File: __init__.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (97 lines) | stat: -rw-r--r-- 2,101 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
r"""Quantized Modules.

Note::
    The `torch.nn.quantized` namespace is in the process of being deprecated.
    Please, use `torch.ao.nn.quantized` instead.
"""

# The following imports are needed in case the user decides
# to import the files directly,
# s.a. `from torch.nn.quantized.modules.conv import ...`.
# No need to add them to the `__all__`.
from torch.ao.nn.quantized.modules import (
    activation,
    batchnorm,
    conv,
    DeQuantize,
    dropout,
    embedding_ops,
    functional_modules,
    linear,
    MaxPool2d,
    normalization,
    Quantize,
    rnn,
    utils,
)
from torch.ao.nn.quantized.modules.activation import (
    ELU,
    Hardswish,
    LeakyReLU,
    MultiheadAttention,
    PReLU,
    ReLU6,
    Sigmoid,
    Softmax,
)
from torch.ao.nn.quantized.modules.batchnorm import BatchNorm2d, BatchNorm3d
from torch.ao.nn.quantized.modules.conv import (
    Conv1d,
    Conv2d,
    Conv3d,
    ConvTranspose1d,
    ConvTranspose2d,
    ConvTranspose3d,
)
from torch.ao.nn.quantized.modules.dropout import Dropout
from torch.ao.nn.quantized.modules.embedding_ops import Embedding, EmbeddingBag
from torch.ao.nn.quantized.modules.functional_modules import (
    FloatFunctional,
    FXFloatFunctional,
    QFunctional,
)
from torch.ao.nn.quantized.modules.linear import Linear
from torch.ao.nn.quantized.modules.normalization import (
    GroupNorm,
    InstanceNorm1d,
    InstanceNorm2d,
    InstanceNorm3d,
    LayerNorm,
)
from torch.ao.nn.quantized.modules.rnn import LSTM


__all__ = [
    "BatchNorm2d",
    "BatchNorm3d",
    "Conv1d",
    "Conv2d",
    "Conv3d",
    "ConvTranspose1d",
    "ConvTranspose2d",
    "ConvTranspose3d",
    "DeQuantize",
    "ELU",
    "Embedding",
    "EmbeddingBag",
    "GroupNorm",
    "Hardswish",
    "InstanceNorm1d",
    "InstanceNorm2d",
    "InstanceNorm3d",
    "LayerNorm",
    "LeakyReLU",
    "Linear",
    "LSTM",
    "MultiheadAttention",
    "Quantize",
    "ReLU6",
    "Sigmoid",
    "Softmax",
    "Dropout",
    "PReLU",
    # Wrapper modules
    "FloatFunctional",
    "FXFloatFunctional",
    "QFunctional",
]