File: _exporter_legacy.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (867 lines) | stat: -rw-r--r-- 33,904 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
# mypy: allow-untyped-defs
from __future__ import annotations


__all__ = [
    "DiagnosticOptions",
    "ExportOptions",
    "ONNXRuntimeOptions",
    "InvalidExportOptionsError",
    "OnnxRegistry",
    "UnsatisfiedDependencyError",
    "dynamo_export",
    "enable_fake_mode",
]


import abc
import contextlib
import dataclasses
import logging
import warnings
from collections import defaultdict
from typing import Any, Callable, Mapping, Sequence, TYPE_CHECKING, TypeVar

import torch
import torch._ops
import torch.utils._pytree as pytree
from torch.onnx import errors
from torch.onnx._internal import io_adapter
from torch.onnx._internal._lazy_import import onnxscript_apis, onnxscript_ir as ir
from torch.onnx._internal.diagnostics import infra
from torch.onnx._internal.exporter import _onnx_program
from torch.onnx._internal.fx import (
    decomposition_table,
    patcher as patcher,
    registration,
)


# We can only import onnx from this module in a type-checking context to ensure that
# 'import torch.onnx' continues to work without having 'onnx' installed. We fully
# 'import onnx' inside of dynamo_export (by way of _assert_dependencies).
if TYPE_CHECKING:
    import io

    import onnxruntime
    import onnxscript

    from torch._subclasses import fake_tensor
    from torch.onnx._internal.fx import diagnostics

_PYTORCH_GITHUB_ISSUES_URL = "https://github.com/pytorch/pytorch/issues"
"""The URL to the PyTorch GitHub issues page."""

_DEFAULT_FAILED_EXPORT_SARIF_LOG_PATH = "report_dynamo_export.sarif"
"""The default path to write the SARIF log to if the export fails."""


log = logging.getLogger(__name__)


DiagnosticOptions = infra.DiagnosticOptions


@dataclasses.dataclass
class ONNXFakeContext:
    """A dataclass used to store context for model export using FakeTensor.

    This dataclass stores the FakeTensorMode instance used to convert
    real tensors and model parameters into fake tensors. This :attr:`ONNXFakeContext.fake_mode` is
    reused internally during tracing of a :class:`torch.nn.Module` into a FX :class:`GraphModule`.
    """

    fake_mode: fake_tensor.FakeTensorMode
    """The fake tensor mode used for tracing model using fake tensors and parameters."""

    state_dict_paths: tuple[str | io.BytesIO | dict[str, Any]] | None = None
    """List of paths of files that contain the model :meth:`state_dict`"""


class OnnxRegistry:
    """Registry for ONNX functions.

    The registry maintains a mapping from qualified names to symbolic functions under a
    fixed opset version. It supports registering custom onnx-script functions and for
    dispatcher to dispatch calls to the appropriate function.

    """

    def __init__(self) -> None:
        """Initializes the registry"""

        # NOTE: _registry is the registry maps OpNameto a list of ONNXFunctions. It is important
        # not to directly modify this variable. Instead, access to it should be done through
        # the public methods: register_custom_op, get_ops, and is_registered_op.
        self._registry: dict[registration.OpName, list[registration.ONNXFunction]] = (
            defaultdict(list)
        )

        self._opset_version = onnxscript_apis.torchlib_opset_version()
        warnings.warn(
            f"torch.onnx.dynamo_export only implements opset version {self._opset_version} for now. If you need to use a "
            "different opset version, please register them with register_custom_op."
        )

        self._initiate_registry_from_torchlib()

    @property
    def opset_version(self) -> int:
        """The ONNX opset version the exporter should target."""

        return self._opset_version

    def _initiate_registry_from_torchlib(self) -> None:
        """Populates the registry with ATen functions from torchlib.

        Args:
            torchlib_registry: The torchlib registry to use for populating the registry.
        """
        for meta in onnxscript_apis.get_torchlib_ops():
            internal_name_instance = registration.OpName.from_qualified_name(
                meta.qualified_name
            )
            symbolic_function = registration.ONNXFunction(
                onnx_function=meta.function,  # type: ignore[arg-type]
                op_full_name=internal_name_instance.qualified_name(),
                is_custom=False,
                is_complex=meta.is_complex,
            )
            self._register(internal_name_instance, symbolic_function)

    def _register(
        self,
        internal_qualified_name: registration.OpName,
        symbolic_function: registration.ONNXFunction,
    ) -> None:
        """Registers a ONNXFunction to an operator.

