

    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )
    inp = new_kwargs.pop("input")

    # If created from narrow() check for lengths
    if inp.lengths() is not None:
        return False

    new_kwargs["memory_format"] = new_kwargs.get(
        "memory_format", torch.contiguous_format
    )
    if new_kwargs["memory_format"] == torch.preserve_format:
        return True
    return is_contiguous_for_memory_format(inp._values, **new_kwargs)


register_jagged_func(
    torch.ops.aten.is_contiguous.memory_format, "self: jt_all, memory_format: any?"
)(is_contiguous_general)


@register_jagged_func(
    torch.ops.aten.clone.default, "input: jt_all, memory_format: any?"
)
def clone_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    new_meta = extract_kwargs(inp)

    if inp._lengths is not None:
        if new_kwargs["memory_format"] == torch.contiguous_format:
            # need to copy to remove "holes" non-contiguity / lengths metadata
            # TODO: write a kernel for this
            from .nested_tensor import jagged_from_list

            # TODO: We probably want the output to have the same ragged structure / nested int.
            assert (
                inp._ragged_idx == 1
            ), "NJT with ragged_idx != 1 not supported for contiguous clone"
            contig, _ = jagged_from_list(inp.unbind(), offsets=None)
            return contig

    return NestedTensor(func(inp._values, **new_kwargs), **new_meta)


@register_jagged_func(torch.ops.aten.linear.default, "input: jt, weight: t, bias: t?")
def linear_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(
    torch.ops.aten.linear_backward.default,
    "self: jt, grad_output: jt, weight: t, output_mask: any",
)
def linear_backward_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    grad_output = new_kwargs.pop("grad_output")
    weight = new_kwargs.pop("weight")
    output_mask = new_kwargs.pop("output_mask")

    ds, dw, db = None, None, None
    check_ragged_dim_same(func, inp, "self", grad_output, "grad_output")
    if output_mask[0]:
        ds = NestedTensor(
            torch.matmul(grad_output._values, weight), **extract_kwargs(grad_output)
        )
    if output_mask[1]:
        # NB: Fold dims of values for input and grad_output to treat them as 2D. This
        # trick avoids materializing large intermediates and immediately reducing over
        # them via sum(). This is equivalent to computing:
        #     torch.matmul(grad_output._values.transpose(-2, -1), inp._values)
        # and then summing over the leading dimensions to get a 2D weight grad.
        grad_2d = grad_output._values.reshape(-1, weight.size(0))
        input_2d = inp._values.reshape(-1, weight.size(1))
        dw = torch.matmul(grad_2d.t(), input_2d)
    if output_mask[2]:
        # NB: autograd engine will sum over all but the last dim to get a 1D bias grad.
        db = grad_output._values
    return (ds, dw, db)


@register_jagged_func(torch.ops.aten.to.dtype, "input: jt_all, dtype: any")
def to_dtype(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(torch.ops.aten._to_copy.default, "self: jt_all")
def to_copy_default(func, *args, **kwargs):
    from .nested_tensor import _tensor_symint_registry

    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    # don't change layout
    new_kwargs.pop("layout")

    new_values = func(inp._values, **new_kwargs)
    new_offsets = inp._offsets.to(device=new_values.device)
    new_lengths = None
    if inp._lengths is not None:
        new_lengths = inp._lengths.to(device=new_values.device)

    from torch._subclasses.fake_tensor import FakeTensor
    from torch._subclasses.functional_tensor import (
        FunctionalTensor,
        mb_unwrap_functional_tensor,
    )

    ragged_source = inp._offsets if inp._lengths is None else inp._lengths
    new_thing = new_offsets if new_lengths is None else new_lengths
    if isinstance(new_thing, (FakeTensor, FunctionalTensor)):
        # Temporary hack until we have the union find
        tgt = mb_unwrap_functional_tensor(new_thing)
        src = mb_unwrap_functional_tensor(ragged_source)
        tgt.nested_int_memo = src.nested_int_memo
    else:
        _tensor_symint_registry[new_thing] = _tensor_symint_registry[ragged_source]
    inp_kwargs = extract_kwargs(inp)
    inp_kwargs["offsets"] = new_offsets
    inp_kwargs["lengths"] = new_lengths

    output = NestedTensor(new_values, **inp_kwargs)
    return output


@register_jagged_func(
    torch.ops.aten.copy_.default, "self: jt_all, src: jt_all, non_blocking: any?"
)
def copy_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )
    inp = new_kwargs.pop("input")
    src = new_kwargs.pop("src")
    if inp._size != src._size:
        raise RuntimeError(
            "copy_ only supports Nested Tensors that have same size and the exact same offset tensor."
        )
    # AOTD allows mutations of inputs only, (not views of the inputs).
    # NJT.values() returns _values.detach() to workaround some issues.
    # To keep mutation in the graph, AOTD manually calls copy_ on the input (NJT).
    # Here we directly mutate self._values to not emit .detach() in the graph, which would make it non-compilable.
    inp._values.copy_(src._values)
    return inp


register_jagged_func(torch.ops.aten.detach.default, "self: jt_all")(
    jagged_unary_pointwise
)


@register_jagged_func(
    [
        torch.ops.aten.empty_like.default,
        torch.ops.aten.ones_like.default,
        torch.ops.aten.zeros_like.default,
        torch.ops.aten.randn_like.default,
    ],
    "self: jt_all",
)
def like_factory_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    # Default layout is technically torch.strided but only jagged is supported here.
    # Rather than force users to specify the layout, assume jagged.
    # This should be set to strided for redispatching on values.
    new_kwargs["layout"] = torch.strided

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(torch.ops.aten.zero_.default, "self: jt_all")
def zero__default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    func(inp._values)
    return inp


@register_jagged_func(
    torch.ops.aten._softmax.default, "self: jt_all, dim: any, half_to_float: any"
)
def _softmax_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    if isinstance(new_kwargs["dim"], tuple):
        raise RuntimeError(
            "softmax(): not supported for dimensions of type 'tuple' for NestedTensor"
        )

    inp = new_kwargs.pop("input")

    (
        new_kwargs["dim"],
        reduce_on_batch,
        reduce_on_ragged,
        _reduce_on_non_batch,
    ) = _wrap_jagged_dims(
        inp.dim(),
        (new_kwargs["dim"],),
        "softmax",
        inp._ragged_idx,
    )

    if reduce_on_batch:
        raise RuntimeError(
            "softmax(): not supported when reducing across the batch dimension for NestedTensor"
        )

    if reduce_on_ragged and inp._ragged_idx > 1:
        raise RuntimeError(
            "softmax(): not supported when reducing along the ragged dimension for ragged_idx > 1 for NestedTensor"
        )

    if reduce_on_ragged and inp._lengths is not None:
        raise RuntimeError(
            "softmax(): not supported where lengths is not None "
            + "if reducing across the ragged dimension for NestedTensor"
        )

    new_kwargs["dim"] = new_kwargs["dim"][
        0
    ]  # torch.softmax takes in the reduction dimension as an integer

    if reduce_on_ragged:
        padded_softmax_values = torch.nn.functional.softmax(
            torch.ops.aten._jagged_to_padded_dense_forward(
                inp._values.reshape(
                    inp._values.shape[0], -1
                ),  # values are required to be 2D tensors for j2pd
                [inp._offsets],
                max_lengths=[inp._max_seqlen],  # max length of ragged dimension
                padding_value=float("-inf"),  # e^-inf = 0
            ),
            dim=inp._ragged_idx,
        )

        softmax_values = torch.ops.aten._padded_dense_to_jagged_forward(
            padded_softmax_values,
            [inp._offsets],
            total_L=inp._values.shape[
                0
            ],  # providing this parameter helps avoid a GPU/CPU sync
        ).reshape(
            -1, *inp._values.shape[1:]
        )  # expand softmax_values back to original shape (inp._values.shape)

        return NestedTensor(softmax_values, **extract_kwargs(inp))

