1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
|
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
# flake8: noqa C101
"""This module implements the user facing API for flex_attention in PyTorch."""
import functools
import inspect
import itertools
import math
import operator
import warnings
from enum import Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import Tensor
from torch._dynamo._trace_wrapped_higher_order_op import TransformGetItemToIndex
from torch._higher_order_ops.flex_attention import flex_attention as flex_attention_hop
from torch._higher_order_ops.utils import _set_compilation_env
from torch.fx.experimental.proxy_tensor import (
_temp_remove_metadata_torch_function_mode,
_temp_remove_pre_dispatch_torch_function_mode,
)
from torch.nn.attention._utils import _supported_head_dim, _validate_sdpa_input
from torch.utils._pytree import tree_map_only
__all__ = [
"BlockMask",
"flex_attention",
"create_block_mask",
"create_mask",
"create_nested_block_mask",
"or_masks",
"and_masks",
"noop_mask",
]
_score_mod_signature = Callable[[Tensor, Tensor, Tensor, Tensor, Tensor], Tensor]
_mask_mod_signature = Callable[[Tensor, Tensor, Tensor, Tensor], Tensor]
class _ModificationType(Enum):
"""Enum for the type of modification function.
- SCORE_MOD: score_mod function which accepts a score as the first argument
- mask_mod: mask function which does not accept a score and is only used for generating
block mask
"""
SCORE_MOD = 1
MASK_MOD = 2
UNKNOWN = 3
def _get_mod_type(fn: Callable) -> _ModificationType:
"""Get the type of modification function.
This function inspects the number of positional arguments of the function to determine
the type of modification function. If the function has 5 positional arguments, it is
considered as a score_mod function. If the function has 4 positional arguments, it is
considered as a mask function.
"""
num_positional_args = sum(
1
for param in inspect.signature(fn).parameters.values()
if param.default == inspect.Parameter.empty
)
assert num_positional_args == 5 or num_positional_args == 4
if num_positional_args == 5:
return _ModificationType.SCORE_MOD
elif num_positional_args == 4:
return _ModificationType.MASK_MOD
else:
return _ModificationType.UNKNOWN
# Need to define it here so that Dynamo doesn't skip it
def _vmap_for_bhqkv(
fn: Callable,
prefix: Tuple[Optional[int], ...],
suffix: Tuple[Optional[int], ...] = (),
out_dims: Union[int, List[Optional[int]]] = 0,
group_dim: bool = False,
):
"""Used to vmap both score_mods and mask_mods over 4-dimensional/5-dimension inputs.
Mapping over the [b, hq, q_idx, kv_idx] or [b, hkv, g, q_idx, kv_idx] dimensions.
Args:
fn (callable): The function to vmap.
prefix (tuple): The prefix of the vmap. For score mod functions,
this should be set to (0,). For mask_mods = ()
suffix (tuple): We need to add (0,) if gradOut is being mapped over,
and (None,) * len(other_buffers).
out_dims (tuple): For forward cases, keep this as the default 0 since
we are only returning 1 output. For backwards, the joint
graph returns grads for B, H, Q_idx, KV_idx and other_buffers,
so we set this to (0, None, None, None, None) + (None,) * len(other_buffers).
Returns:
callable: The vmapped function.
"""
# We vamp a function 4 times, broadcasting the [b, h, q_idx, kv_idx] dimensions
dimensions: List[Tuple[None | int, None | int, None | int, None | int]] = []
dimensions = [
(None, None, None, 0),
(None, None, 0, None),
(None, 0, None, None),
]
if group_dim:
dimensions += [
(None, 0, None, None),
]
dimensions += [
(0, None, None, None),
]
for dims in dimensions:
fn = torch.vmap(fn, in_dims=prefix + dims + suffix, out_dims=out_dims) # type: ignore[arg-type]
return fn
def _identity(
score: Tensor,
batch: Tensor,
head: Tensor,
token_q: Tensor,
token_kv: Tensor,
) -> Tensor:
return score
def noop_mask(
batch: Tensor,
head: Tensor,
token_q: Tensor,
token_kv: Tensor,
) -> Tensor:
"""Returns a noop mask_mod"""
return batch.new_ones(size=(), dtype=torch.bool, device=batch.device)
_DEFAULT_SPARSE_BLOCK_SIZE = 128
_LARGE_SPARSE_BLOCK_SIZE = 1 << 30
def _ordered_to_dense(num_blocks_in_row: Tensor, col_indices: Tensor):
num_rows = col_indices.shape[-2]
num_cols = col_indices.shape[-1]
batch_dims = num_blocks_in_row.shape[:-1]
device = num_blocks_in_row.device
def create_dense_one(kv_num_blocks, kv_indices):
dense_mask = kv_indices.new_zeros(num_rows, num_cols + 1, dtype=torch.int32)
row_indices = torch.arange(num_rows, dtype=torch.int, device=device).unsqueeze(
-1
)
col_range = torch.arange(num_cols, dtype=torch.int, device=device)
index_mask = col_range < kv_num_blocks.unsqueeze(-1)
# We write to one spot "out of bounds"
valid_indices = torch.where(index_mask, kv_indices, num_cols)
# set the values in 'a' to 1 where the indices are valid
dense_mask[row_indices, valid_indices] = 1
return dense_mask[:, :num_cols].contiguous()
create_dense_batched = create_dense_one
for _ in range(len(batch_dims)):
create_dense_batched = torch.vmap(create_dense_batched, in_dims=(0, 0))
out = create_dense_batched(num_blocks_in_row, col_indices)
return out
def _dense_to_ordered(dense_mask) -> Tuple:
dense_mask = dense_mask.to(dtype=torch.int32)
num_blocks_in_row = dense_mask.sum(dim=-1)
col_indices = torch.argsort(dense_mask, dim=-1, descending=True, stable=True)
return (
num_blocks_in_row.to(torch.int32).contiguous(),
col_indices.to(torch.int32).contiguous(),
)
def _transpose_ordered(num_blocks_in_row: Tensor, col_indices: Tensor):
dense = _ordered_to_dense(num_blocks_in_row, col_indices)
return _dense_to_ordered(dense.transpose(-2, -1))
def _adjust_num_blocks_and_indices(
num_blocks: Tensor,
indices: Tensor,
new_num_rows: int,
new_num_cols: int,
):
indices = indices[:, :, :new_num_rows, :new_num_cols]
num_blocks = num_blocks[:, :, :new_num_rows]
num_blocks = torch.where(num_blocks < new_num_cols, num_blocks, new_num_cols)
num_blocks = torch.sum(indices < num_blocks[:, :, :, None], dim=-1).to(torch.int32)
return num_blocks, indices
class BlockMask:
r"""
BlockMask is our format for representing a block-sparse attention mask.