        Args:
            internal_qualified_name: The qualified name of the operator to register: OpName.
            symbolic_function: The ONNXFunction to register.
        """
        self._registry[internal_qualified_name].append(symbolic_function)

    def register_op(
        self,
        function: onnxscript.OnnxFunction | onnxscript.TracedOnnxFunction,
        namespace: str,
        op_name: str,
        overload: str | None = None,
        is_complex: bool = False,
    ) -> None:
        """Registers a custom operator: torch.ops.<namespace>.<op_name>.<overload>.

        Args:
            function: The onnx-sctip function to register.
            namespace: The namespace of the operator to register.
            op_name: The name of the operator to register.
            overload: The overload of the operator to register. If it's default overload,
                leave it to None.
            is_complex: Whether the function is a function that handles complex valued inputs.

        Raises:
            ValueError: If the name is not in the form of 'namespace::op'.
        """
        internal_name_instance = registration.OpName.from_name_parts(
            namespace=namespace, op_name=op_name, overload=overload
        )
        symbolic_function = registration.ONNXFunction(
            onnx_function=function,
            op_full_name=internal_name_instance.qualified_name(),
            is_custom=True,
            is_complex=is_complex,
        )
        self._register(internal_name_instance, symbolic_function)

    def get_op_functions(
        self, namespace: str, op_name: str, overload: str | None = None
    ) -> list[registration.ONNXFunction] | None:
        """Returns a list of ONNXFunctions for the given op: torch.ops.<namespace>.<op_name>.<overload>.

        The list is ordered by the time of registration. The custom operators should be
        in the second half of the list.

        Args:
            namespace: The namespace of the operator to get.
            op_name: The name of the operator to get.
            overload: The overload of the operator to get. If it's default overload,
                leave it to None.
        Returns:
            A list of ONNXFunctions corresponding to the given name, or None if
            the name is not in the registry.
        """
        internal_name_instance = registration.OpName.from_name_parts(
            namespace=namespace, op_name=op_name, overload=overload
        )
        return self._registry.get(internal_name_instance)

    def is_registered_op(
        self, namespace: str, op_name: str, overload: str | None = None
    ) -> bool:
        """Returns whether the given op is registered: torch.ops.<namespace>.<op_name>.<overload>.

        Args:
            namespace: The namespace of the operator to check.
            op_name: The name of the operator to check.
            overload: The overload of the operator to check. If it's default overload,
                leave it to None.

        Returns:
            True if the given op is registered, otherwise False.
        """
        functions = self.get_op_functions(
            namespace=namespace, op_name=op_name, overload=overload
        )
        return functions is not None

    def _all_registered_ops(self) -> set[str]:
        """Returns the set of all registered function names."""
        return {
            op_name_class.qualified_name() for op_name_class in self._registry.keys()
        }


class ExportOptions:
    """Options to influence the TorchDynamo ONNX exporter.

    Attributes:
        dynamic_shapes: Shape information hint for input/output tensors.
            When ``None``, the exporter determines the most compatible setting.
            When ``True``, all input shapes are considered dynamic.
            When ``False``, all input shapes are considered static.
        diagnostic_options: The diagnostic options for the exporter.
        fake_context: The fake context used for symbolic tracing.
        onnx_registry: The ONNX registry used to register ATen operators to ONNX functions.
    """

    dynamic_shapes: bool | None = None
    """Shape information hint for input/output tensors.

    - ``None``: the exporter determines the most compatible setting.
    - ``True``: all input shapes are considered dynamic.
    - ``False``: all input shapes are considered static.
    """

    diagnostic_options: DiagnosticOptions
    """The diagnostic options for the exporter."""

    fake_context: ONNXFakeContext | None = None
    """The fake context used for symbolic tracing."""

    onnx_registry: OnnxRegistry | None = None
    """The ONNX registry used to register ATen operators to ONNX functions."""