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(
    torch.ops.aten._softmax_backward_data.default,
    "grad_output: jt, output: jt, dim: any, input_dtype: any",
)
def _softmax_backward(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )
    grad_out = new_kwargs.pop("grad_output")
    output = new_kwargs.pop("output")
    return NestedTensor(
        func(grad_out._values, output._values, **new_kwargs), **extract_kwargs(grad_out)
    )


@register_jagged_func(
    torch.ops.aten.native_dropout.default, "self: jt, float: any, train: any?"
)
def native_dropout_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    out1, out2 = func(inp._values, **new_kwargs)
    return (
        NestedTensor(out1, **extract_kwargs(inp)),
        NestedTensor(out2, **extract_kwargs(inp)),
    )


@register_jagged_func(
    torch.ops.aten.native_dropout_backward.default,
    "grad_output: jt, mask: jt, scale: any",
)
def native_dropout_backward_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )
    grad_output = new_kwargs.pop("grad_output")
    mask = new_kwargs.pop("mask")
    return NestedTensor(
        func(grad_output._values, mask._values, **new_kwargs),
        **extract_kwargs(grad_output),
    )


@register_jagged_func(
    torch.ops.aten.prod.dim_int,
    "self: jt_all, dim: any, keepdim: any?, dtype: any?",
)
def prod_dim_int(func, *args, **kwargs):
    return _apply_reduction(func, "prod", 1, *args, **kwargs)


@register_jagged_func(torch.ops.aten.prod.default, "self: jt_all, dtype: any?")
def prod_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    return func(inp._values, **new_kwargs)


@register_jagged_func(
    torch.ops.aten.split.Tensor, "self: jt, split_size: any, dim: any?"
)
def split_tensor(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    new_kwargs["dim"] = _wrap_jagged_dim(
        inp.dim(), new_kwargs["dim"], inp._ragged_idx, "split"
    )

    return tuple(
        NestedTensor(values=x, **extract_kwargs(inp))
        for x in func(inp._values, **new_kwargs)
    )


@register_jagged_func(
    torch.ops.aten.split_with_sizes.default, "self: jt, split_sizes: any, dim: any?"
)
def split_with_sizes_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    new_kwargs["dim"] = _wrap_jagged_dim(
        inp.dim(), new_kwargs["dim"], inp._ragged_idx, "split_with_sizes"
    )

    return [
        NestedTensor(values=x, **extract_kwargs(inp))
        for x in func(inp._values, **new_kwargs)
    ]


@register_jagged_func(
    torch.ops.aten.narrow.default, "self: jt, dim: any, start: any, length: any"
)
def narrow(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )
    inp = new_kwargs.pop("input")

    dim = _wrap_jagged_dim(inp.dim(), new_kwargs["dim"], inp._ragged_idx, "narrow")
    values = func(
        inp._values,
        dim=dim,
        start=new_kwargs["start"],
        length=new_kwargs["length"],
    )
    return NestedTensor(values, **extract_kwargs(inp))


@register_jagged_func(torch.ops.aten.chunk.default, "self: jt, chunks: any, dim: any?")
def chunk_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    new_kwargs["dim"], operating_on_batch = _wrap_jagged_dim(
        inp.dim(), new_kwargs["dim"], inp._ragged_idx, "chunk", allow_batch_dim=True
    )

    if operating_on_batch:
        chunks = new_kwargs["chunks"]
        dim0_size = inp._size[0]
        chunk_size = math.ceil(dim0_size / chunks)

        # get _offsets of the chunks
        lengths = inp._offsets.diff()
        chunked_lengths = lengths.chunk(chunks)
        chunked_offsets = [torch.cumsum(x, dim=0) for x in chunked_lengths]
        chunked_offsets = [F.pad(x, (1, 0), value=0) for x in chunked_offsets]  # type: ignore[arg-type]
        nested_kwargs = [
            {"offsets": per_offsets, "_ragged_idx": inp._ragged_idx}
            for per_offsets in chunked_offsets
        ]

        # get _values of the chunks
        split_sizes = [x.sum().item() for x in chunked_lengths]
        chunk_values = inp._values.split(split_sizes)

        # Note that the actual number of chunks returned is not necessarily the same as
        # the input number; it can be counter-intuitive, but it matches dense behavior.
        return [
            NestedTensor(values=chunk_values[i], **(nested_kwargs[i]))
            for i in range(0, len(chunk_values))
        ]
    else:
        return [
            NestedTensor(values=x, **extract_kwargs(inp))
            for x in func(inp._values, **new_kwargs)
        ]


@register_jagged_func(torch.ops.aten.unbind.int, "self: jt_all, dim: any?")
def unbind_int(func, *args, **kwargs):
    # Note that this specializes on the length of the offsets
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    dim = new_kwargs["dim"]
    if dim != 0:
        raise RuntimeError("unbind(): only supported for NestedTensor on dim=0")

    inp = new_kwargs.pop("input")
    values = inp.values()
    offsets = inp.offsets()
    lengths = inp.lengths()
    ragged_idx = inp._ragged_idx

    def _torch_check(_lengths: List[int], _offsets: Optional[List[int]] = None):
        # This torch._check and torch._check_is_size are needed for torch.compile
        # symbolic shapes processing.
        # offsets and lengths are symbolic variables during compilation,
        # we guarantee the correct offsets/lengths correspondence:
        # sum of lengths <= total ragged_dim_size
        # every length and offset are size-like variable (allows sym shapes to reason it as [2, inf))
        # offset[i] + length[i] <= ragged_dim_size, for unbind and split dim correctness
        # offsets[i] <= ragged_dim_size

        lengths_sum = 0
        ragged_dim_size = values.shape[ragged_idx - 1]
        for i in range(len(_lengths)):
            torch._check_is_size(_lengths[i])
            torch._check(_lengths[i] <= ragged_dim_size)

            lengths_sum += _lengths[i]
            if _offsets is not None:
                torch._check(
                    _offsets[i] + _lengths[i] <= ragged_dim_size,
                    lambda: "unbind(): nested tensor offsets and lengths do not match ragged_idx dimension",
                )
        torch._check(lengths_sum <= ragged_dim_size)

        if _offsets is not None:
            for i in range(len(_offsets)):
                torch._check_is_size(_offsets[i])
                torch._check(_offsets[i] <= ragged_dim_size)

    if lengths is None:
        lengths_scalars = offsets.diff().tolist()
        _torch_check(lengths_scalars)

        return torch.split(values, lengths_scalars, dim=(ragged_idx - 1))

    if ragged_idx <= 0:
        raise RuntimeError(
            "unbind(): nested tensor ragged_idx out of bounds (should be >= 1)"
        )

    lengths_scalars = lengths.tolist()
    offsets_scalars = offsets.tolist()

    _torch_check(lengths_scalars, offsets_scalars)

    return [
        torch.narrow(
            values,
            dim=(ragged_idx - 1),
            start=offsets_scalars[i],
            length=lengths_scalars[i],
        )
        for i in range(lengths.shape[0])
    ]


@register_jagged_func(torch.ops.aten.squeeze.dim, "self: jt, dim: any")
def squeeze_dim(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    values = inp._values

    new_kwargs["dim"] = _wrap_jagged_dim(
        len(inp._size), new_kwargs["dim"], inp._ragged_idx, "squeeze"
    )
    return NestedTensor(func(values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(torch.ops.aten.unsqueeze.default, "self: jt_all, dim: any")
def unsqueeze_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    values = inp._values

    # Account for collapsed jagged dim
    dim = new_kwargs["dim"]
    new_kwargs["dim"] = _wrap_jagged_dim(
        len(inp._size) + 1, dim, inp._ragged_idx, "unsqueeze", allow_ragged_dim=True
    )

