File: __init__.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (527 lines) | stat: -rw-r--r-- 19,891 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# mypy: allow-untyped-defs
from __future__ import annotations


__all__ = [
    # Modules
    "symbolic_helper",
    "utils",
    "errors",
    # All opsets
    "symbolic_caffe2",
    "symbolic_opset7",
    "symbolic_opset8",
    "symbolic_opset9",
    "symbolic_opset10",
    "symbolic_opset11",
    "symbolic_opset12",
    "symbolic_opset13",
    "symbolic_opset14",
    "symbolic_opset15",
    "symbolic_opset16",
    "symbolic_opset17",
    "symbolic_opset18",
    "symbolic_opset19",
    "symbolic_opset20",
    # Enums
    "OperatorExportTypes",
    "TrainingMode",
    "TensorProtoDataType",
    "JitScalarType",
    # Public functions
    "export",
    "is_in_onnx_export",
    "select_model_mode_for_export",
    "register_custom_op_symbolic",
    "unregister_custom_op_symbolic",
    # Base error
    "OnnxExporterError",
    # Dynamo Exporter
    "DiagnosticOptions",
    "ExportOptions",
    "ONNXProgram",
    "ONNXRuntimeOptions",
    "OnnxRegistry",
    "dynamo_export",
    "enable_fake_mode",
    # DORT / torch.compile
    "is_onnxrt_backend_supported",
]

from typing import Any, Callable, Collection, Mapping, Sequence, TYPE_CHECKING

import torch
from torch import _C
from torch._C import _onnx as _C_onnx
from torch._C._onnx import OperatorExportTypes, TensorProtoDataType, TrainingMode

from ._internal.exporter._onnx_program import ONNXProgram
from ._internal.onnxruntime import (
    is_onnxrt_backend_supported,
    OrtBackend as _OrtBackend,
    OrtBackendOptions as _OrtBackendOptions,
    OrtExecutionProvider as _OrtExecutionProvider,
)
from ._type_utils import JitScalarType
from .errors import OnnxExporterError
from .utils import (
    _run_symbolic_function,
    _run_symbolic_method,
    is_in_onnx_export,
    register_custom_op_symbolic,
    select_model_mode_for_export,
    unregister_custom_op_symbolic,
)


from . import (  # usort: skip. Keep the order instead of sorting lexicographically
    errors,
    symbolic_caffe2,
    symbolic_helper,
    symbolic_opset7,
    symbolic_opset8,
    symbolic_opset9,
    symbolic_opset10,
    symbolic_opset11,
    symbolic_opset12,
    symbolic_opset13,
    symbolic_opset14,
    symbolic_opset15,
    symbolic_opset16,
    symbolic_opset17,
    symbolic_opset18,
    symbolic_opset19,
    symbolic_opset20,
    utils,
)


from ._internal._exporter_legacy import (  # usort: skip. needs to be last to avoid circular import
    DiagnosticOptions,
    ExportOptions,
    ONNXRuntimeOptions,
    OnnxRegistry,
    enable_fake_mode,
)


if TYPE_CHECKING:
    import os

# Set namespace for exposed private names
DiagnosticOptions.__module__ = "torch.onnx"
ExportOptions.__module__ = "torch.onnx"
JitScalarType.__module__ = "torch.onnx"
ONNXProgram.__module__ = "torch.onnx"
ONNXRuntimeOptions.__module__ = "torch.onnx"
OnnxExporterError.__module__ = "torch.onnx"
OnnxRegistry.__module__ = "torch.onnx"
_OrtBackend.__module__ = "torch.onnx"
_OrtBackendOptions.__module__ = "torch.onnx"
_OrtExecutionProvider.__module__ = "torch.onnx"
enable_fake_mode.__module__ = "torch.onnx"
is_onnxrt_backend_supported.__module__ = "torch.onnx"