    def __init__(
        self,
        *,
        dynamic_shapes: bool | None = None,
        fake_context: ONNXFakeContext | None = None,
        onnx_registry: OnnxRegistry | None = None,
        diagnostic_options: DiagnosticOptions | None = None,
    ):
        self.dynamic_shapes = dynamic_shapes
        self.fake_context = fake_context
        self.onnx_registry = onnx_registry
        self.diagnostic_options = diagnostic_options or DiagnosticOptions()


class ResolvedExportOptions(ExportOptions):
    """Consolidates :class:`ExportOptions` with default values.
    All unspecified options from :class:`ExportOptions` are assigned a default value.
    This is an internal class and its API may be changed at any time without notice.
    """

    # Public attributes MUST be redefined below without ``Optional[]`` from ``ExportOptions``
    dynamic_shapes: bool
    diagnostic_options: DiagnosticOptions
    fake_context: ONNXFakeContext
    onnx_registry: OnnxRegistry

    # Private only attributes
    decomposition_table: dict[torch._ops.OpOverload, Callable]
    """A dictionary that maps operators to their decomposition functions."""

    onnxfunction_dispatcher: (
        torch.onnx._internal.fx.onnxfunction_dispatcher.OnnxFunctionDispatcher
    )
    """The ONNX dispatcher used to dispatch ATen operators to ONNX functions."""

    fx_tracer: FXGraphExtractor
    """The FXGraphExtractor instance used to extract the FX graph from the model."""

    diagnostic_context: diagnostics.DiagnosticContext
    """The diagnostics context for the export. Responsible for recording diagnostics,
    logging diagnostics, and generating the SARIF log."""

    def __init__(
        self,
        options: ExportOptions | ResolvedExportOptions,
        model: torch.nn.Module | Callable | None = None,  # type: ignore[name-defined]
    ):
        from torch.onnx._internal.fx import (  # TODO: Prevent circular dep
            diagnostics,
            dynamo_graph_extractor,
        )

        if isinstance(options, ResolvedExportOptions):
            self.dynamic_shapes = options.dynamic_shapes
            self.diagnostic_options = options.diagnostic_options
            self.fake_context = options.fake_context
            self.fx_tracer = options.fx_tracer
            self.onnx_registry = options.onnx_registry
            self.onnxfunction_dispatcher = options.onnxfunction_dispatcher
            self.decomposition_table = options.decomposition_table
            self.diagnostic_context = options.diagnostic_context
        else:
            T = TypeVar("T")

            def resolve(value: T | None, fallback: T | Callable[[], T]) -> T:
                if value is not None:
                    return value
                if callable(fallback):
                    return fallback()
                return fallback

            self.dynamic_shapes = resolve(options.dynamic_shapes, False)

            self.diagnostic_options = resolve(
                options.diagnostic_options, DiagnosticOptions()
            )

            self.fx_tracer = dynamo_graph_extractor.DynamoExport()

            self.fake_context = resolve(options.fake_context, None)  # type: ignore[arg-type]
            self.diagnostic_context = diagnostics.DiagnosticContext(
                "torch.onnx.dynamo_export",
                torch.__version__,
                self.diagnostic_options,
            )

            self.onnx_registry = resolve(options.onnx_registry, OnnxRegistry())
            self.decomposition_table = (
                decomposition_table.create_onnx_friendly_decomposition_table(  # type: ignore[assignment]
                    self.onnx_registry
                )
            )

            from torch.onnx._internal.fx import onnxfunction_dispatcher

            self.onnxfunction_dispatcher = (
                onnxfunction_dispatcher.OnnxFunctionDispatcher(
                    self.onnx_registry,
                    self.diagnostic_context,
                )
            )

            for key in dir(options):
                if not key.startswith("_"):  # skip private attributes
                    assert hasattr(self, key), f"Unresolved option '{key}'"


@contextlib.contextmanager
def enable_fake_mode():
    """Enable fake mode for the duration of the context.

    Internally it instantiates a :class:`torch._subclasses.fake_tensor.FakeTensorMode` context manager
    that converts user input and model parameters into :class:`torch._subclasses.fake_tensor.FakeTensor`.

    A :class:`torch._subclasses.fake_tensor.FakeTensor`
    is a :class:`torch.Tensor` with the ability to run PyTorch code without having to
    actually do computation through tensors allocated on a ``meta`` device. Because
    there is no actual data being allocated on the device, this API allows for
    initializing and exporting large models without the actual memory footprint needed for executing it.

    It is highly recommended to initialize the model in fake mode when exporting models that
    are too large to fit into memory.