    # ragged_idx changes if a dimension is added before it
    output_kwargs = extract_kwargs(inp)
    if new_kwargs["dim"] <= inp._ragged_idx - 1:
        output_kwargs["_ragged_idx"] += 1

    return NestedTensor(func(values, **new_kwargs), **output_kwargs)


@register_jagged_func(torch.ops.aten.cat.default, "tensors: any, dim: any")
def cat_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    tensors = new_kwargs.pop("tensors")

    # Convert any non-nested to nested
    nested = [t for t in tensors if t.is_nested]
    assert len(nested) > 0
    first = nested[0]
    tensors = [t if t.is_nested else t.expand_as(first) for t in tensors]

    # Account for collapsed jagged dim
    dim = new_kwargs["dim"]
    new_kwargs["dim"] = _wrap_jagged_dim(
        len(first.shape), dim, first._ragged_idx, "cat"
    )

    return NestedTensor(
        func([t._values for t in tensors], **new_kwargs), **extract_kwargs(tensors[0])
    )


@register_jagged_func(torch.ops.aten.matmul.default, "self: jt_all, other: any")
def matmul_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    other = new_kwargs.pop("other")

    def _unbind_impl(a, b):
        return [
            func(a_comp, b_comp) for (a_comp, b_comp) in zip(a.unbind(), b.unbind())
        ]

    def _padded_impl(a, b):
        assert a.is_nested and not b.is_nested
        nt = a

        from .nested_tensor import nested_from_padded

        min_seqlen = nt._maybe_min_seqlen
        max_seqlen = nt._maybe_max_seqlen
        padded_max_S = max_seqlen
        total_L = nt._values.shape[nt._ragged_idx - 1]
        if padded_max_S is None:
            # use upper bound on max seqlen if it's not present
            padded_max_S = total_L

        padded_shape = (
            *nt.shape[: nt._ragged_idx],
            padded_max_S,
            *nt.shape[nt._ragged_idx + 1 :],
        )
        padded_nt = nt.to_padded_tensor(0.0, output_size=padded_shape)
        return nested_from_padded(
            func(padded_nt, b),
            offsets=nt._offsets,
            ragged_idx=nt._ragged_idx,
            sum_S=total_L,
            min_seqlen=min_seqlen,
            max_seqlen=max_seqlen,
        )

    # TODO: Back these with proper kernels (e.g. grouped GEMM)
    # NJT x dense
    if inp.is_nested and not other.is_nested:
        # (B, j1, D) x (B, D, E) => (B, j1, E)
        if inp.dim() >= 3 and inp.dim() == other.dim():
            # convert to padded for this
            return _padded_impl(inp, other)
        # Support broadcasting the dense:
        # (B, j1, D) x (D, E) => (B, j1, E)
        # (B, j1, D, E) x (E, F) => (B, j1, D, F)
        # etc.
        elif other.dim() == 2 and inp.dim() > other.dim():
            return NestedTensor(
                func(inp._values, other, **new_kwargs), **extract_kwargs(inp)
            )
    # NJT x NJT
    elif inp.is_nested and other.is_nested:
        # Support ragged batch dim:
        # (B, j1, D, E) x (B, j1, E, F) => (B, j1, D, F), etc.
        if inp.dim() > 3 and other.dim() > 3 and raggedness_matches(inp, other._size):
            return NestedTensor(func(inp._values, other._values), **extract_kwargs(inp))
        # Support reducing over ragged with dense output:
        # (B, D, j1) x (B, j1, E) => (B, D, E)
        elif (
            inp.dim() == 3
            and other.dim() == 3
            and inp._ragged_idx == 2
            and other._ragged_idx == 1
            and inp.size(inp._ragged_idx) == other.size(other._ragged_idx)
        ):
            # do unbind for this; can't use padded conversion due to j1 in last dim
            return torch.stack(_unbind_impl(inp, other))

    raise RuntimeError(
        f"matmul(): not supported between inputs of shapes {inp._size} and {other.shape}"
    )


@register_jagged_func(torch.ops.aten.bmm.default, "self: jt_all, mat2: any")
def bmm_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    other = new_kwargs.pop("mat2")

    if inp.dim() != 3:
        raise ValueError("bmm(): input must be 3D")
    if other.dim() != 3:
        raise ValueError("bmm(): mat2 must be 3D")

    return matmul_default(torch.ops.aten.matmul.default, inp, other)


@register_jagged_func(
    torch.ops.aten.expand.default, "self: jt_all, size: any, implicit: any?"
)
def expand_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    size = new_kwargs["size"]

    assert ("implicit" not in new_kwargs) or (not new_kwargs.pop("implicit"))
    if not raggedness_matches(inp, size):
        raise RuntimeError(f"expand(): cannot expand shape {inp._size} -> {size}")

    expand_arg = [-1 if d == inp._ragged_idx else size[d] for d in range(1, inp.dim())]
    return NestedTensor(func(inp._values, expand_arg), **extract_kwargs(inp))


@register_jagged_func(torch.ops.aten.expand_as.default, "self: t, other: jt")
def expand_as_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    other = new_kwargs.pop("other")

    return NestedTensor(func(inp, other._values), **extract_kwargs(other))


@register_jagged_func(torch.ops.aten.broadcast_to.default, "self: jt_all, size: any")
def broadcast_to(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    size = new_kwargs.pop("size")

    if len(size) <= inp.dim():
        return inp.expand([*(1 for _ in range(inp.dim() - len(size))), *size])

    raise ValueError(
        "broadcast_to(): broadcasting to a higher-dim shape is currently not supported "
        "for nested tensors with the jagged layout"
    )


@register_jagged_func(torch.ops.aten.broadcast_tensors.default, "tensors: any")
def broadcast_tensors(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    tensors = new_kwargs.pop("tensors")
    if len(tensors) == 0:
        raise ValueError("broadcast_tensors(): expected at least one tensor input")
    if len(tensors) == 1:
        return tensors[0]

    outs = []
    broadcast_shape = torch.broadcast_shapes(*(t.shape for t in tensors))
    # Pull out the first NJT. If broadcast_shapes() worked, the nested ints are compatible.
    njt = next(t for t in tensors if isinstance(t, NestedTensor))
    for t in tensors:
        if t.is_nested:
            outs.append(t.broadcast_to(broadcast_shape))
        elif t.dim() < len(broadcast_shape):
            outs.append(
                NestedTensor(t.broadcast_to(njt._values.shape), **extract_kwargs(njt))
            )
        else:
            raise ValueError(
                "broadcast_tensors(): broadcasting nested tensors with dense tensors of equal "
                "or higher dim is not currently supported"
            )

    return tuple(outs)


@register_jagged_func(
    torch.ops.aten.where.self, "condition: jt_all, self: any, other: any"
)
def where_self(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    condition = new_kwargs.pop("condition")
    inp = new_kwargs.pop("input")
    other = new_kwargs.pop("other")

    # if the tensors aren't compatible, broadcast_tensors() will let us know
    condition, inp, other = torch.broadcast_tensors(condition, inp, other)

    return NestedTensor(
        func(condition._values, inp._values, other._values, **new_kwargs),
        **extract_kwargs(condition),
    )


@register_jagged_func(torch.ops.aten._pin_memory.default, "self: jt, device: any?")
def _pin_memory_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(torch.ops.aten.is_pinned.default, "self: jt, device: any?")
def is_pinned_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    return func(inp._values, **new_kwargs)