It is somewhat of a cross in-between BCSR and a non-sparse format.
Basics
------
A block-sparse mask means that instead of representing the sparsity of
individual elements in the mask, a KV_BLOCK_SIZE x Q_BLOCK_SIZE block is
considered sparse only if every element within that block is sparse.
This aligns well with hardware, which generally expects to perform
contiguous loads and computation.
This format is primarily optimized for 1. simplicity, and 2. kernel
efficiency. Notably, it is *not* optimized for size, as this mask is always
reduced by a factor of KV_BLOCK_SIZE * Q_BLOCK_SIZE. If the size is a
concern, the tensors can be reduced in size by increasing the block size.
The essentials of our format are:
num_blocks_in_row: Tensor[ROWS]:
Describes the number of blocks present in each row.
col_indices: Tensor[ROWS, MAX_BLOCKS_IN_COL]:
`col_indices[i]` is the sequence of block positions for row i. The values of
this row after `col_indices[i][num_blocks_in_row[i]]` are undefined.
For example, to reconstruct the original tensor from this format:
.. code-block:: python
dense_mask = torch.zeros(ROWS, COLS)
for row in range(ROWS):
for block_idx in range(num_blocks_in_row[row]):
dense_mask[row, col_indices[row, block_idx]] = 1
Notably, this format makes it easier to implement a reduction along the
*rows* of the mask.
Details
-------
The basics of our format require only kv_num_blocks and kv_indices. But, we
have up to 8 tensors on this object. This represents 4 pairs:
1. (kv_num_blocks, kv_indices): Used for the forwards pass of attention, as
we reduce along the KV dimension.
2. [OPTIONAL] (full_kv_num_blocks, full_kv_indices): This is optional and
purely an optimization. As it turns out, applying masking to every block
is quite expensive! If we specifically know which blocks are "full" and
don't require masking at all, then we can skip applying mask_mod to these
blocks. This requires the user to split out a separate mask_mod from the
score_mod. For causal masks, this is about a 15% speedup.
3. [GENERATED] (q_num_blocks, q_indices): Required for the backwards pass,
as computing dKV requires iterating along the mask along the Q dimension. These are autogenerated from 1.
4. [GENERATED] (full_q_num_blocks, full_q_indices): Same as above, but for
the backwards pass. These are autogenerated from 2.
"""
seq_lengths: Tuple[int, int]
kv_num_blocks: Tensor
kv_indices: Tensor
full_kv_num_blocks: Optional[Tensor]
full_kv_indices: Optional[Tensor]
q_num_blocks: Optional[Tensor]
q_indices: Optional[Tensor]
full_q_num_blocks: Optional[Tensor]
full_q_indices: Optional[Tensor]
BLOCK_SIZE: Tuple[int, int]
mask_mod: _mask_mod_signature
def __init__(
self,
seq_lengths: Tuple[int, int],
kv_num_blocks: Tensor,
kv_indices: Tensor,
full_kv_num_blocks: Optional[Tensor],
full_kv_indices: Optional[Tensor],
q_num_blocks: Optional[Tensor],
q_indices: Optional[Tensor],
full_q_num_blocks: Optional[Tensor],
full_q_indices: Optional[Tensor],
BLOCK_SIZE: Tuple[int, int],
mask_mod: _mask_mod_signature,
):
if kv_indices.dim() < 2:
raise RuntimeError("BlockMask must have at least 2 dimensions")
assert kv_num_blocks is not None, "kv_num_blocks must be provided"
assert kv_indices is not None, "kv_indices must be provided"
assert q_num_blocks is not None, "q_num_blocks must be provided"
assert q_indices is not None, "q_indices must be provided"
assert (full_kv_num_blocks is None) == (
full_kv_indices is None
), "full_kv_num_blocks and full_kv_indices must be both provided or omitted"
assert (full_q_num_blocks is None) == (
full_q_indices is None
), "full_q_num_blocks and full_q_indices must be both provided or omitted"
self.seq_lengths = seq_lengths
self.kv_num_blocks = kv_num_blocks
self.kv_indices = kv_indices
self.full_kv_num_blocks = full_kv_num_blocks
self.full_kv_indices = full_kv_indices
self.q_num_blocks = q_num_blocks
self.q_indices = q_indices
self.full_q_num_blocks = full_q_num_blocks
self.full_q_indices = full_q_indices
self.BLOCK_SIZE = BLOCK_SIZE
self.mask_mod = mask_mod
@classmethod
def from_kv_blocks(
cls,
kv_num_blocks: Tensor,
kv_indices: Tensor,
full_kv_num_blocks: Optional[Tensor] = None,
full_kv_indices: Optional[Tensor] = None,
BLOCK_SIZE: Union[int, Tuple[int, int]] = _DEFAULT_SPARSE_BLOCK_SIZE,
mask_mod: Optional[_mask_mod_signature] = None,
seq_lengths: Optional[Tuple[int, int]] = None,
):
"""
Creates a BlockMask instance from key-value block information.
Args:
kv_num_blocks (Tensor): Number of kv_blocks in each Q_BLOCK_SIZE row tile.
kv_indices (Tensor): Indices of key-value blocks in each Q_BLOCK_SIZE row tile.
full_kv_num_blocks (Optional[Tensor]): Number of full kv_blocks in each Q_BLOCK_SIZE row tile.
full_kv_indices (Optional[Tensor]): Indices of full key-value blocks in each Q_BLOCK_SIZE row tile.
BLOCK_SIZE (Union[int, Tuple[int, int]]): Size of KV_BLOCK_SIZE x Q_BLOCK_SIZE tiles.
mask_mod (Optional[Callable]): Function to modify the mask.
Returns:
BlockMask: Instance with full Q information generated via _transposed_ordered
Raises:
RuntimeError: If kv_indices has < 2 dimensions.
AssertionError: If only one of full_kv_* args is provided.