    Example::

        # xdoctest: +REQUIRES(env:TORCH_DOCTEST_ONNX)
        >>> import torch
        >>> class MyModel(torch.nn.Module):  # Model with a parameter
        ...     def __init__(self) -> None:
        ...         super().__init__()
        ...         self.weight = torch.nn.Parameter(torch.tensor(42.0))
        ...     def forward(self, x):
        ...         return self.weight + x
        >>> with torch.onnx.enable_fake_mode():
        ...     # When initialized in fake mode, the model's parameters are fake tensors
        ...     # They do not take up memory so we can initialize large models
        ...     my_nn_module = MyModel()
        ...     arg1 = torch.randn(2, 2, 2)
        >>> onnx_program = torch.onnx.export(my_nn_module, (arg1,), dynamo=True)
        >>> # Saving model WITHOUT initializers (only the architecture)
        >>> onnx_program.save(
        ...     "my_model_without_initializers.onnx",
        ...     include_initializers=False,
        ...     keep_initializers_as_inputs=True,
        ... )
        >>> # Saving model WITH initializers after applying concrete weights
        >>> onnx_program.apply_weights({"weight": torch.tensor(42.0)})
        >>> onnx_program.save("my_model_with_initializers.onnx")

    .. warning::
        This API is experimental and is *NOT* backward-compatible.

    """
    from torch._subclasses import fake_tensor
    from torch.fx.experimental.symbolic_shapes import ShapeEnv

    # This overrides the internal `FakeTensorMode` instance created by `torch._dynamo.export`[1].
    # It is a good idea to keep them in sync (constructor args) to maintain the same default behavior
    # [1] `torch/_dynamo/output_graph.py::InstructionTranslator::OutputGraph.__init__`
    # Mixed fake/real tensors are only allowed when `torch.onnx.dynamo_export` is not called within `FakeTensorMode`
    # This is needed because models can create new parameters during `forward(self, *args, **kwargs)` run
    fake_mode = fake_tensor.FakeTensorMode(
        allow_non_fake_inputs=not torch._guards.detect_fake_mode(),
        shape_env=ShapeEnv(
            allow_scalar_outputs=False, allow_dynamic_output_shape_ops=False
        ),
    )
    # The patcher is needed for when user calls `fake_model.load_state_dict(...)` within fake mode
    patcher_context = patcher.ONNXTorchPatcher()
    fake_context = ONNXFakeContext(fake_mode=fake_mode)
    with fake_mode, patcher_context:
        yield fake_context
    fake_context.state_dict_paths = tuple(
        patcher_context.paths,
    )  # type: ignore[assignment]


class ONNXRuntimeOptions:
    """Options to influence the execution of the ONNX model through ONNX Runtime.

    Attributes:
        session_options: ONNX Runtime session options.
        execution_providers: ONNX Runtime execution providers to use during model execution.
        execution_provider_options: ONNX Runtime execution provider options.
    """

    session_options: Sequence[onnxruntime.SessionOptions] | None = None
    """ONNX Runtime session options."""

    execution_providers: Sequence[str | tuple[str, dict[Any, Any]]] | None = None
    """ONNX Runtime execution providers to use during model execution."""

    execution_provider_options: Sequence[dict[Any, Any]] | None = None
    """ONNX Runtime execution provider options."""

    def __init__(
        self,
        *,
        session_options: Sequence[onnxruntime.SessionOptions] | None = None,
        execution_providers: Sequence[str | tuple[str, dict[Any, Any]]] | None = None,
        execution_provider_options: Sequence[dict[Any, Any]] | None = None,
    ):
        self.session_options = session_options
        self.execution_providers = execution_providers
        self.execution_provider_options = execution_provider_options


class FXGraphExtractor(abc.ABC):
    """Abstract interface for FX graph extractor engines.
    This class isolates FX extraction logic from the rest of the export logic.
    That allows a single ONNX exporter that can leverage different FX graphs."""

    def __init__(self) -> None:
        super().__init__()
        self.input_adapter: io_adapter.InputAdapter = io_adapter.InputAdapter()
        self.output_adapter: io_adapter.OutputAdapter = io_adapter.OutputAdapter()

    @abc.abstractmethod
    def generate_fx(
        self,
        options: ResolvedExportOptions,
        model: torch.nn.Module | Callable,
        model_args: Sequence[Any],
        model_kwargs: Mapping[str, Any],
    ) -> torch.fx.GraphModule:
        """Analyzes user ``model`` and generates a FX graph.
        Args:
            options: The export options.
            model: The user model.
            model_args: The model's positional input arguments.
            model_kwargs: The model's keyword input arguments.
        Returns:
            The generated FX Graph.
        """
        ...