@register_jagged_func(
    torch.ops.aten.is_same_size.default, "self: jt_all, other: jt_all"
)
def is_same_size_default(func, *args, **kwargs):
    return args[0]._size == args[1]._size


def _apply_reduction(func, func_name, identity_element, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    # some ops use dim=None to indicate a full reduction; some use an empty dim list
    full_reduction = new_kwargs["dim"] is None or (
        isinstance(new_kwargs["dim"], (tuple, list)) and len(new_kwargs["dim"]) == 0
    )
    if full_reduction:
        out = func(inp._values, **new_kwargs)
        if new_kwargs.get("keepdim", False):
            if isinstance(out, (tuple, list)):
                # some ops return multiple things; unsqueeze all of them
                out = type(out)(o.unsqueeze(inp._ragged_idx) for o in out)
            else:
                out = out.unsqueeze(inp._ragged_idx)
        return out

    # some ops support lists of dims; some don't
    dim_to_convert = new_kwargs["dim"]
    is_dimlist = isinstance(new_kwargs["dim"], (tuple, list))
    if not is_dimlist:
        dim_to_convert = [dim_to_convert]

    (
        converted_dim,
        reduce_on_batch,
        reduce_on_ragged,
        reduce_on_non_batch,
    ) = _wrap_jagged_dims(
        inp.dim(),
        dim_to_convert,
        f"{func_name}",
        inp._ragged_idx,
    )

    if not is_dimlist:
        # convert back from list
        converted_dim = converted_dim[0]
    new_kwargs["dim"] = converted_dim

    if reduce_on_ragged and inp._lengths is not None:
        raise RuntimeError(
            f"{func_name}(): reducing across the ragged dimension is not supported "
            "for non-contiguous nested tensors with holes"
        )

    from torch.utils._pytree import tree_map

    # raggedness reduced away --> return dense tensor
    if reduce_on_ragged:
        # reduction cases: (batch, ragged), (batch, ragged, non-batch), etc.
        if reduce_on_batch:
            # no need to read offsets --> apply sum directly on values
            out = func(inp._values, **new_kwargs)
            if new_kwargs.get("keepdim", False):
                # some ops return multiple things; unsqueeze all of them
                out = tree_map(lambda o: o.unsqueeze(0), out)
            return out
        else:
            # invalid reduction cases: (ragged, non-batch), etc.
            if reduce_on_non_batch:
                raise RuntimeError(
                    f"{func_name}(): reducing along a ragged and non-batch dimension "
                    "is not supported for nested tensors"
                )

            # reduction cases: (ragged)
            # convert to padded dense and reduce
            new_kwargs.pop("dim")
            dim_to_pass = [inp._ragged_idx] if is_dimlist else inp._ragged_idx
            return func(
                inp.to_padded_tensor(identity_element), dim=dim_to_pass, **new_kwargs
            )
    # raggedness preserved --> return nested tensor
    else:
        # invalid reduction cases: (batch), (batch, non-batch), etc.
        if reduce_on_batch:
            raise RuntimeError(
                f"{func_name}(): reducing along the batch dimension but not "
                "the ragged dimension is not supported for nested tensors"
            )

        # reduction cases: (non-batch), (non-batch, non-batch), etc.
        # apply sum directly on values
        out = func(inp._values, **new_kwargs)
        out_kwargs = extract_kwargs(inp)
        if not new_kwargs.get("keepdim", False):
            # dims are reduced away -> ragged_idx of output needs to be reevaluated
            dimlist = (
                new_kwargs["dim"]
                if isinstance(new_kwargs["dim"], (tuple, list))
                else [new_kwargs["dim"]]
            )
            for d in dimlist:
                # adjust for all dims reduced before the ragged dim
                if d < inp._ragged_idx - 1:
                    out_kwargs["_ragged_idx"] -= 1

        # some ops return multiple things; wrap each of them as an NJT
        return tree_map(lambda o: NestedTensor(o, **out_kwargs), out)


@register_jagged_func(torch.ops.aten.sum.default, "self: jt_all, dtype: any?")
def sum_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    return func(inp._values, **new_kwargs)


@register_jagged_func(
    torch.ops.aten.sum.dim_IntList,
    "self: jt_all, dim: any?, keepdim: any?, dtype: any?",
)
def sum_dim_IntList(func, *args, **kwargs):
    return _apply_reduction(func, "sum", 0, *args, **kwargs)


@register_jagged_func(
    torch.ops.aten.transpose.int, "self: jt_all, dim0: any, dim1: any"
)
def transpose_int(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    from torch._prims_common import canonicalize_dims

    inp = new_kwargs.pop("input")
    dim0, dim1 = canonicalize_dims(inp.dim(), (new_kwargs["dim0"], new_kwargs["dim1"]))

    # To support the SDPA API, inputs need to have the ragged idx transposed to dim 2
    # instead of 1, although the internal Flash and mem-effn implementations will
    # use the inputs with raggedness in dim 1.
    if dim0 == inp._ragged_idx or dim1 == inp._ragged_idx:
        if dim0 == 0 or dim1 == 0:
            raise ValueError(
                "Transpose is not supported on the batch dimension for jagged NT"
            )
        if dim0 == inp._ragged_idx:
            to_dim = dim1
        else:
            to_dim = dim0
        inp_kwargs = extract_kwargs(inp)
        inp_kwargs["_ragged_idx"] = to_dim
        return NestedTensor(
            inp.values().transpose(
                _outer_to_inner_dim(len(inp._size), dim0, inp._ragged_idx),
                _outer_to_inner_dim(len(inp._size), dim1, inp._ragged_idx),
            ),
            **inp_kwargs,
        )

    new_kwargs["dim0"] = _wrap_jagged_dim(
        inp.dim(), new_kwargs["dim0"], inp._ragged_idx, "transpose"
    )
    new_kwargs["dim1"] = _wrap_jagged_dim(
        inp.dim(), new_kwargs["dim1"], inp._ragged_idx, "transpose"
    )

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(torch.ops.aten.permute.default, "self: jt_all, dims: any")
def permute_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )
    inp = new_kwargs.pop("input")
    dims = new_kwargs.pop("dims")
    inp_kwargs = extract_kwargs(inp)
    inp_dim = len(inp._size)

    # The first two checks are the same as the checks in the normal permute implementation
    if inp_dim != len(dims):
        raise ValueError(
            f"permute(): number of dimensions in the tensor input ({inp_dim}) "
            + f"does not match the length of the desired ordering of dimensions ({len(dims)}).",
        )

    from torch._prims_common import canonicalize_dims

    canonicalized_dims = canonicalize_dims(inp_dim, dims)

    if len(canonicalized_dims) != len(set(canonicalized_dims)):
        raise ValueError("permute(): duplicate dims are not allowed.")

    if inp._lengths is not None:
        raise ValueError(
            "permute(): not supported on jagged layout nested tensor with holes"
        )
    if canonicalized_dims[0] != 0:
        raise ValueError(
            "Permute is not supported on the batch dimension for jagged NT"
        )
    inp_kwargs["_ragged_idx"] = canonicalized_dims.index(inp._ragged_idx)
    inner_dims = [
        _outer_to_inner_dim(inp_dim, dim, inp._ragged_idx)
        for dim in canonicalized_dims[1:]
    ]
    new_kwargs["dims"] = inner_dims
    return NestedTensor(func(inp._values, **new_kwargs), **inp_kwargs)


@register_jagged_func(
    [torch.ops.aten.view.default, torch.ops.aten._unsafe_view.default],
    "self: jt_all, size: any",
)
def view_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    size = new_kwargs.pop("size")

    if inp._ragged_idx != 1 and tuple(inp._size) != tuple(size):
        raise RuntimeError(
            f"view(): does not support ragged_idx != 1 except when inp._size == size. "
            f"inp._size is ({inp._size}) and size is ({size})."
        )

    # Ensure specified size still includes batch and ragged dims
    if len(size) < 3 or not raggedness_matches(inp, size):
        raise RuntimeError(f"view(): cannot view shape {inp._size} as {size}")