"""
if kv_indices.dim() < 2:
raise RuntimeError("BlockMask must have at least 2 dimensions")
assert (full_kv_num_blocks is None) == (
full_kv_indices is None
), "full_kv_num_blocks and full_kv_indices must be both provided or omitted"
# Generate q_num_blocks and q_indices
q_num_blocks, q_indices = _transpose_ordered(kv_num_blocks, kv_indices)
if full_kv_num_blocks is not None:
assert full_kv_indices is not None
full_q_num_blocks, full_q_indices = _transpose_ordered(
full_kv_num_blocks, full_kv_indices
)
else:
full_q_num_blocks, full_q_indices = None, None
if isinstance(BLOCK_SIZE, int):
BLOCK_SIZE = (BLOCK_SIZE, BLOCK_SIZE)
mask_mod = mask_mod if mask_mod is not None else noop_mask
if seq_lengths is None:
q_length = kv_indices.shape[-2] * BLOCK_SIZE[0]
kv_length = q_indices.shape[-2] * BLOCK_SIZE[1]
seq_lengths = (q_length, kv_length)
return cls(
seq_lengths=seq_lengths,
kv_num_blocks=kv_num_blocks,
kv_indices=kv_indices,
full_kv_num_blocks=full_kv_num_blocks,
full_kv_indices=full_kv_indices,
q_num_blocks=q_num_blocks,
q_indices=q_indices,
full_q_num_blocks=full_q_num_blocks,
full_q_indices=full_q_indices,
BLOCK_SIZE=BLOCK_SIZE,
mask_mod=mask_mod,
)
def as_tuple(self, flatten: bool = True):
"""
Returns a tuple of the attributes of the BlockMask.
Args:
flatten (bool): If True, it will flatten the tuple of (KV_BLOCK_SIZE, Q_BLOCK_SIZE)
"""
if flatten:
block_size = (self.BLOCK_SIZE[0], self.BLOCK_SIZE[1]) # type: ignore[assignment]
seq_lengths = (self.seq_lengths[0], self.seq_lengths[1]) # type: ignore[assignment]
else:
block_size = (self.BLOCK_SIZE,) # type: ignore[assignment]
seq_lengths = (self.seq_lengths,) # type: ignore[assignment]
return (
*seq_lengths,
self.kv_num_blocks,
self.kv_indices,
self.full_kv_num_blocks,
self.full_kv_indices,
self.q_num_blocks,
self.q_indices,
self.full_q_num_blocks,
self.full_q_indices,
*block_size,
self.mask_mod,
)
@property
def shape(self):
*batch_dims, _, _ = self.kv_indices.shape
return tuple(batch_dims) + self.seq_lengths
def __str__(self):
s = f"BlockMask(shape={self.shape}, sparsity={self.sparsity():.2f}%, \n"
mask_str = self.to_string().strip()
s += mask_str
s += "\n)"
return s
def __getitem__(self, index) -> "BlockMask":
"""
Returns a new BlockMask instance by getting the mask for the given index position.
Args:
index: Index to apply to all attributes.
Example Usage:
.. code-block:: python
def causal_mask(b, h, q_idx, kv_idx):
return q_idx >= kv_idx
block_mask = create_block_mask(causal_mask, 4, 2, 512, 512, device="cuda")
assert block_mask.kv_num_blocks.shape == (4,2,4)
assert block_mask.kv_indices.shape == (4,2,4,4)
# Index on batch dimension
new_block_mask = block_mask[0]
assert new_block_mask.kv_num_blocks.shape == (2,4)
assert new_block_mask.kv_indices.shape == (2,4,4)
# Index on batch and head dimension
new_block_mask = block_mask[0, 1]
assert new_block_mask.kv_num_blocks.shape == (4,)
assert new_block_mask.kv_indices.shape == (4,4)
# slicing on batch and head dimension
new_block_mask = block_mask[0:2, 1:2]
assert new_block_mask.kv_num_blocks.shape == (2,1,4)
assert new_block_mask.kv_indices.shape == (2,1,4,4)
# slicing on batch, head, and query dimension
new_block_mask = block_mask[0:2, 1:2, torch.tensor([1], dtype=torch.int32)]
assert new_block_mask.kv_num_blocks.shape == (2,1,1)
assert new_block_mask.kv_indices.shape == (2,1,1,4)
"""
new_kv_num_blocks = self.kv_num_blocks[index]
new_kv_indices = self.kv_indices[index]
if self.full_kv_num_blocks is not None:
assert self.full_kv_indices is not None
new_full_kv_num_blocks = self.full_kv_num_blocks[index]
new_full_kv_indices = self.full_kv_indices[index]
else:
new_full_kv_num_blocks = None
new_full_kv_indices = None
return BlockMask.from_kv_blocks(
new_kv_num_blocks,
new_kv_indices,
new_full_kv_num_blocks,
new_full_kv_indices,
BLOCK_SIZE=self.BLOCK_SIZE,
mask_mod=None,
seq_lengths=self.seq_lengths,
)
def __repr__(self):
def shape_or_none(x: Optional[torch.Tensor]):
return x.shape if x is not None else None
return (
f"BlockMask(\n"
f" kv_num_blocks={self.kv_num_blocks.shape},\n"
f" kv_indices={self.kv_indices.shape},\n"
f" full_kv_num_blocks={shape_or_none(self.full_kv_num_blocks )},\n"
f" full_kv_indices={shape_or_none(self.full_kv_indices)},\n"
f" q_num_blocks={shape_or_none(self.q_num_blocks)},\n"
f" q_indices={shape_or_none(self.q_indices)},\n"
f" full_q_num_blocks={shape_or_none(self.full_q_num_blocks)},\n"
f" full_q_indices={shape_or_none(self.full_q_indices)},\n"
f" BLOCK_SIZE={self.BLOCK_SIZE},\n"
f" shape={self.shape},\n"
f" sparsity={self.sparsity():.2f}%,\n"
f" mask_mod={self.mask_mod.__name__ if hasattr(self.mask_mod, '__name__') else self.mask_mod}\n"
f")"
)
def _adjust(self, new_q_len: int, new_kv_len: int):
new_num_rows = new_q_len // self.BLOCK_SIZE[0]
new_num_cols = new_kv_len // self.BLOCK_SIZE[1]
new_kv_num_blocks, new_kv_indices = _adjust_num_blocks_and_indices(
self.kv_num_blocks, self.kv_indices, new_num_rows, new_num_cols
)
if self.full_kv_num_blocks is not None:
assert self.full_kv_indices is not None
(
new_full_kv_num_blocks,
new_full_kv_indices,
) = _adjust_num_blocks_and_indices(
self.full_kv_num_blocks,
self.full_kv_indices,
new_num_rows,
new_num_cols,
)
else:
new_full_kv_num_blocks = None
new_full_kv_indices = None
return self.from_kv_blocks(
new_kv_num_blocks,
new_kv_indices,
new_full_kv_num_blocks,
new_full_kv_indices,
self.BLOCK_SIZE,
self.mask_mod,
)
def numel(self):
"""Returns the number of elements (not accounting for sparsity) in the mask."""
shape = self.shape
def _prod(xs):
return functools.reduce(operator.mul, xs, 1)
return _prod(shape)
def sparsity(self) -> float:
"""Computes the percentage of blocks that are sparse (i.e. not computed)"""
total_size = self.numel()
computed_blocks = self.kv_num_blocks.sum()
if self.full_kv_num_blocks is not None:
computed_blocks += self.full_kv_num_blocks.sum()
computed_size = computed_blocks.item() * self.BLOCK_SIZE[0] * self.BLOCK_SIZE[1]
dense_ratio = computed_size / total_size
return 100 * (1 - dense_ratio)
def to_dense(self) -> Tensor:
"""Returns a dense block that is equivalent to the block mask."""
partial_dense = _ordered_to_dense(self.kv_num_blocks, self.kv_indices)
if self.full_kv_num_blocks is not None:
assert self.full_kv_indices is not None
return partial_dense | _ordered_to_dense(
self.full_kv_num_blocks, self.full_kv_indices
)
return partial_dense
def to_string(self, grid_size=(20, 20), limit=4):
"""Returns a string representation of the block mask. Quite nifty.