producer_name = "pytorch"
producer_version = _C_onnx.PRODUCER_VERSION


def export(
    model: torch.nn.Module
    | torch.export.ExportedProgram
    | torch.jit.ScriptModule
    | torch.jit.ScriptFunction,
    args: tuple[Any, ...] = (),
    f: str | os.PathLike | None = None,
    *,
    kwargs: dict[str, Any] | None = None,
    export_params: bool = True,
    verbose: bool | None = None,
    input_names: Sequence[str] | None = None,
    output_names: Sequence[str] | None = None,
    opset_version: int | None = None,
    dynamic_axes: Mapping[str, Mapping[int, str]]
    | Mapping[str, Sequence[int]]
    | None = None,
    keep_initializers_as_inputs: bool = False,
    dynamo: bool = False,
    # Dynamo only options
    external_data: bool = True,
    dynamic_shapes: dict[str, Any] | tuple[Any, ...] | list[Any] | None = None,
    custom_translation_table: dict[Callable, Callable | Sequence[Callable]]
    | None = None,
    report: bool = False,
    optimize: bool = False,
    verify: bool = False,
    profile: bool = False,
    dump_exported_program: bool = False,
    artifacts_dir: str | os.PathLike = ".",
    fallback: bool = False,
    # Deprecated options
    training: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL,
    operator_export_type: _C_onnx.OperatorExportTypes = _C_onnx.OperatorExportTypes.ONNX,
    do_constant_folding: bool = True,
    custom_opsets: Mapping[str, int] | None = None,
    export_modules_as_functions: bool | Collection[type[torch.nn.Module]] = False,
    autograd_inlining: bool = True,
    **_: Any,  # ignored options
) -> ONNXProgram | None:
    r"""Exports a model into ONNX format.

    Args:
        model: The model to be exported.
        args: Example positional inputs. Any non-Tensor arguments will be hard-coded into the
            exported model; any Tensor arguments will become inputs of the exported model,
            in the order they occur in the tuple.
        f: Path to the output ONNX model file. E.g. "model.onnx".
        kwargs: Optional example keyword inputs.
        export_params: If false, parameters (weights) will not be exported.
        verbose: Whether to enable verbose logging.
        input_names: names to assign to the input nodes of the graph, in order.
        output_names: names to assign to the output nodes of the graph, in order.
        opset_version: The version of the
            `default (ai.onnx) opset <https://github.com/onnx/onnx/blob/master/docs/Operators.md>`_
            to target. Must be >= 7.
        dynamic_axes:

            By default the exported model will have the shapes of all input and output tensors
            set to exactly match those given in ``args``. To specify axes of tensors as
            dynamic (i.e. known only at run-time), set ``dynamic_axes`` to a dict with schema:

            * KEY (str): an input or output name. Each name must also be provided in ``input_names`` or
                ``output_names``.
            * VALUE (dict or list): If a dict, keys are axis indices and values are axis names. If a
                list, each element is an axis index.

            For example::

                class SumModule(torch.nn.Module):
                    def forward(self, x):
                        return torch.sum(x, dim=1)


                torch.onnx.export(
                    SumModule(),
                    (torch.ones(2, 2),),
                    "onnx.pb",
                    input_names=["x"],
                    output_names=["sum"],
                )

            Produces::

                input {
                  name: "x"
                  ...
                      shape {
                        dim {
                          dim_value: 2  # axis 0
                        }
                        dim {
                          dim_value: 2  # axis 1
                ...
                output {
                  name: "sum"
                  ...
                      shape {
                        dim {
                          dim_value: 2  # axis 0
                ...

            While::

                torch.onnx.export(
                    SumModule(),
                    (torch.ones(2, 2),),
                    "onnx.pb",
                    input_names=["x"],
                    output_names=["sum"],
                    dynamic_axes={
                        # dict value: manually named axes
                        "x": {0: "my_custom_axis_name"},
                        # list value: automatic names
                        "sum": [0],
                    },
                )

            Produces::

                input {
                  name: "x"
                  ...
                      shape {
                        dim {
                          dim_param: "my_custom_axis_name"  # axis 0
                        }
                        dim {
                          dim_value: 2  # axis 1
                ...
                output {
                  name: "sum"
                  ...
                      shape {
                        dim {
                          dim_param: "sum_dynamic_axes_1"  # axis 0
                ...

        keep_initializers_as_inputs: If True, all the
            initializers (typically corresponding to model weights) in the
            exported graph will also be added as inputs to the graph. If False,
            then initializers are not added as inputs to the graph, and only
            the user inputs are added as inputs.