    # outer size: the size of the NT, e.g. [3, j0, 10]
    # inner size: the size of the values, e.g. [8, 10] (e.g. for offsets = [0, 3, 5, 8])
    # this function gets inner_size[inner_idx] for a given inner_idx.
    #
    # example: for outer size [a, b, c, j0, d, e, f]
    #                         assume that j0 is ragged, other are concrete integers
    #                         and ragged_idx=3
    # inner size will be      [b, c, inp._values.size(ragged_idx), d, e, f]
    # therefore:
    #    inner_size[0] = outer_size[1]
    #    inner_size[1] = outer_size[2]
    #    inner_size[0] = inp._values.size(ragged_idx - 1)
    #    inner_size[3] = outer_size[4]
    #    inner_size[4] = outer_size[5]
    def get_inner_size(inner_idx):
        nonlocal inp, size
        if inner_idx == inp._ragged_idx - 1:
            return inp._values.size(inner_idx)
        else:
            return size[inner_idx + 1]

    inner_size = [get_inner_size(i) for i in range(len(size) - 1)]

    # Preserve inference-mode-ness of input.
    # TODO: Do this for all other views!
    with torch.inference_mode(inp.is_inference()):
        return NestedTensor(func(inp._values, inner_size), **extract_kwargs(inp))


@register_jagged_func(
    torch.ops.aten.native_layer_norm.default,
    "input: jt_all, normalized_shape: any, weight: any?, bias: any?, eps: any",
)
def native_layer_norm_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    if inp.dim() <= 2:
        raise RuntimeError(
            "layer_norm(): not supported for NestedTensor objects with 2 or fewer dimensions"
        )

    normalized_shape = new_kwargs["normalized_shape"]
    ragged_size = inp.shape[inp._ragged_idx]

    num_dims_not_normalized = inp.dim() - len(normalized_shape)

    if (
        num_dims_not_normalized == 0
    ):  # error if trying to normalize over the batch dimension
        raise RuntimeError(
            "layer_norm(): not supported when normalizing over the batch dimension for NestedTensor"
        )

    if ragged_size in normalized_shape and inp._lengths is not None:
        raise RuntimeError(
            "layer_norm(): not supported where lengths is not None if operating on the ragged dimension for NestedTensor"
        )

    if (
        ragged_size in normalized_shape
    ):  # special handling for normalizing over the ragged dimension
        padded_input = torch.ops.aten._jagged_to_padded_dense_forward(
            inp._values.flatten(
                start_dim=inp._ragged_idx
            ),  # _jagged_to_padded_dense_forward requires values to be a 2D tensor
            [inp._offsets],
            max_lengths=[inp._max_seqlen],  # max length of ragged dimension
        )

        padded_mask = torch.ops.aten._jagged_to_padded_dense_forward(
            torch.ones((inp._values.shape[0], 1), device=inp.device, dtype=inp.dtype),
            [inp._offsets],
            max_lengths=[inp._max_seqlen],  # max length of ragged dimension
        ).expand(
            padded_input.shape
        )  # mask elements outside of the ragged dimension and expand to the same shape as padded input (3D dense tensor)

        ragged_lengths = (
            inp._offsets.diff().unsqueeze(1).unsqueeze(1) * padded_input.shape[2]
        )  # ragged dim * inner dim, since we sum over dims (1, 2) (the layer on which we normalize)

        mean = (
            torch.sum(
                padded_input,
                dim=(1, 2),
                keepdim=True,
            )
            / ragged_lengths
        )  # a sum over (1, 2) ensures layer norm, whereas a sum over (1) would be an instance norm

        padded_normalized = (
            padded_input - mean
        ) * padded_mask  # mask elements outside of the ragged dimension size for correct variance calculation

        variance = (
            torch.sum(
                torch.square(padded_normalized),
                dim=(1, 2),
                keepdim=True,
            )
            / ragged_lengths
        )  # a sum over (1, 2) ensures layer norm, whereas a sum over (1) would be an instance norm

        std = torch.sqrt(variance + new_kwargs["eps"])
        padded_layer_norm = padded_normalized / std

        jagged_layer_norm_values = torch.ops.aten._padded_dense_to_jagged_forward(
            padded_layer_norm,
            [inp._offsets],
            total_L=inp._values.shape[
                0
            ],  # providing this parameter helps avoid a GPU/CPU sync
        ).unflatten(
            -1, inp.shape[inp._ragged_idx + 1 :]
        )  # unflatten last dimension back into original nested tensor shape, e.g. (B, *, WH) --> (B, *, W, H)

        return (
            NestedTensor(jagged_layer_norm_values, **extract_kwargs(inp)),
            mean,
            std,
        )

    output, mean, std = func(inp._values, **new_kwargs)
    return (NestedTensor(output, **extract_kwargs(inp)), mean, std)


@register_jagged_func(
    torch.ops.aten.native_layer_norm_backward.default,
    "grad_out: jt, input: jt, normalized_shape: any, mean: any, rstd: any, weight: any?, bias: any?, output_mask: any",
)
def native_layer_norm_backward_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )
    grad_out = new_kwargs.pop("grad_out")
    inp = new_kwargs.pop("input")
    d_input, d_gamma, d_beta = func(grad_out._values, inp._values, **new_kwargs)
    if d_input is None:
        return (None, d_gamma, d_beta)

    return (NestedTensor(d_input, **extract_kwargs(inp)), d_gamma, d_beta)


@register_jagged_func(torch.ops.aten.select.int, "self: jt_all, dim: any, index: any")
def select_int(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    new_kwargs["dim"], operating_on_batch = _wrap_jagged_dim(
        inp.dim(), new_kwargs["dim"], inp._ragged_idx, "select", allow_batch_dim=True
    )

    # handle batch dim slicing via unbind() for now
    # TODO: make this more efficient
    if operating_on_batch:
        return inp.unbind()[new_kwargs["index"]]

    if inp._lengths is not None:
        raise ValueError(
            "select(): not yet supported on dim != 0 for non-contiguous nested tensor with holes"
        )

    # if selecting before the ragged dim, adjust output ragged_idx
    out_kwargs = extract_kwargs(inp)
    if new_kwargs["dim"] < inp._ragged_idx - 1:
        out_kwargs["_ragged_idx"] -= 1

    return NestedTensor(func(inp._values, **new_kwargs), **out_kwargs)


@register_jagged_func(
    torch.ops.aten.slice.Tensor,
    "self: jt, dim: any?, start: any?, end: any?, step: any?",
)
def slice_tensor(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    new_kwargs["dim"] = _wrap_jagged_dim(
        inp.dim(), new_kwargs["dim"], inp._ragged_idx, "slice"
    )

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(
    torch.ops.aten.index_put.default,
    "input: jt_all, indices: any, values: t, accumulate: any?",
)
@register_jagged_func(
    torch.ops.aten.index_put_.default,
    "input: jt_all, indices: any, values: t, accumulate: any?",
)
def index_put_(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp: NestedTensor = new_kwargs.pop("input")

    # For index_put_ to work, we add together the indices of the ragged dimension
    # and the batch dimension, adding the offsets of each ragged dimension to its
    # indices

    indices = new_kwargs.pop("indices")

    assert len(indices) <= inp.dim()

    if len(indices) < inp._ragged_idx + 1:
        if not inp.is_contiguous():
            raise RuntimeError(
                "index_put(): If ragged dimension is not part of indices, this only works on contiguous NJTs"
            )
        # Ragged dim is NOT part of indices, we need to pad the nested tensor to apply func
        from .nested_tensor import nested_from_padded

        min_seqlen = inp._maybe_min_seqlen
        max_seqlen = inp._maybe_max_seqlen
        padded_max_S = max_seqlen
        total_L = inp._values.shape[inp._ragged_idx - 1]
        if padded_max_S is None:
            # use upper bound on max seqlen if it's not present
            padded_max_S = total_L

        padded_shape = (
            *inp.shape[: inp._ragged_idx],
            padded_max_S,
            *inp.shape[inp._ragged_idx + 1 :],
        )
        padded_inp = inp.to_padded_tensor(0.0, output_size=padded_shape)
        new_njt = nested_from_padded(
            func(padded_inp, indices, **new_kwargs),
            offsets=inp._offsets,
            ragged_idx=inp._ragged_idx,
            sum_S=total_L,
            min_seqlen=min_seqlen,
            max_seqlen=max_seqlen,
        )

        if func == torch.ops.aten.index_put_.default:
            inp._values.copy_(new_njt.values())
            return inp
        return new_njt

