1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, Iterable, List, Tuple
import torch
_MISSING: torch.Tensor = object() # type: ignore[assignment]
def set_tensor(module: "torch.nn.Module", name: str, tensor: torch.Tensor) -> None:
if not isinstance(module, torch.nn.Module):
raise TypeError(f"{module} is not an instance of torch.nn.Module")
if not isinstance(tensor, torch.Tensor) and tensor is not None:
raise TypeError(f"{tensor} is not an instance of torch.Tensor")
if "." in name:
raise KeyError('tensor name can\'t contain "."')
if name == "":
raise KeyError('tensor name can\'t be empty string ""')
if name in module._parameters:
module._parameters[name] = tensor # type: ignore[assignment]
elif name in module._buffers:
module._buffers[name] = tensor
else:
setattr(module, name, tensor)
def swap_tensor(
module: "torch.nn.Module",
name: str,
tensor: torch.Tensor,
allow_missing: bool = False,
) -> torch.Tensor:
if not isinstance(module, torch.nn.Module):
raise TypeError(f"{module} is not an instance of torch.nn.Module")
if (
tensor is not _MISSING
and not isinstance(tensor, torch.Tensor)
and tensor is not None
):
raise TypeError(f"{tensor} is not an instance of torch.Tensor")
if "." in name:
raise KeyError('tensor name can\'t contain "."')
if name == "":
raise KeyError('tensor name can\'t be empty string ""')
orig_tensor: torch.Tensor
if name in module._parameters:
orig_tensor = module._parameters[name] # type: ignore[assignment]
if tensor is not _MISSING:
module._parameters[name] = tensor # type: ignore[assignment]
else:
del module._parameters[name]
elif name in module._buffers:
orig_tensor = module._buffers[name] # type: ignore[assignment]
if tensor is not _MISSING:
module._buffers[name] = tensor
else:
del module._buffers[name]
else:
if hasattr(module, name):
orig_tensor = getattr(module, name)
else:
if not allow_missing:
raise AttributeError(f"{module._get_name()} has no attribute `{name}`")
orig_tensor = _MISSING
if (
orig_tensor is not _MISSING
and not isinstance(orig_tensor, torch.Tensor)
and orig_tensor is not None
):
raise TypeError(
f"attribute `{name}`: {orig_tensor} is not an instance of torch.Tensor"
)
if tensor is not _MISSING:
setattr(module, name, tensor)
elif hasattr(module, name):
delattr(module, name)
return orig_tensor
def swap_submodule(
module: "torch.nn.Module",
name: str,
submodule: "torch.nn.Module",
) -> "torch.nn.Module":
if not isinstance(module, torch.nn.Module):
raise TypeError(f"{module} is not an instance of torch.nn.Module")
if not isinstance(submodule, torch.nn.Module):
raise TypeError(f"{submodule} is not an instance of torch.nn.Module")
if "." in name:
raise KeyError('submodule name can\'t contain "."')
if name == "":
raise KeyError('submodule name can\'t be empty string ""')
if name not in module._modules:
raise KeyError(f"submodule {name} does not exist")
orig_submodule = module._modules[name]
if not isinstance(orig_submodule, torch.nn.Module):
raise TypeError(f"{name} attribute is not an instance of torch.nn.Module")
module._modules[name] = submodule
return orig_submodule
class NamedMemberAccessor:
"""
A class that provides a way to access the submodules and parameters/buffers of a module.
It provides caching mechanism to speed up submodule lookups.
This is useful for functional programming to manipulate the module state.
"""
def __init__(self, module: "torch.nn.Module") -> None:
self.module = module
self.memo: Dict[str, torch.nn.Module] = {}
# Nested attribute access
def get_submodule(self, name: str) -> "torch.nn.Module":
"""
Return the submodule specified by the given path.
For example, to get the submodule mod.layer1.conv1,
use accessor.get_submodule("layer1.conv1")
Compare to mod.get_submodule("layer1.conv1"), this method will cache the
intermediate submodule access to speed up future lookups.