    # TODO: Design the passes API
    @abc.abstractmethod
    def pre_export_passes(
        self,
        options: ResolvedExportOptions,
        original_model: torch.nn.Module | Callable,
        fx_module: torch.fx.GraphModule,
        fx_module_args: Sequence[Any],
    ):
        """Applies pre-export passes to the FX graph.

        Pre-export passes are FX-to-FX graph transformations that make the graph
        more palatable for the FX-to-ONNX conversion.
        For example, it can be used to flatten model input/output, add explicit
        casts to the graph, replace/decompose operators, functionalize the graph, etc.
        """
        ...


class Exporter:
    def __init__(
        self,
        options: ResolvedExportOptions,
        model: torch.nn.Module | Callable,
        model_args: Sequence[Any],
        model_kwargs: Mapping[str, Any],
    ):
        self.options = options
        assert self.options is not None

        self.model = model
        self.model_args = model_args
        self.model_kwargs = model_kwargs

        # TODO: https://github.com/pytorch/pytorch/issues/107714
        # NOTE: FXSymbolicTracer would fail in this assert, as it does not use `enable_fake_mode`
        from torch.onnx._internal.fx import fx_symbolic_graph_extractor

        if not isinstance(
            self.options.fx_tracer, fx_symbolic_graph_extractor.FXSymbolicTracer
        ):
            self._assert_fake_tensor_mode()

    def export(self) -> _onnx_program.ONNXProgram:
        from torch.export._trace import (  # TODO: Prevent circular dependency
            DEFAULT_EXPORT_DYNAMO_CONFIG,
        )

        # TODO: Defer `import onnxscript` out of `import torch` path
        # https://github.com/pytorch/pytorch/issues/103764
        from torch.onnx._internal.fx import decomposition_skip

        with self.options.diagnostic_context, decomposition_skip.enable_decomposition_skips(
            self.options
        ), torch._dynamo.config.patch(dataclasses.asdict(DEFAULT_EXPORT_DYNAMO_CONFIG)):
            graph_module = self.options.fx_tracer.generate_fx(
                self.options, self.model, self.model_args, self.model_kwargs
            )
            # TODO: Defer `import onnxscript` out of `import torch` path
            # https://github.com/pytorch/pytorch/issues/103764
            from torch.onnx._internal.fx import fx_onnx_interpreter

            fx_interpreter = fx_onnx_interpreter.FxOnnxInterpreter(
                diagnostic_context=self.options.diagnostic_context
            )
            onnxscript_graph = fx_interpreter.run(
                fx_graph_module=graph_module,
                onnxfunction_dispatcher=self.options.onnxfunction_dispatcher,
            )

            # NOTE: Filter out the initializers with fake tensors when it's fake_mode exporting.
            # Otherwise, the ONNX exporter will fail: RuntimeError: basic_string::_M_construct null
            # not valid.
            # Concrete data is expected to be filled for those initializers later during `ONNXProgram.save`.
            if self.options.fake_context is not None:
                initializers_with_real_tensors: dict[str, torch.Tensor] = {}
                for (
                    initializer_name,
                    initializer,
                ) in onnxscript_graph.initializers.items():
                    if not isinstance(initializer, torch._subclasses.FakeTensor):
                        initializers_with_real_tensors[initializer_name] = initializer
                onnxscript_graph.initializers = initializers_with_real_tensors

            # Export TorchScript graph to ONNX ModelProto.
            onnx_model = onnxscript_graph.to_model_proto(
                self.options.onnx_registry.opset_version,
            )
            ir_model = ir.serde.deserialize_model(onnx_model)

            try:
                ir_model = onnxscript_apis.optimize(ir_model)
            except Exception as e:
                warnings.warn(
                    "ONNXScript optimizer failed. Skipping optimization. "
                    "\n\nPLEASE REPORT A BUG AT https://github.com/microsoft/onnxscript/issues "
                    f"\n\nDetail:\n{e}"
                )

            return _onnx_program.ONNXProgram(ir_model, None)

    def _assert_fake_tensor_mode(self):
        """Asserts that the model and its input do not contain fake tensors."""