    # We can run on the underlying values directly

    # Validate indices
    if inp.lengths() is None:
        lengths = inp.offsets().diff()
    else:
        lengths = inp.lengths()
    torch._assert_async(
        torch.all(indices[inp._ragged_idx] < lengths),
        "Some indices in the ragged dimension are out of bounds!",
    )

    # Recompute indices for _values
    ragged_indices = inp.offsets()[indices[0]] + indices[inp._ragged_idx]
    func_indices = (
        # before ragged dim
        indices[1 : inp._ragged_idx]
        # ragged dim (combined with batch)
        + [ragged_indices]
        # after ragged dim
        + indices[inp._ragged_idx + 1 :]
    )

    if func == torch.ops.aten.index_put_.default:
        inp._values = func(inp._values, func_indices, **new_kwargs)
        return inp

    return NestedTensor(
        func(inp._values, func_indices, **new_kwargs),
        **extract_kwargs(inp),
    )


@register_jagged_func(
    torch.ops.aten.convolution.default,
    "input: jt, weight: t, bias: t?, stride: any, padding: any, "
    "dilation: any, transposed: any, output_padding: any, groups: any",
)
def convolution_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(
    torch.ops.aten.mean.dim, "self: jt_all, dim: any?, keepdim: any?, dtype: any?"
)
def mean_dim(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs["input"]
    (_, reduce_on_batch, reduce_on_ragged, reduce_on_non_batch) = _wrap_jagged_dims(
        inp.dim(),
        new_kwargs["dim"],
        "mean",
        inp._ragged_idx,
    )

    if reduce_on_ragged and not reduce_on_batch:
        assert not reduce_on_non_batch
        # calculate an intermediate sum and leave the dim in for normalization purposes
        keepdim = new_kwargs["keepdim"]
        new_kwargs["keepdim"] = True
        intermediate_sum = _apply_reduction(
            torch.ops.aten.sum.dim_IntList, "mean", 0, **new_kwargs
        )

        # normalize by sequence lengths
        lengths = inp._lengths if inp._lengths is not None else inp._offsets.diff()
        for _ in range(intermediate_sum.dim() - 1):
            lengths = lengths.unsqueeze(-1)
        out = intermediate_sum / lengths
        if not keepdim:
            out = out.squeeze(inp._ragged_idx)
        return out

    # at this point, we're just redispatching on the values buffer
    # since we expect it to be unused, specify a weird intermediate value to
    # hopefully make errors obvious
    intermediate_value = 0.42
    return _apply_reduction(func, "mean", intermediate_value, **new_kwargs)


@register_jagged_func(torch.ops.aten.mean.default, "self: jt_all, dtype: any?")
def mean_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    return func(inp._values, **new_kwargs)


@register_jagged_func(torch.ops.aten.any.dims, "self: jt_all, dim: any?, keepdim: any?")
def any_dims(func, *args, **kwargs):
    return _apply_reduction(func, "any", False, *args, **kwargs)


@register_jagged_func(torch.ops.aten.any.dim, "self: jt_all, dim: any, keepdim: any?")
def any_dim(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    # wrap dim in list to redispatch to dims overload
    new_kwargs["dim"] = [new_kwargs["dim"]]
    return any_dims(torch.ops.aten.any.dims, **new_kwargs)


@register_jagged_func(torch.ops.aten.all.dims, "self: jt_all, dim: any?, keepdim: any?")
def all_dims(func, *args, **kwargs):
    return _apply_reduction(func, "all", True, *args, **kwargs)


@register_jagged_func(torch.ops.aten.all.dim, "self: jt_all, dim: any, keepdim: any?")
def all_dim(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    # wrap dim in list to redispatch to dims overload
    new_kwargs["dim"] = [new_kwargs["dim"]]
    return all_dims(torch.ops.aten.all.dims, **new_kwargs)


@register_jagged_func(
    [
        torch.ops.aten.all.default,
        torch.ops.aten.any.default,
        torch.ops.aten.max.default,
        torch.ops.aten.min.default,
    ],
    "self: jt_all",
)
def all_any_max_min_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    return func(inp._values, **new_kwargs)


@register_jagged_func(torch.ops.aten.min.dim, "self: jt_all, dim: any, keepdim: any?")
def min_dim(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    dtype_max = torch.finfo(new_kwargs["input"].dtype).max
    return _apply_reduction(func, "min", dtype_max, *args, **kwargs)


@register_jagged_func(torch.ops.aten.max.dim, "self: jt_all, dim: any, keepdim: any?")
def max_dim(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    dtype_min = torch.finfo(new_kwargs["input"].dtype).min
    return _apply_reduction(func, "max", dtype_min, *args, **kwargs)


@register_jagged_func(
    torch.ops.aten.amin.default, "self: jt_all, dim: any?, keepdim: any?"
)
def amin_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    dtype_max = torch.finfo(new_kwargs["input"].dtype).max
    return _apply_reduction(func, "amin", dtype_max, *args, **kwargs)


@register_jagged_func(
    torch.ops.aten.amax.default, "self: jt_all, dim: any?, keepdim: any?"
)
def amax_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    dtype_min = torch.finfo(new_kwargs["input"].dtype).min
    return _apply_reduction(func, "amax", dtype_min, *args, **kwargs)


@register_jagged_func(
    torch.ops.aten.argmin.default, "self: jt_all, dim: any?, keepdim: any?"
)
def argmin_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    dtype_max = torch.finfo(new_kwargs["input"].dtype).max
    return _apply_reduction(func, "argmin", dtype_max, *args, **kwargs)


@register_jagged_func(
    torch.ops.aten.argmax.default, "self: jt_all, dim: any?, keepdim: any?"
)
def argmax_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    dtype_min = torch.finfo(new_kwargs["input"].dtype).min
    return _apply_reduction(func, "argmax", dtype_min, *args, **kwargs)


@register_jagged_func(torch.ops.aten.stack.default, "tensors: any, dim: any")
def stack_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    # guaranteed this is non-empty if we got here
    tensors = new_kwargs.pop("tensors")
    for t in tensors:
        if not isinstance(t, NestedTensor):
            raise RuntimeError("stack(): expected all nested tensors inputs")

        if t.dim() != tensors[0].dim():
            raise RuntimeError(
                "stack(): expected all nested tensors to have the same dim"
            )

        if not raggedness_matches(t, tensors[0].shape):
            raise RuntimeError(
                "stack(): expected all nested tensors to have the same nested structure"
            )

    new_kwargs["dim"] = _wrap_jagged_dim(
        tensors[0].dim() + 1, new_kwargs["dim"], tensors[0]._ragged_idx, "stack"
    )

    return NestedTensor(
        func([t._values for t in tensors], **new_kwargs), **extract_kwargs(tensors[0])
    )


@register_jagged_func(
    torch.ops.aten.embedding.default,
    "weight: t, indices: jt, padding_idx: any?, scale_grad_by_freq: any?, sparse: any?",
)
def embedding_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    # guaranteed this is non-empty if we got here
    indices = new_kwargs.pop("indices")
    weight = new_kwargs.pop("weight")

    return NestedTensor(
        func(weight, indices._values, **new_kwargs), **extract_kwargs(indices)
    )