If grid_size is None, prints out an uncompressed version. Warning, it can be quite big!
"""
dense_mask = self.to_dense()
*batch_dims, num_rows, num_cols = dense_mask.shape
if isinstance(grid_size, int):
max_rows = grid_size
max_cols = grid_size
elif grid_size == -1:
max_rows = num_rows
max_cols = num_cols
else:
max_rows, max_cols = grid_size
def create_block_vis(*batch_idx):
descriptors = []
descriptors.append(f"{batch_idx}")
vis = ", ".join(reversed(descriptors)) + "\n"
def summarize_section(section):
percentage = section.float().mean().item()
if percentage == 1:
return "â–ˆ"
elif percentage == 0:
return " "
else:
return "â–‘"
def cdiv(a, b):
return (a + (b - 1)) // b
row_step = max(1, cdiv(num_rows, max_rows))
col_step = max(1, cdiv(num_cols, max_cols))
for r in range(0, num_rows, row_step):
for c in range(0, num_cols, col_step):
cur_mask = dense_mask
for idx in batch_idx:
cur_mask = cur_mask[idx]
char = summarize_section(
cur_mask[r : r + row_step, c : c + col_step]
)
vis += char * 2
vis += "\n"
return vis
total_vis = []
for idx, batch_idx in enumerate(
itertools.product(*[range(i) for i in batch_dims])
):
if idx == limit:
total_vis.append("...")
total_vis.append("To print out more, set BlockMask.to_string(limit=N)")
total_vis.append(
"You can also index (BlockMask[batch, head]) to choose a specific batch or head"
)
break
block_vis = create_block_vis(*batch_idx)
total_vis.append(block_vis)
return "\n".join(total_vis)
def to(self, device: Union[torch.device, str]) -> "BlockMask":
"""Moves the BlockMask to the specified device.
Args:
device (torch.device or str): The target device to move the BlockMask to.
Can be a torch.device object or a string (e.g., 'cpu', 'cuda:0').
Returns:
BlockMask: A new BlockMask instance with all tensor components moved
to the specified device.
Note:
This method does not modify the original BlockMask in-place.
Instead, it returns a new BlockMask instance where invidual tensor attributes
may or may not be moved to the specified device, depending on their
current device placement.
"""
mapped_attributes = tree_map_only(
torch.Tensor,
lambda x: x.to(device),
self.as_tuple(flatten=False),
)
return BlockMask(*mapped_attributes)
def _broadcast_to_dim(x, dim):
while x.dim() < dim:
x = x.unsqueeze(0)
return x
def _round_up_to_multiple(x, multiple):
return (x + multiple - 1) // multiple * multiple
def _convert_mask_to_block_mask(
mask: Tensor,
Q_BLOCK_SIZE=_DEFAULT_SPARSE_BLOCK_SIZE,
KV_BLOCK_SIZE=_DEFAULT_SPARSE_BLOCK_SIZE,
separate_full_blocks: bool = False,
) -> Tuple[Tensor, Optional[Tensor]]:
assert mask.dtype == torch.bool
mask = _broadcast_to_dim(mask, 4)
def padding_needed_for_multiple(x, multiple):
return _round_up_to_multiple(x, multiple) - x
mask = torch.nn.functional.pad(
mask,
(
0,
padding_needed_for_multiple(mask.shape[-1], KV_BLOCK_SIZE),
0,
padding_needed_for_multiple(mask.shape[-2], Q_BLOCK_SIZE),
),
)
B, H, Q, KV = mask.shape
assert Q % Q_BLOCK_SIZE == 0
assert KV % KV_BLOCK_SIZE == 0
mask = mask.view(
B, H, Q // Q_BLOCK_SIZE, Q_BLOCK_SIZE, KV // KV_BLOCK_SIZE, KV_BLOCK_SIZE
) # [B, H, Q//Q_BLOCK_SIZE, Q_BLOCK_SIZE, KV//KV_BLOCK_SIZE, KV_BLOCK_SIZE]
mask = mask.permute(
0, 1, 2, 4, 3, 5
) # [B, H, Q//Q_BLOCK_SIZE, KV//KV_BLOCK_SIZE, Q_BLOCK_SIZE, KV_BLOCK_SIZE]
mask_block_sum = mask.sum(
dim=[-2, -1]
) # [B, H, Q//Q_BLOCK_SIZE, KV//KV_BLOCK_SIZE]
if separate_full_blocks:
full_block_sum = Q_BLOCK_SIZE * KV_BLOCK_SIZE
full_blocks = mask_block_sum == full_block_sum
partial_blocks = (mask_block_sum > 0) & (mask_block_sum < full_block_sum)
partial_blocks = partial_blocks.to(dtype=torch.int8)
full_blocks = full_blocks.to(dtype=torch.int8)
return partial_blocks, full_blocks
else:
partial_blocks = mask_block_sum > 0
partial_blocks = partial_blocks.to(dtype=torch.int8)
return partial_blocks, None
def or_masks(*mask_mods: _mask_mod_signature) -> _mask_mod_signature:
"""Returns a mask_mod that's the union of provided mask_mods"""
if not all(callable(arg) for arg in mask_mods):
raise RuntimeError(f"All inputs should be callable mask_mods: {mask_mods}")
def or_mask(b, h, q_idx, kv_idx):
result = b.new_zeros((), dtype=torch.bool)
for mask in mask_mods:
result = result | mask(b, h, q_idx, kv_idx)
return result
return or_mask
def and_masks(*mask_mods: _mask_mod_signature) -> _mask_mod_signature:
"""Returns a mask_mod that's the intersection of provided mask_mods"""
if not all(callable(arg) for arg in mask_mods):
raise RuntimeError(f"All inputs should be callable mask_mods: {mask_mods}")
def and_mask(b, h, q_idx, kv_idx):
result = b.new_ones((), dtype=torch.bool)
for mask in mask_mods:
result = result & mask(b, h, q_idx, kv_idx)
return result
return and_mask
def _convert_block_mask_to_mask(
block_mask,
KV_BLOCK_SIZE=_DEFAULT_SPARSE_BLOCK_SIZE,
Q_BLOCK_SIZE=_DEFAULT_SPARSE_BLOCK_SIZE,
) -> Tensor:
assert block_mask.dim() == 4
B, H, Q, KV = block_mask.shape