            Set this to True if you intend to supply model weights at runtime.
            Set it to False if the weights are static to allow for better optimizations
            (e.g. constant folding) by backends/runtimes.

        dynamo: Whether to export the model with ``torch.export`` ExportedProgram instead of TorchScript.
        external_data: Whether to save the model weights as an external data file.
            This is required for models with large weights that exceed the ONNX file size limit (2GB).
            When False, the weights are saved in the ONNX file with the model architecture.
        dynamic_shapes: A dictionary or a tuple of dynamic shapes for the model inputs. Refer to
            :func:`torch.export.export` for more details. This is only used (and preferred) when dynamo is True.
            Note that dynamic_shapes is designed to be used when the model is exported with dynamo=True, while
            dynamic_axes is used when dynamo=False.
        custom_translation_table: A dictionary of custom decompositions for operators in the model.
            The dictionary should have the callable target in the fx Node as the key (e.g. ``torch.ops.aten.stft.default``),
            and the value should be a function that builds that graph using ONNX Script. This option
            is only valid when dynamo is True.
        report: Whether to generate a markdown report for the export process. This option
            is only valid when dynamo is True.
        optimize: Whether to optimize the exported model. This option
            is only valid when dynamo is True.
        verify: Whether to verify the exported model using ONNX Runtime. This option
            is only valid when dynamo is True.
        profile: Whether to profile the export process. This option
            is only valid when dynamo is True.
        dump_exported_program: Whether to dump the :class:`torch.export.ExportedProgram` to a file.
            This is useful for debugging the exporter. This option is only valid when dynamo is True.
        artifacts_dir: The directory to save the debugging artifacts like the report and the serialized
            exported program. This option is only valid when dynamo is True.
        fallback: Whether to fallback to the TorchScript exporter if the dynamo exporter fails.
            This option is only valid when dynamo is True. When fallback is enabled, It is
            recommended to set dynamic_axes even when dynamic_shapes is provided.

        training: Deprecated option. Instead, set the training mode of the model before exporting.
        operator_export_type: Deprecated option. Only ONNX is supported.
        do_constant_folding: Deprecated option.
        custom_opsets: Deprecated.
            A dictionary:

            * KEY (str): opset domain name
            * VALUE (int): opset version

            If a custom opset is referenced by ``model`` but not mentioned in this dictionary,
            the opset version is set to 1. Only custom opset domain name and version should be
            indicated through this argument.
        export_modules_as_functions: Deprecated option.

            Flag to enable
            exporting all ``nn.Module`` forward calls as local functions in ONNX. Or a set to indicate the
            particular types of modules to export as local functions in ONNX.
            This feature requires ``opset_version`` >= 15, otherwise the export will fail. This is because
            ``opset_version`` < 15 implies IR version < 8, which means no local function support.
            Module variables will be exported as function attributes. There are two categories of function
            attributes.

            1. Annotated attributes: class variables that have type annotations via
            `PEP 526-style <https://www.python.org/dev/peps/pep-0526/#class-and-instance-variable-annotations>`_
            will be exported as attributes.
            Annotated attributes are not used inside the subgraph of ONNX local function because
            they are not created by PyTorch JIT tracing, but they may be used by consumers
            to determine whether or not to replace the function with a particular fused kernel.

            2. Inferred attributes: variables that are used by operators inside the module. Attribute names
            will have prefix "inferred::". This is to differentiate from predefined attributes retrieved from
            python module annotations. Inferred attributes are used inside the subgraph of ONNX local function.

            * ``False`` (default): export ``nn.Module`` forward calls as fine grained nodes.
            * ``True``: export all ``nn.Module`` forward calls as local function nodes.
            * Set of type of nn.Module: export ``nn.Module`` forward calls as local function nodes,
                only if the type of the ``nn.Module`` is found in the set.
        autograd_inlining: Deprecated.
            Flag used to control whether to inline autograd functions.
            Refer to https://github.com/pytorch/pytorch/pull/74765 for more details.
    """
    if dynamo is True or isinstance(model, torch.export.ExportedProgram):
        from torch.onnx._internal.exporter import _compat

        if isinstance(args, torch.Tensor):
            args = (args,)
        return _compat.export_compat(
            model,
            args,
            f,
            kwargs=kwargs,
            export_params=export_params,
            verbose=verbose,
            input_names=input_names,
            output_names=output_names,
            opset_version=opset_version,
            custom_translation_table=custom_translation_table,
            dynamic_axes=dynamic_axes,
            keep_initializers_as_inputs=keep_initializers_as_inputs,
            external_data=external_data,
            dynamic_shapes=dynamic_shapes,
            report=report,
            optimize=optimize,
            verify=verify,
            profile=profile,
            dump_exported_program=dump_exported_program,
            artifacts_dir=artifacts_dir,
            fallback=fallback,
        )
    else:
        from torch.onnx.utils import export