@register_jagged_func(
    torch.ops.aten.embedding_dense_backward.default,
    "grad_output: jt, indices: jt, num_weights: any, padding_idx: any, scale_grad_by_freq: any",
)
def embedding_dense_backward_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    indices = new_kwargs.pop("indices")
    grad_output = new_kwargs.pop("grad_output")
    return func(grad_output._values, indices._values, **new_kwargs)


@register_jagged_func(
    [
        torch.ops.aten.values.default,
        torch.ops.aten._nested_get_values.default,
    ],
    "self: jt_all",
)
def values_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    # TODO: Handle inference mode properly.
    # See https://github.com/pytorch/pytorch/issues/112024#issuecomment-1779554292
    return inp._values.detach()


@register_jagged_func(torch.ops.aten.all.default, "self: jt_all")
def all_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    return func(inp._values)


@register_jagged_func(
    torch.ops.aten.to_padded_tensor.default,
    "self: jt_all, padding: any, output_size: any?",
)
def to_padded_tensor_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    if inp._lengths is not None:
        raise RuntimeError(
            "to_padded_tensor(): not supported for nested tensors with holes"
        )

    # TODO: Handle the rest of output_size
    output_size = new_kwargs["output_size"]
    if output_size is not None:
        max_seq_len = output_size[inp._ragged_idx]
    else:
        max_seq_len = (
            inp._max_seqlen
            if inp._max_seqlen_tensor is not None
            else inp._values.size(0)
        )

    # only 2D values with ragged packed dim=0 is supported by the underlying FBGEMM
    # kernel so do shape gymnastics if needed
    values = inp.values()
    if inp._ragged_idx > 1:
        values = values.transpose(inp._ragged_idx - 1, 0)
    values_shape = values.shape
    if values.dim() > 2:
        values = values.flatten(start_dim=1)
    elif values.dim() == 1:
        values = values.unsqueeze(-1)

    # NB: The CUDA kernel for jagged -> padded dense conversion does not support
    # integer / bool types; work around this by casting to half.
    is_bool = values.dtype is torch.bool
    if is_bool and values.is_cuda:
        values = values.to(torch.half)
    padded_out = torch.ops.aten._jagged_to_padded_dense_forward(
        values,
        [inp._offsets],
        [max_seq_len],
        new_kwargs["padding"],
    )
    if is_bool and padded_out.is_cuda:
        padded_out = padded_out.to(torch.bool)

    # shape gymnastics part 2
    if len(values_shape) > 2:
        padded_out = padded_out.unflatten(-1, values_shape[1:])
    elif len(values_shape) == 1:
        padded_out = padded_out.squeeze(-1)
    if inp._ragged_idx > 1:
        padded_out = padded_out.transpose(inp._ragged_idx, 1)

    return padded_out


@register_jagged_func(
    torch.ops.aten._nested_from_padded_tensor.default,
    "padded: t, offsets: t, dummy: jt, ragged_idx: any?, min_seqlen: any?, max_seqlen: any?, sum_S: any?",
)
def _nested_from_padded_tensor_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    padded, offsets = new_kwargs["padded"], new_kwargs["offsets"]
    ragged_idx = new_kwargs.get("ragged_idx", 1)

    # only 3D padded with ragged packed dim=0 is supported by the underlying FBGEMM
    # kernel so do shape gymnastics
    if ragged_idx > 1:
        padded = padded.transpose(ragged_idx, 1)
    padded_ragged_dim1_shape = padded.shape
    if padded.dim() > 3:
        padded = padded.flatten(start_dim=2)
    elif padded.dim() < 3:
        padded = padded.unsqueeze(-1)

    # NB: The CUDA kernel for padded dense -> jagged conversion does not support
    # integer / bool types; work around this by casting to half.
    is_bool = padded.dtype is torch.bool
    if is_bool and padded.is_cuda:
        padded = padded.to(torch.half)
    values = torch.ops.aten._padded_dense_to_jagged_forward(
        padded, [offsets], new_kwargs["sum_S"]
    )
    if is_bool and values.is_cuda:
        values = values.to(torch.bool)

    # shape gymnastics part 2
    if len(padded_ragged_dim1_shape) > 3:
        values = values.unflatten(-1, padded_ragged_dim1_shape[2:])
    elif len(padded_ragged_dim1_shape) < 3:
        values = values.squeeze(-1)
    if ragged_idx > 1:
        values = values.transpose(ragged_idx - 1, 0)

    min_seqlen = new_kwargs["min_seqlen"]
    max_seqlen = new_kwargs["max_seqlen"]
    metadata_cache = {}
    if min_seqlen is not None:
        metadata_cache["min_seqlen"] = min_seqlen
    if max_seqlen is not None:
        metadata_cache["max_seqlen"] = max_seqlen

    return NestedTensor(
        values,
        offsets,
        _ragged_idx=ragged_idx,
        _metadata_cache=metadata_cache,
    )


@register_jagged_func(
    torch.ops.aten._nested_view_from_jagged.default,
    "values: t, offsets: t, dummy: jt_all, lengths: t?, ragged_idx: any?, min_seqlen: t?, max_seqlen: t?",
)
def _nested_view_from_jagged_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    values, offsets, lengths = (
        new_kwargs["input"],
        new_kwargs["offsets"],
        new_kwargs["lengths"],
    )
    ragged_idx = new_kwargs["ragged_idx"]
    min_seqlen = new_kwargs["min_seqlen"]
    max_seqlen = new_kwargs["max_seqlen"]
    metadata_cache = {}
    if min_seqlen is not None:
        metadata_cache["min_seqlen"] = min_seqlen
    if max_seqlen is not None:
        metadata_cache["max_seqlen"] = max_seqlen

    return NestedTensor(
        values,
        offsets,
        lengths=lengths,
        _ragged_idx=ragged_idx,
        _metadata_cache=metadata_cache,
    )


@register_jagged_func(torch.ops.aten._nested_get_offsets.default, "self: jt_all")
def _nested_get_offsets(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    return inp._offsets


@register_jagged_func(torch.ops.aten._nested_get_lengths.default, "self: jt_all")
def _nested_get_lengths(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    return inp._lengths


@register_jagged_func(torch.ops.aten._nested_get_ragged_idx.default, "self: jt_all")
def _nested_get_ragged_idx(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    return inp._ragged_idx


@register_jagged_func(torch.ops.aten._nested_get_min_seqlen.default, "self: jt_all")
def _nested_get_min_seqlen(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    return inp._metadata_cache.get("min_seqlen", None)


@register_jagged_func(torch.ops.aten._nested_get_max_seqlen.default, "self: jt_all")
def _nested_get_max_seqlen(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    return inp._metadata_cache.get("max_seqlen", None)


# If a section of the Nested Tensor is fully masked out we still retain the section with a length of 0
@register_jagged_func(torch.ops.aten.masked_select.default, "self: jt, mask: any")
def masked_select_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )
    inp = new_kwargs.pop("input")
    mask = new_kwargs.pop("mask")

    if inp.ndim > 2:
        raise RuntimeError("masked_select only support 2-D selections currently")
    elif inp.shape != mask.shape:
        raise RuntimeError(
            f"Mask with shape {mask.shape} is not compatible with input's shape {inp.shape}"
        )
    res_values = inp._values.masked_select(mask.values())
    mask_cumsum = F.pad(mask.values().cumsum(dim=0), (1, 0))  # type: ignore[arg-type]

    args = extract_kwargs(inp)
    args["offsets"] = mask_cumsum[inp._offsets]
    return NestedTensor(
        values=res_values,
        **args,
    )


@register_jagged_func(
    torch.ops.aten._nested_select_backward.default,
    "grad_output: t, self: jt_all, dim: any, index: any",
)
def _nested_select_backward_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    grad_output = new_kwargs.pop("grad_output")

    grad_input = torch.zeros_like(inp, dtype=grad_output.dtype)
    grad_input.select(new_kwargs["dim"], new_kwargs["index"]).copy_(grad_output)

    return grad_input


@register_jagged_func(torch.ops.aten.record_stream.default, "self: jt_all, s: any")
def record_stream_default(func, *args, **kwargs):
    inp = args[0]
    stream = args[1]
    # ensure all components live until stream computation completes
    func(inp._values, stream)
    func(inp._offsets, stream)
    if inp._lengths is not None:
        func(inp._lengths, stream)