"""
if not name:
return self.module
if name in self.memo:
return self.memo[name]
else:
prefix, dot, attr = name.rpartition(".")
if dot:
module = self.get_submodule(prefix)
else:
module = self.module
try:
submodule = getattr(module, attr)
except AttributeError as ex:
raise AttributeError(
f"{module._get_name()} has no attribute `{attr}`"
) from ex
if not isinstance(submodule, torch.nn.Module):
raise TypeError( # noqa: B904
f"submodule `{name}`: {submodule} is not an instance of torch.nn.Module"
)
self.memo[name] = submodule
return submodule
def swap_submodule(self, path: str, value: "torch.nn.Module") -> "torch.nn.Module":
"""
Swap the submodule specified by the given ``path`` to ``value``.
For example, to swap the attribute mod.layer1.conv1 use
``accessor.swap_submodule("layer1.conv1", conv2)``.
"""
prefix, _, attr = path.rpartition(".")
return swap_submodule(self.get_submodule(prefix), attr, value)
def get_tensor(self, name: str) -> torch.Tensor:
"""
Get the tensor specified by the given path to value.
For example, to get the attribute mod.layer1.conv1.weight,
use accessor.get_tensor('layer1.conv1.weight')
Compare to mod.get_parameter("layer1.conv1.weight"), this method will
cache the intermediate submodule access to speed up future lookups.
"""
prefix, _, attr = name.rpartition(".")
submodule = self.get_submodule(prefix)
try:
tensor = getattr(submodule, attr)
except AttributeError as ex:
raise AttributeError(
f"{submodule._get_name()} has no attribute `{name}`"
) from ex
if not isinstance(tensor, torch.Tensor) and tensor is not None:
raise TypeError(f"{tensor} is not an instance of torch.Tensor")
return tensor # type: ignore[return-value]
def set_tensor(self, name: str, value: torch.Tensor) -> None:
"""
Set the attribute specified by the given path to value.
For example, to set the attribute mod.layer1.conv1.weight,
use accessor.set_tensor("layer1.conv1.weight", value)
"""
prefix, _, attr = name.rpartition(".")
set_tensor(self.get_submodule(prefix), attr, value)
def del_tensor(self, name: str) -> None:
"""
Delete the attribute specified by the given path.
For example, to delete the attribute mod.layer1.conv1.weight,
use accessor.del_tensor("layer1.conv1.weight")
"""
prefix, _, attr = name.rpartition(".")
submodule = self.get_submodule(prefix)
try:
delattr(submodule, attr)
except AttributeError as ex:
raise AttributeError(
f"{submodule._get_name()} has no attribute `{name}`"
) from ex
def swap_tensor(
self, name: str, value: torch.Tensor, allow_missing: bool = False
) -> torch.Tensor:
"""
Swap the attribute specified by the given path to value.
For example, to swap the attribute mod.layer1.conv1.weight,
use accessor.swap_tensor("layer1.conv1.weight", value)
"""
prefix, _, attr = name.rpartition(".")
return swap_tensor(
self.get_submodule(prefix), attr, value, allow_missing=allow_missing
)
# Batched operations
def get_tensors(self, names: Iterable[str]) -> List[torch.Tensor]:
"""
Get the tensors specified by the given paths.
For example, to get the attributes mod.layer1.conv1.weight and
mod.layer1.conv1.bias, use accessor.get_tensors(["layer1.conv1.weight",
"layer1.conv1.bias"])
"""
return [self.get_tensor(name) for name in names]
def set_tensors(self, names: Iterable[str], values: Iterable[torch.Tensor]) -> None:
"""
Set the attributes specified by the given paths to values.
For example, to set the attributes mod.layer1.conv1.weight and
mod.layer1.conv1.bias, use accessor.set_tensors(["layer1.conv1.weight",
"layer1.conv1.bias"], [weight, bias])
"""
if not isinstance(names, (list, tuple)):
names = list(names)
if not isinstance(values, (list, tuple)):
values = list(values)
assert len(names) == len(values), "names and values must have the same length"
for name, value in zip(names, values):
self.set_tensor(name, value)
def set_tensors_dict(self, named_tensors: Dict[str, torch.Tensor]) -> None:
"""
Set the attributes specified by the given paths to values.