block_mask = block_mask.expand(Q_BLOCK_SIZE, KV_BLOCK_SIZE, *block_mask.shape)
block_mask = block_mask.permute(2, 3, 4, 0, 5, 1).reshape(
B, H, Q * Q_BLOCK_SIZE, KV * KV_BLOCK_SIZE
)
return block_mask
def _create_sparse_block_from_block_mask(
block_mask: Tuple[Tensor, Optional[Tensor]],
mask_mod: Optional[Callable],
seq_lengths: Tuple[int, int],
Q_BLOCK_SIZE: int = _DEFAULT_SPARSE_BLOCK_SIZE,
KV_BLOCK_SIZE: int = _DEFAULT_SPARSE_BLOCK_SIZE,
) -> BlockMask:
partial_blocks, full_blocks = block_mask
partial_bm = _dense_to_ordered(partial_blocks)
if full_blocks is not None:
full_bm = _dense_to_ordered(full_blocks)
else:
full_bm = (None, None)
return BlockMask.from_kv_blocks(
partial_bm[0],
partial_bm[1],
full_bm[0],
full_bm[1],
BLOCK_SIZE=(Q_BLOCK_SIZE, KV_BLOCK_SIZE),
mask_mod=mask_mod,
seq_lengths=seq_lengths,
)
def create_mask(
mod_fn: Union[_score_mod_signature, _mask_mod_signature],
B: Optional[int],
H: Optional[int],
Q_LEN: int,
KV_LEN: int,
device: str = "cuda",
) -> Tensor:
r"""This function creates a mask tensor from a mod_fn function.
Args:
mod_fn (Union[_score_mod_signature, _mask_mod_signature]): Function to modify attention scores.
B (int): Batch size.
H (int): Number of query heads.
Q_LEN (int): Sequence length of query.
KV_LEN (int): Sequence length of key/value.
device (str): Device to run the mask creation on.
Returns:
mask (Tensor): A mask tensor with shape (B, H, M, N).
"""
if B is None:
B = 1
if H is None:
H = 1
b = torch.arange(0, B, device=device)
h = torch.arange(0, H, device=device)
m = torch.arange(0, Q_LEN, device=device)
n = torch.arange(0, KV_LEN, device=device)
mod_type = _get_mod_type(mod_fn)
with TransformGetItemToIndex():
if mod_type == _ModificationType.SCORE_MOD:
score_mod = mod_fn
score_mod = _vmap_for_bhqkv(score_mod, prefix=(0,)) # first input is score
out = score_mod(torch.zeros(B, H, Q_LEN, KV_LEN, device=device), b, h, m, n)
mask = torch.where(torch.isneginf(out), False, True)
return mask
elif mod_type == _ModificationType.MASK_MOD:
mask_mod = mod_fn
mask_mod = _vmap_for_bhqkv(mask_mod, prefix=())
mask = mask_mod(b, h, m, n)
return mask
else:
raise AssertionError
def create_block_mask(
mask_mod: _mask_mod_signature,
B: Optional[int],
H: Optional[int],
Q_LEN: int,
KV_LEN: int,
device: str = "cuda",
BLOCK_SIZE: Union[int, Tuple[int, int]] = _DEFAULT_SPARSE_BLOCK_SIZE,
_compile=False,
) -> BlockMask:
r"""This function creates a block mask tuple from a mask_mod function.
Args:
mask_mod (Callable): mask_mod function. This is a callable that defines the
masking pattern for the attention mechanism. It takes four arguments:
b (batch size), h (number of heads), q_idx (query index), and kv_idx (key/value index).
It should return a boolean tensor indicating which attention connections are allowed (True)
or masked out (False).
B (int): Batch size.
H (int): Number of query heads.
Q_LEN (int): Sequence length of query.
KV_LEN (int): Sequence length of key/value.
device (str): Device to run the mask creation on.
BLOCK_SIZE (int or Tuple[int, int]): Block size for the block mask. If a single int is provided it is used for both query and key/value.
Returns:
BlockMask: A BlockMask object that contains the block mask information.
Example Usage:
.. code-block:: python
def causal_mask(b, h, q_idx, kv_idx):
return q_idx >= kv_idx
block_mask = create_block_mask(causal_mask, 1, 1, 8192, 8192, device="cuda")
query = torch.randn(1, 1, 8192, 64, device="cuda", dtype=torch.float16)
key = torch.randn(1, 1, 8192, 64, device="cuda", dtype=torch.float16)
value = torch.randn(1, 1, 8192, 64, device="cuda", dtype=torch.float16)
output = flex_attention(query, key, value, block_mask=block_mask)
"""
mod_type = _get_mod_type(mask_mod)
assert (
mod_type == _ModificationType.MASK_MOD
), f"create-block_mask requires a mask_mod function! Got {mask_mod}"
if B is None:
B = 1
if H is None:
H = 1
if isinstance(BLOCK_SIZE, int):
Q_BLOCK_SIZE = BLOCK_SIZE
KV_BLOCK_SIZE = BLOCK_SIZE
else:
Q_BLOCK_SIZE, KV_BLOCK_SIZE = BLOCK_SIZE
if _compile:
warnings.warn(
"_compile flag on create_block_mask was originally added to work around a torch.compile limitation. That limitation has since been addressed. So, to compile create_block_mask, we suggest doing torch.compile(create_block_mask). This still works for now, but will be removed in the future.",
DeprecationWarning,
)
return torch.compile(create_block_mask)(
mask_mod, B, H, Q_LEN, KV_LEN, device, BLOCK_SIZE
)
mask_tensor = create_mask(mask_mod, B, H, Q_LEN, KV_LEN, device)
partial_block_mask, full_block_mask = _convert_mask_to_block_mask(
mask_tensor,
Q_BLOCK_SIZE=Q_BLOCK_SIZE,
KV_BLOCK_SIZE=KV_BLOCK_SIZE,
separate_full_blocks=True,
)
block_mask = _create_sparse_block_from_block_mask(
(partial_block_mask, full_block_mask),
mask_mod,
(Q_LEN, KV_LEN),
Q_BLOCK_SIZE,
KV_BLOCK_SIZE,
)
return block_mask
def _create_empty_block_mask(query: Tensor, key: Tensor) -> BlockMask:
r"""Default block mask for flex attention.