@register_jagged_func(
    [
        torch.ops.aten.new_empty.default,
        torch.ops.aten.new_zeros.default,
        torch.ops.aten.new_ones.default,
    ],
    "self: jt_all, size: any, dtype: any?, layout: any?, device: any?, pin_memory: any?",
)
def new_empty_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    if len(new_kwargs["size"]) == 0:
        return func(inp._values, **new_kwargs)

    raise RuntimeError("new_empty() not supported for NJT with shape != ()")


@register_jagged_func(
    [
        torch.ops.aten.elu_backward.default,
        torch.ops.aten.hardshrink_backward.default,
        torch.ops.aten.hardsigmoid_backward.default,
        torch.ops.aten.hardtanh_backward.default,
        torch.ops.aten.softplus_backward.default,
        torch.ops.aten.softshrink_backward.default,
    ],
    "self: jt_all, ...",
)
def activation_backward(func, *args, **kwargs):
    # first NJT arg is expected to be grad_output
    grad_output = next(arg for arg in args if isinstance(arg, NestedTensor))
    return NestedTensor(
        func(
            *(arg._values if isinstance(arg, NestedTensor) else arg for arg in args),
            **kwargs,
        ),
        **extract_kwargs(grad_output),
    )


@register_jagged_func(torch.ops.aten.fill_.Scalar, "self: jt_all, value: any")
def fill__Scalar(func, *args, **kwargs):
    _, new_kwargs = normalize_function(  # type: ignore[misc]
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    func(inp._values, **new_kwargs)
    return inp


from torch._higher_order_ops.flex_attention import (
    flex_attention as flex_attention_hop,
    flex_attention_backward as flex_attention_backward_hop,
)
from torch.fx.graph_module import GraphModule


@flex_attention_hop.py_impl(NestedTensor)  # type: ignore[misc]
def flex_njt(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    score_mod: Callable,
    block_mask: Tuple,
    scale: float,
    kernel_options: Dict[str, Any],
    score_mod_other_buffers: Tuple = (),
    mask_mod_other_buffers: Tuple = (),
) -> Tuple[torch.Tensor, torch.Tensor]:
    assert query.dim() == 4 and key.dim() == 4 and value.dim() == 4

    # TODO: Support this if needed; determine if NJT buffers need be unwrapped as dense.
    if any(
        isinstance(buf, torch.Tensor) and buf.is_nested
        for buf in score_mod_other_buffers + mask_mod_other_buffers
    ):
        raise RuntimeError(
            "flex_attention(): Nested tensor score_mod / mask_mod buffers are not "
            "currently supported. Please file an issue if this is important to you."
        )

    # need to pass dense tensor of shape (B, n_heads, sum(seq_len), D)
    output = flex_attention_hop(
        query.values().unsqueeze(0),
        key.values().unsqueeze(0),
        value.values().unsqueeze(0),
        score_mod=score_mod,
        block_mask=block_mask,
        scale=scale,
        kernel_options=kernel_options,
        score_mod_other_buffers=score_mod_other_buffers,
        mask_mod_other_buffers=mask_mod_other_buffers,
    )

    # wrap outputs as NJT
    output_njt = torch.nested.nested_tensor_from_jagged(
        output[0].transpose(1, 2).squeeze(0),
        query._offsets,  # type: ignore[attr-defined]
        query._lengths,  # type: ignore[attr-defined]
        min_seqlen=query._maybe_min_seqlen,  # type: ignore[attr-defined]
        max_seqlen=query._maybe_max_seqlen,  # type: ignore[attr-defined]
    ).transpose(1, 2)

    logsumexp_njt = torch.nested.nested_tensor_from_jagged(
        output[1].transpose(1, 2).squeeze(0),
        query._offsets,  # type: ignore[attr-defined]
        query._lengths,  # type: ignore[attr-defined]
        min_seqlen=query._maybe_min_seqlen,  # type: ignore[attr-defined]
        max_seqlen=query._maybe_max_seqlen,  # type: ignore[attr-defined]
    ).transpose(1, 2)

    return (output_njt, logsumexp_njt)


@flex_attention_backward_hop.py_impl(NestedTensor)  # type: ignore[misc]
def flex_njt_backward(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    out: torch.Tensor,
    logsumexp: torch.Tensor,
    grad_out: torch.Tensor,
    grad_logsumexp: torch.Tensor,
    fw_graph: Union[Callable, GraphModule],
    joint_graph: GraphModule,
    block_mask: Tuple,
    scale: float,
    kernel_options: Dict[str, Any],
    score_mod_other_buffers: Tuple = (),
    mask_mod_other_buffers: Tuple = (),
) -> Tuple[
    torch.Tensor, torch.Tensor, torch.Tensor, Tuple[Optional[torch.Tensor], ...]
]:
    output = flex_attention_backward_hop(
        query.values().unsqueeze(0),
        key.values().unsqueeze(0),
        value.values().unsqueeze(0),
        out=out.values().unsqueeze(0),
        logsumexp=logsumexp.values().unsqueeze(0),
        grad_out=grad_out.values().unsqueeze(0),
        grad_logsumexp=grad_logsumexp.values().unsqueeze(0),
        fw_graph=fw_graph,
        joint_graph=joint_graph,
        block_mask=block_mask,
        scale=scale,
        kernel_options=kernel_options,
        score_mod_other_buffers=score_mod_other_buffers,
        mask_mod_other_buffers=mask_mod_other_buffers,
    )

    # wrap grads as NJTs
    dense_q_grad, dense_k_grad, dense_v_grad, score_mod_other_buffer_grads = output
    njt_q_grad = torch.nested.nested_tensor_from_jagged(
        dense_q_grad.transpose(1, 2).squeeze(0),
        query._offsets,  # type: ignore[attr-defined]
        query._lengths,  # type: ignore[attr-defined]
        min_seqlen=query._maybe_min_seqlen,  # type: ignore[attr-defined]
        max_seqlen=query._maybe_max_seqlen,  # type: ignore[attr-defined]
    ).transpose(1, 2)
    njt_k_grad = torch.nested.nested_tensor_from_jagged(
        dense_k_grad.transpose(1, 2).squeeze(0),
        key._offsets,  # type: ignore[attr-defined]
        key._lengths,  # type: ignore[attr-defined]
        min_seqlen=key._maybe_min_seqlen,  # type: ignore[attr-defined]
        max_seqlen=key._maybe_max_seqlen,  # type: ignore[attr-defined]
    ).transpose(1, 2)
    njt_v_grad = torch.nested.nested_tensor_from_jagged(
        dense_v_grad.transpose(1, 2).squeeze(0),
        value._offsets,  # type: ignore[attr-defined]
        value._lengths,  # type: ignore[attr-defined]
        min_seqlen=value._maybe_min_seqlen,  # type: ignore[attr-defined]
        max_seqlen=value._maybe_max_seqlen,  # type: ignore[attr-defined]
    ).transpose(1, 2)

    return (njt_q_grad, njt_k_grad, njt_v_grad, score_mod_other_buffer_grads)


# Make the dummy available on the C++ side.
@register_jagged_func(torch.ops.aten._nested_get_jagged_dummy.default, "self: any")
def _nested_get_jagged_dummy(func, *args, **kwargs):
    from torch.nested._internal.nested_tensor import _nt_view_dummy

    return _nt_view_dummy()


with torch.library._scoped_library("aten", "IMPL") as aten:
    aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "CPU")
    aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "CUDA")
    aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "Meta")