For example, to set the attributes mod.layer1.conv1.weight and
mod.layer1.conv1.bias, use accessor.set_tensors_dict({
"layer1.conv1.weight": weight,
"layer1.conv1.bias": bias,
})
"""
for name, value in named_tensors.items():
self.set_tensor(name, value)
def del_tensors(self, names: Iterable[str]) -> None:
"""
Delete the attributes specified by the given paths.
For example, to delete the attributes mod.layer1.conv1.weight and
mod.layer1.conv1.bias, use accessor.del_tensors(["layer1.conv1.weight",
"layer1.conv1.bias"])
"""
for name in names:
self.del_tensor(name)
def swap_tensors(
self,
names: Iterable[str],
values: Iterable[torch.Tensor],
allow_missing: bool = False,
) -> List[torch.Tensor]:
"""
Swap the attributes specified by the given paths to values.
For example, to swap the attributes mod.layer1.conv1.weight and
mod.layer1.conv1.bias, use accessor.swap_tensors(["layer1.conv1.weight",
"layer1.conv1.bias"], [weight, bias])
"""
if not isinstance(names, (list, tuple)):
names = list(names)
if not isinstance(values, (list, tuple)):
values = list(values)
assert len(names) == len(values), "names and values must have the same length"
return [
self.swap_tensor(name, value, allow_missing=allow_missing)
for name, value in zip(names, values)
]
def swap_tensors_dict(
self, named_tensors: Dict[str, torch.Tensor], allow_missing: bool = False
) -> Tuple[Dict[str, torch.Tensor], List[str]]:
"""
Swap the attributes specified by the given paths to values.
For example, to swap the attributes mod.layer1.conv1.weight and
mod.layer1.conv1.bias, use accessor.swap_tensors_dict({
"layer1.conv1.weight": weight,
"layer1.conv1.bias": bias,
})
"""
orig_named_tensors = {}
missing_keys = []
try:
for name, tensor in named_tensors.items():
orig_tensor = self.swap_tensor(name, tensor, allow_missing=True)
if orig_tensor is _MISSING:
missing_keys.append(name)
orig_named_tensors[name] = orig_tensor
except Exception:
# Swap back if any exception occurs
for name, orig_tensor in orig_named_tensors.items():
self.swap_tensor(name, orig_tensor, allow_missing=True)
raise
if missing_keys and not allow_missing:
# Swap back if any key is missing when allow_missing is False
for name, orig_tensor in orig_named_tensors.items():
self.swap_tensor(name, orig_tensor, allow_missing=True)
raise RuntimeError(f"Missing key(s): {', '.join(map(repr, missing_keys))}.")
return orig_named_tensors, missing_keys
def check_keys(self, keys: Iterable[str]) -> Tuple[List[str], List[str]]:
"""Check that the given keys are valid."""
keys = set(keys)
valid_keys = {name for name, _ in self.named_tensors(remove_duplicate=False)}
missing_keys = valid_keys - keys
unexpected_keys = keys - valid_keys
return sorted(missing_keys), sorted(unexpected_keys)
# Shortcut methods
def named_parameters(
self,
remove_duplicate: bool = True,
) -> Iterable[Tuple[str, torch.Tensor]]:
"""Iterate over all the parameters in the module."""
yield from self.module.named_parameters(remove_duplicate=remove_duplicate)
def named_buffers(
self,
remove_duplicate: bool = True,
) -> Iterable[Tuple[str, torch.Tensor]]:
"""Iterate over all the buffers in the module."""
yield from self.module.named_buffers(remove_duplicate=remove_duplicate)
def named_tensors(
self,
remove_duplicate: bool = True,
) -> Iterable[Tuple[str, torch.Tensor]]:
"""Iterate over all the tensors in the module."""
yield from self.module.named_parameters(remove_duplicate=remove_duplicate)
yield from self.module.named_buffers(remove_duplicate=remove_duplicate)
def named_modules(
self,
remove_duplicate: bool = True,
) -> Iterable[Tuple[str, "torch.nn.Module"]]:
"""Iterate over all the modules in the module."""
yield from self.module.named_modules(remove_duplicate=remove_duplicate)
|