If users don't specify any block sparse mask info, we create this
empty block sparse mask. Which creates a BlockMask with 1 block that is the full length
of the query and key tensors.
"""
device = query.device
return BlockMask.from_kv_blocks(
kv_num_blocks=torch.ones([1, 1, 1], dtype=torch.int32, device=device),
kv_indices=torch.zeros([1, 1, 1, 1], dtype=torch.int32, device=device),
BLOCK_SIZE=_LARGE_SPARSE_BLOCK_SIZE,
seq_lengths=(1, 1),
)
def _nested_mod_func_adapter(
orig_mod_func: Union[_score_mod_signature, _mask_mod_signature],
q_nt: torch.Tensor,
kv_nt: torch.Tensor,
is_score_mod: bool,
) -> Union[_score_mod_signature, _mask_mod_signature]:
r"""Adapter to convert a score_mod / mask_mod to be NJT-compatible. The given mod func
should be written as if operating over a single sequence at a item. This adapter will
handle conversion from indices operating over a "stacked sequence" of length ``sum(S)``
for sequence length ``S`` in the NJT to "sequence relative" indices in range ``[0, S)``.
Args:
orig_mod_func (Callable): Function to modify attention scores. It takes four or five
arguments, depending on whether a mask_mod or score_mod func is passed.
q_nt (torch.Tensor): Jagged layout nested tensor (NJT) that defines the sequence length
structure for query.
kv_nt (torch.Tensor): Jagged layout nested tensor (NJT) that defines the sequence length
structure for key / value.
is_score_mod (bool): Indicates whether the mod function is a score_mod.
Returns:
nt_score_mod: An NJT-compatible version of orig_score_mod
"""
# Used to convert indices within the "stacked" sequence (range [0, sum(*)))
# to "sequence local" indices (range [0, S) for each S).
def _build_seq_idx(offsets, total_length):
range_tensor = torch.arange(
total_length, device=offsets.device, dtype=torch.int32
)
# Use searchsorted to find the index for each position
# NB: This assumes offsets[0] to offsets[-1] spans the packed dim of values.
# If we ever loosen this restriction, this logic will need to be updated.
seq_idx = torch.searchsorted(offsets, range_tensor, right=True) - 1
return seq_idx
q_offsets = q_nt._offsets # type: ignore[attr-defined]
kv_offsets = kv_nt._offsets # type: ignore[attr-defined]
q_seq_idx = _build_seq_idx(q_offsets, q_nt._values.shape[q_nt._ragged_idx - 1]) # type: ignore[attr-defined]
if q_nt is kv_nt:
kv_seq_idx = q_seq_idx
else:
# cross attention case
kv_seq_idx = _build_seq_idx(kv_offsets, kv_nt._values.shape[kv_nt._ragged_idx - 1]) # type: ignore[attr-defined]
# Converts q_idx / kv_idx from [0, total_length) -> [0, S), where S refers
# to the sequence length for each sequence in the NJT, for use in given
# score_mod. This allows the user to write a score_mod as if it were
# operating on a single sequence and the "stacked sequence" is split
# automatically into individual sequences for them.
if is_score_mod:
def nt_score_mod(score, b, h, q_idx, kv_idx):
b_nested = q_seq_idx[q_idx]
q_nested = q_idx - q_offsets[q_seq_idx[q_idx]]
kv_nested = kv_idx - kv_offsets[kv_seq_idx[kv_idx]]
is_same_sequence = q_seq_idx[q_idx] == kv_seq_idx[kv_idx]
return torch.where(
is_same_sequence,
orig_mod_func(score, b_nested, h, q_nested, kv_nested), # type: ignore[call-arg]
# don't allow inter-sequence attention
float("-inf"),
)
return nt_score_mod
else:
def nt_mask_mod(b, h, q_idx, kv_idx):
b_nested = q_seq_idx[q_idx]
q_nested = q_idx - q_offsets[q_seq_idx[q_idx]]
kv_nested = kv_idx - kv_offsets[kv_seq_idx[kv_idx]]
# don't allow inter-sequence attention
is_same_sequence = q_seq_idx[q_idx] == kv_seq_idx[kv_idx]
return orig_mod_func(b_nested, h, q_nested, kv_nested) & is_same_sequence # type: ignore[call-arg]
return nt_mask_mod
def create_nested_block_mask(
mask_mod: _mask_mod_signature,
B: Optional[int],
H: Optional[int],
q_nt: torch.Tensor,
kv_nt: Optional[torch.Tensor] = None,
BLOCK_SIZE: Union[int, Tuple[int, int]] = _DEFAULT_SPARSE_BLOCK_SIZE,
_compile=False,
) -> BlockMask:
r"""This function creates a nested tensor compatible block mask tuple from a mask_mod
function. The returned BlockMask will be on the device specified by the input nested tensor.
Args:
mask_mod (Callable): mask_mod function. This is a callable that defines the
masking pattern for the attention mechanism. It takes four arguments:
b (batch size), h (number of heads), q_idx (query index), and kv_idx (key/value index).
It should return a boolean tensor indicating which attention connections are allowed
(True) or masked out (False).
B (int): Batch size.
H (int): Number of query heads.
q_nt (torch.Tensor): Jagged layout nested tensor (NJT) that defines the sequence length
structure for query. The block mask will be constructed to operate on a "stacked
sequence" of length ``sum(S)`` for sequence length ``S`` from the NJT.
kv_nt (torch.Tensor): Jagged layout nested tensor (NJT) that defines the sequence length
structure for key / value, allowing for cross attention. The block mask will be
constructed to operate on a "stacked sequence" of length ``sum(S)`` for sequence
length ``S`` from the NJT. If this is None, ``q_nt`` is used to define the structure
for key / value as well. Default: None
BLOCK_SIZE (int or Tuple[int, int]): Block size for the block mask. If a single int is
provided it is used for both query and key/value.
Returns:
BlockMask: A BlockMask object that contains the block mask information.
