File: channelshuffle.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (56 lines) | stat: -rw-r--r-- 1,548 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch.nn.functional as F
from torch import Tensor

from .module import Module


__all__ = ["ChannelShuffle"]


class ChannelShuffle(Module):
    r"""Divides and rearranges the channels in a tensor.

    This operation divides the channels in a tensor of shape :math:`(N, C, *)`
    into g groups as :math:`(N, \frac{C}{g}, g, *)` and shuffles them,
    while retaining the original tensor shape in the final output.

    Args:
        groups (int): number of groups to divide channels in.

    Examples::

        >>> channel_shuffle = nn.ChannelShuffle(2)
        >>> input = torch.arange(1, 17, dtype=torch.float32).view(1, 4, 2, 2)
        >>> input
        tensor([[[[ 1.,  2.],
                  [ 3.,  4.]],
                 [[ 5.,  6.],
                  [ 7.,  8.]],
                 [[ 9., 10.],
                  [11., 12.]],
                 [[13., 14.],
                  [15., 16.]]]])
        >>> output = channel_shuffle(input)
        >>> output
        tensor([[[[ 1.,  2.],
                  [ 3.,  4.]],
                 [[ 9., 10.],
                  [11., 12.]],
                 [[ 5.,  6.],
                  [ 7.,  8.]],
                 [[13., 14.],
                  [15., 16.]]]])
    """

    __constants__ = ["groups"]
    groups: int

    def __init__(self, groups: int) -> None:
        super().__init__()
        self.groups = groups

    def forward(self, input: Tensor) -> Tensor:
        return F.channel_shuffle(input, self.groups)

    def extra_repr(self) -> str:
        return f"groups={self.groups}"