        if dynamic_shapes:
            raise ValueError(
                "The exporter only supports dynamic shapes "
                "through parameter dynamic_axes when dynamo=False."
            )

        export(
            model,
            args,
            f,  # type: ignore[arg-type]
            kwargs=kwargs,
            export_params=export_params,
            verbose=verbose is True,
            input_names=input_names,
            output_names=output_names,
            opset_version=opset_version,
            dynamic_axes=dynamic_axes,
            keep_initializers_as_inputs=keep_initializers_as_inputs,
            training=training,
            operator_export_type=operator_export_type,
            do_constant_folding=do_constant_folding,
            custom_opsets=custom_opsets,
            export_modules_as_functions=export_modules_as_functions,
            autograd_inlining=autograd_inlining,
        )
        return None


def dynamo_export(
    model: torch.nn.Module | Callable | torch.export.ExportedProgram,  # type: ignore[name-defined]
    /,
    *model_args,
    export_options: ExportOptions | None = None,
    **model_kwargs,
) -> ONNXProgram:
    """Export a torch.nn.Module to an ONNX graph.

    Args:
        model: The PyTorch model to be exported to ONNX.
        model_args: Positional inputs to ``model``.
        model_kwargs: Keyword inputs to ``model``.
        export_options: Options to influence the export to ONNX.

    Returns:
        An in-memory representation of the exported ONNX model.

    **Example 1 - Simplest export**
    ::

        class MyModel(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(2, 2)

            def forward(self, x, bias=None):
                out = self.linear(x)
                out = out + bias
                return out


        model = MyModel()
        kwargs = {"bias": 3.0}
        args = (torch.randn(2, 2, 2),)
        onnx_program = torch.onnx.dynamo_export(model, *args, **kwargs).save(
            "my_simple_model.onnx"
        )

    **Example 2 - Exporting with dynamic shapes**
    ::

        # The previous model can be exported with dynamic shapes
        export_options = torch.onnx.ExportOptions(dynamic_shapes=True)
        onnx_program = torch.onnx.dynamo_export(
            model, *args, **kwargs, export_options=export_options
        )
        onnx_program.save("my_dynamic_model.onnx")
    """

    # NOTE: The new exporter is experimental and is not enabled by default.
    import warnings

    from torch.onnx import _flags
    from torch.onnx._internal.exporter import _compat
    from torch.utils import _pytree

    if isinstance(model, torch.export.ExportedProgram):
        return _compat.export_compat(
            model,  # type: ignore[arg-type]
            model_args,
            f=None,
            kwargs=model_kwargs,
            opset_version=18,
            external_data=True,
            export_params=True,
            fallback=True,
        )
    elif _flags.USE_EXPERIMENTAL_LOGIC:
        if export_options is not None:
            warnings.warn(
                "You are using an experimental ONNX export logic, which currently only supports dynamic shapes. "
                "For a more comprehensive set of export options, including advanced features, please consider using "
                "`torch.onnx.export(..., dynamo=True)`. ",
                category=FutureWarning,
            )

        if export_options is not None and export_options.dynamic_shapes:
            # Make all shapes dynamic
            def _to_dynamic_shapes_mapper():
                arg_order = 0

                def _to_dynamic_shape(x):
                    nonlocal arg_order
                    if isinstance(x, torch.Tensor):
                        rank = len(x.shape)
                        dynamic_shape = {}
                        for i in range(rank):
                            dynamic_shape[i] = torch.export.Dim(
                                f"arg_{arg_order}_dim_{i}"
                            )
                        arg_order += 1
                        return dynamic_shape
                    else:
                        return None

                return _to_dynamic_shape

            # model_args could be nested
            dynamic_shapes = _pytree.tree_map(
                _to_dynamic_shapes_mapper(),
                model_args,
            )
        else:
            dynamic_shapes = None

        return _compat.export_compat(
            model,  # type: ignore[arg-type]
            model_args,
            f=None,
            kwargs=model_kwargs,
            dynamic_shapes=dynamic_shapes,
            opset_version=18,
            external_data=True,
            export_params=True,
            fallback=True,
        )
    else:
        from torch.onnx._internal._exporter_legacy import dynamo_export

        return dynamo_export(
            model, *model_args, export_options=export_options, **model_kwargs
        )