Example Usage:
.. code-block:: python
# shape (B, num_heads, seq_len*, D) where seq_len* varies across the batch
query = torch.nested.nested_tensor(..., layout=torch.jagged)
key = torch.nested.nested_tensor(..., layout=torch.jagged)
value = torch.nested.nested_tensor(..., layout=torch.jagged)
def causal_mask(b, h, q_idx, kv_idx):
return q_idx >= kv_idx
block_mask = create_nested_block_mask(causal_mask, 1, 1, query, _compile=True)
output = flex_attention(query, key, value, block_mask=block_mask)
.. code-block:: python
# shape (B, num_heads, seq_len*, D) where seq_len* varies across the batch
query = torch.nested.nested_tensor(..., layout=torch.jagged)
key = torch.nested.nested_tensor(..., layout=torch.jagged)
value = torch.nested.nested_tensor(..., layout=torch.jagged)
def causal_mask(b, h, q_idx, kv_idx):
return q_idx >= kv_idx
# cross attention case: pass both query and key/value NJTs
block_mask = create_nested_block_mask(causal_mask, 1, 1, query, key, _compile=True)
output = flex_attention(query, key, value, block_mask=block_mask)
"""
# use same structure for kv as for q by default
if kv_nt is None:
kv_nt = q_nt
if q_nt.device != kv_nt.device:
raise ValueError(
"create_nested_block_mask(): Expected q_nt and kv_nt to be on the same device"
)
return create_block_mask(
_nested_mod_func_adapter(mask_mod, q_nt, kv_nt, is_score_mod=False), # type: ignore[arg-type]
B,
H,
q_nt._values.shape[q_nt._ragged_idx - 1], # type: ignore[attr-defined]
kv_nt._values.shape[kv_nt._ragged_idx - 1], # type: ignore[attr-defined]
device=q_nt.device, # type: ignore[arg-type]
# compile is important so we don't materialize a mask_tensor of
# shape (1, 1, total_seqlen, total_seqlen)
BLOCK_SIZE=BLOCK_SIZE,
_compile=_compile,
)
def _apply_kernel_options(
query: Tensor, key: Tensor, value: Tensor, return_lse: bool, kernel_options
):
kernel_options = {} if kernel_options is None else dict(kernel_options)
kernel_options.setdefault("PRESCALE_QK", False)
kernel_options.setdefault("ROWS_GUARANTEED_SAFE", False)
kernel_options.setdefault("BLOCKS_ARE_CONTIGUOUS", False)
# If forward kernel needs to return logsumexp is decided by this rule internally.
assert "OUTPUT_LOGSUMEXP" not in kernel_options
kernel_options["OUTPUT_LOGSUMEXP"] = True
if not return_lse:
# We used to check if q,k,v required grads but since captured buffers can require grad
# we always write unless in no_grad
output_logsumexp = torch.is_grad_enabled()
kernel_options["OUTPUT_LOGSUMEXP"] = output_logsumexp
any_inputs_on_cpu_device = (
query.device.type == "cpu"
or key.device.type == "cpu"
or value.device.type == "cpu"
)
if any_inputs_on_cpu_device:
# CPU with torch.compile now supports infernece, and will not return lse
# TODO: support CPU for training and return lse
kernel_options["OUTPUT_LOGSUMEXP"] = False
return kernel_options
def _validate_embed_dim(query: Tensor, key: Tensor, value: Tensor):
if query.size(-1) != key.size(-1):
raise ValueError(
f"Expect query and key/value to have the same embedding dimension "
f"but got E={query.size(-1)} and E={key.size(-1)}."
)
# TODO this config segfaults with Triton without:
# https://github.com/triton-lang/triton/pull/4540
if not (
_supported_head_dim(query.size(-1)) and _supported_head_dim(value.size(-1))
):
raise ValueError(
f"NYI: Currently non power of 2 embedding dimension are not supported. "
f"Got E={query.size(-1)} and Ev={value.size(-1)}."
)
def _validate_device(query: Tensor, key: Tensor, value: Tensor):
"""TODO: Remove once non cuda/cpu devices support is added
We only need to check query since we have already that q,k,v are on the same device
"""
if query.device.type != "cuda" and query.device.type != "cpu":
raise ValueError(
"FlexAttention is only supported on CUDA or CPU devices. "
f"Found input tensors on {query.device.type} device."
)
def _validate_nestedness(query: Tensor, key: Tensor, value: Tensor):
# Currently, inputs can only be all nested or no nested.
if query.is_nested != key.is_nested or key.is_nested != value.is_nested:
raise ValueError(
"FlexAttention does not support mixed nested tensor / non-nested tensor inputs. "
"Please file an issue requesting this if it is important to you."
)
if (
(query.is_nested and query._lengths is not None) # type: ignore[attr-defined]
or (key.is_nested and key._lengths is not None) # type: ignore[attr-defined]
or (value.is_nested and value._lengths is not None) # type: ignore[attr-defined]
):
raise ValueError(
"FlexAttention does not support nested tensors that are non-contiguous with holes. "
"Please file an issue requesting this if it is important to you."
)
def flex_attention(
query: Tensor,
key: Tensor,
value: Tensor,
score_mod: Optional[_score_mod_signature] = None,
block_mask: Optional[BlockMask] = None,
scale: Optional[float] = None,
enable_gqa: bool = False,
return_lse: bool = False,
kernel_options: Optional[Dict[str, Any]] = None,
) -> Union[Tensor, Tuple[Tensor, Tensor]]:
r"""This function implements scaled dot product attention with an arbitrary attention score modification function.
This function computes the scaled dot product attention between query, key, and value tensors with a user-defined
attention score modification function. The attention score modification function will be applied after the attention
scores have been calculated between the query and key tensors. The attention scores are calculated as follows:
The ``score_mod`` function should have the following signature:
.. code-block:: python
def score_mod(
score: Tensor,
batch: Tensor,
head: Tensor,
q_idx: Tensor,
k_idx: Tensor
) -> Tensor:
Where:
- ``score``: A scalar tensor representing the attention score,
with the same data type and device as the query, key, and value tensors.
- ``batch``, ``head``, ``q_idx``, ``k_idx``: Scalar tensors indicating
the batch index, query head index, query index, and key/value index, respectively.
These should have the ``torch.int`` data type and be located on the same device as the score tensor.
Args:
query (Tensor): Query tensor; shape :math:`(B, Hq, L, E)`.
key (Tensor): Key tensor; shape :math:`(B, Hkv, S, E)`.
value (Tensor): Value tensor; shape :math:`(B, Hkv, S, Ev)`.
score_mod (Optional[Callable]): Function to modify attention scores. By default no score_mod is applied.
block_mask (Optional[BlockMask]): BlockMask object that controls the blocksparsity pattern of the attention.
scale (Optional[float]): Scaling factor applied prior to softmax. If none, the default value is set to :math:`\frac{1}{\sqrt{E}}`.
enable_gqa (bool): If set to True, enables Grouped Query Attention (GQA) and broadcasts key/value heads to query heads.
return_lse (bool): Whether to return the logsumexp of the attention scores. Default is False.
kernel_options (Optional[Dict[str, Any]]): Options to pass into the Triton kernels.
Returns:
output (Tensor): Attention output; shape :math:`(B, Hq, L, Ev)`.
Shape legend:
- :math:`N: \text{Batch size} ... : \text{Any number of other batch dimensions (optional)}`
- :math:`S: \text{Source sequence length}`
- :math:`L: \text{Target sequence length}`
- :math:`E: \text{Embedding dimension of the query and key}`
- :math:`Ev: \text{Embedding dimension of the value}`
.. warning::
`torch.nn.attention.flex_attention` is a prototype feature in PyTorch.
Please look forward to a more stable implementation in a future version of PyTorch.
Read more about feature classification at: https://pytorch.org/blog/pytorch-feature-classification-changes/#prototype
"""
# Some basic input validation
_validate_sdpa_input(query, key, value)
_validate_embed_dim(query, key, value)
_validate_device(query, key, value)
_validate_nestedness(query, key, value)
if query.dim() != 4 or key.dim() != 4 or value.dim() != 4:
raise NotImplementedError("NYI: query, key, and value must be 4D tensors")
if (not enable_gqa) and query.size(-3) != key.size(-3):
raise ValueError(
f"Expect query and key/value to have the same number of heads "
f"but got Hq={query.size(-3)} and Hkv={key.size(-3)}. "
f"Try setting enable_gqa=True for GQA."
)
if enable_gqa:
Hq = query.size(1)
Hkv = key.size(1)
if Hq % Hkv != 0:
raise ValueError(
f"Expect number of query heads to be a multiple of kv heads for GQA "
f"but got Hq={Hq} and Hkv={Hkv}."
)
if query.size(0) != key.size(0):
if block_mask is None:
raise ValueError(
f"Expect query and key/value to have the same batch size, "
f"or non-none block_mask, "
f"but got block_mask=None, Bq={query.size(0)}, and Bkv={key.size(0)}."
)
if block_mask.kv_num_blocks.size(0) != query.size(0):
raise ValueError(
f"Expect query and key/value to have the same batch size, "
f"or block_mask and query to have the same batch size, "
f"but got Bq={query.size(0)}, Bkv={key.size(0)}, B_block_mask={block_mask.kv_num_blocks.size(0)}."
)
if score_mod is None:
score_mod = _identity
elif query.is_nested:
# use same NJT if the ragged structures for sequence lengths match between q and kv
kv = (
query
if query.size(query._ragged_idx) == key.size(query._ragged_idx) # type: ignore[attr-defined]
else key
)
score_mod = _nested_mod_func_adapter(score_mod, query, kv, is_score_mod=True) # type: ignore[assignment]
if block_mask is None:
block_mask = _create_empty_block_mask(query, key)
if (
block_mask.BLOCK_SIZE[0] == _LARGE_SPARSE_BLOCK_SIZE
and block_mask.BLOCK_SIZE[1] == _LARGE_SPARSE_BLOCK_SIZE
):
# This corresponds to the case where we essentially have a "no-op" block mask.
pass
elif query.is_nested:
if block_mask.shape[-2] != query._values.size(query._ragged_idx - 1): # type: ignore[attr-defined]
raise RuntimeError(
f"block_mask of shape {block_mask.shape} is not compatible with nested tensor input "
f"with total sequence length of {query._values.size(query._ragged_idx - 1)}" # type: ignore[attr-defined]
)
else:
block_mask_q_len = block_mask.shape[-2]
block_mask_kv_len = block_mask.shape[-1]
if query.size(-2) > block_mask_q_len or key.size(-2) > block_mask_kv_len:
raise ValueError(
f"block_mask was created for block_mask.shape={block_mask.shape} but got q_len={query.size(-2)} and kv_len={key.size(-2)}. "
"As the block mask was created for a smaller length than you're using it for, you likely need to create a new block mask."
)
elif (
query.size(-2) < block_mask_q_len and key.size(-2) <= block_mask_kv_len
) or (query.size(-2) <= block_mask_q_len and key.size(-2) < block_mask_kv_len):
raise ValueError(
f"block_mask was created for block_mask.shape={block_mask.shape} but got q_len={query.size(-2)} and kv_len={key.size(-2)}. "
"As the block mask was created for a larger length than you're using it for, you can either 1. create a new block mask with the correct length, or 2. 'adjust' the existing block mask to the correct length by calling block_mask._adjust(q_len, kv_len). This essentially 'crops' the block mask to the upper left corner, which does not work for all mask_mods!"
)
assert query.size(-2) == block_mask_q_len
assert key.size(-2) == block_mask_kv_len
if scale is None:
scale = 1.0 / math.sqrt(query.size(-1))
if query.device != block_mask.kv_num_blocks.device: # type: ignore[union-attr]
raise RuntimeError(
f"Expect q/k/v and block_mask to be on the same device "
f"but got {query.device} and {block_mask.kv_num_blocks.device}." # type: ignore[union-attr]
)
kernel_options = _apply_kernel_options(
query,
key,
value,
return_lse,
kernel_options,
)
if torch.compiler.is_dynamo_compiling():
# mark head_dim and number of heads to be static
for x in [query, key, value]:
torch._dynamo.mark_static(x, -3)
torch._dynamo.mark_static(x, -1)
out, lse = flex_attention_hop(
query, key, value, score_mod, block_mask.as_tuple(), scale, kernel_options # type: ignore[union-attr]
)
if return_lse:
return out, lse * math.log(2)
else:
return out
if not torch._dynamo.is_dynamo_supported():
raise RuntimeError("flex_attention requires dynamo support")
from torch._dynamo.backends.debugging import (
make_eager_backend_with_torch_function_mode,
)
# Dynamo is expecting a callable with "__code__" attribute.
# We cannot directly pass hop to it. So we wrap it in a dummy function.
def _flex_attention_hop_wrapper(*args, **kwargs):
return flex_attention_hop(*args, **kwargs)
with _set_compilation_env():
with torch._dynamo.utils.disable_cache_limit():
with _temp_remove_pre_dispatch_torch_function_mode():
with _temp_remove_metadata_torch_function_mode() as metadata_mode:
if metadata_mode:
backend = make_eager_backend_with_torch_function_mode(
metadata_mode
)
else:
backend = "eager"
out, lse = torch.compile(
_flex_attention_hop_wrapper, backend=backend, fullgraph=True
)(
query,
key,
value,
score_mod,
block_mask.as_tuple(), # type: ignore[union-attr]
scale,
kernel_options,
)
if return_lse:
return out, lse * math.log(2)
else:
return out
|