        # Case 1: Model with fake inputs/weights and without enabling fake mode
        has_any_fake_tensor = pytree.tree_any(
            lambda x: isinstance(x, torch._subclasses.FakeTensor),
            (self.model_args, self.model_kwargs),
        )
        has_any_fake_param_or_buffer = False
        if isinstance(self.model, torch.nn.Module):
            has_any_fake_param_or_buffer = pytree.tree_any(
                lambda x: isinstance(x, torch._subclasses.FakeTensor),
                (self.model.parameters(), self.model.buffers()),
            )
        if (
            has_any_fake_tensor or has_any_fake_param_or_buffer
        ) and not self.options.fake_context:
            raise RuntimeError(
                "Cannot export a model with fake inputs/weights without enabling fake mode.",
            )
        # Case 2: Model with non fake inputs/weights and enabled fake mode
        has_any_non_fake_tensors = pytree.tree_any(
            lambda x: isinstance(x, torch.Tensor)
            and not isinstance(x, torch._subclasses.FakeTensor),
            (self.model_args, self.model_kwargs),
        )
        has_any_non_fake_param_or_buffer = False
        if isinstance(self.model, torch.nn.Module):
            has_any_non_fake_param_or_buffer = pytree.tree_any(
                lambda x: isinstance(x, torch.Tensor)
                and not isinstance(x, torch._subclasses.FakeTensor),
                (self.model.parameters(), self.model.buffers()),
            )
        if (
            has_any_non_fake_tensors or has_any_non_fake_param_or_buffer
        ) and self.options.fake_context:
            raise RuntimeError(
                "Cannot export a model with non fake inputs/weights and enabled fake mode.",
            )


class UnsatisfiedDependencyError(RuntimeError):
    """Raised when an ONNX exporter dependency cannot be satisfied."""

    def __init__(self, package_name: str, message: str):
        super().__init__(message)
        self.package_name = package_name


class InvalidExportOptionsError(RuntimeError):
    """Raised when user specified an invalid value for the :class:`ExportOptions`."""


def _assert_dependencies(export_options: ResolvedExportOptions):
    opset_version = export_options.onnx_registry.opset_version

    def missing_package(package_name: str, exc_info: logging._ExcInfoType):
        message = (
            f"Please install the `{package_name}` package "
            f"(e.g. `python -m pip install {package_name}`)."
        )
        log.fatal(message, exc_info=exc_info)
        return UnsatisfiedDependencyError(package_name, message)

    def missing_opset(package_name: str):
        message = (
            f"The installed `{package_name}` does not support the specified ONNX opset "
            f"version {opset_version}. Install a newer `{package_name}` package or "
            f"specify an older opset version."
        )
        log.fatal(message)
        return UnsatisfiedDependencyError(package_name, message)

    try:
        import onnx
    except ImportError as e:
        raise missing_package("onnx", e) from e

    if onnx.defs.onnx_opset_version() < opset_version:
        raise missing_opset("onnx")

    try:
        # PyTorch runs lintrunner in CI without onnxscript installed
        import onnxscript  # type: ignore[import]
    except ImportError as e:
        raise missing_package("onnxscript", e) from e

    if not isinstance(
        onnxscript.onnx_opset.all_opsets[("", opset_version)],
        onnxscript.values.Opset,
    ):
        raise missing_opset("onnxscript")


def dynamo_export(
    model: torch.nn.Module | Callable,
    /,
    *model_args,
    export_options: ExportOptions | None = None,
    **model_kwargs,
) -> _onnx_program.ONNXProgram:
    """Export a torch.nn.Module to an ONNX graph.

    Args:
        model: The PyTorch model to be exported to ONNX.
        model_args: Positional inputs to ``model``.
        model_kwargs: Keyword inputs to ``model``.
        export_options: Options to influence the export to ONNX.

    Returns:
        An in-memory representation of the exported ONNX model.

    **Example 1 - Simplest export**
    ::

        class MyModel(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(2, 2)

            def forward(self, x, bias=None):
                out = self.linear(x)
                out = out + bias
                return out


        model = MyModel()
        kwargs = {"bias": 3.0}
        args = (torch.randn(2, 2, 2),)
        onnx_program = torch.onnx.dynamo_export(model, *args, **kwargs).save(
            "my_simple_model.onnx"
        )

    **Example 2 - Exporting with dynamic shapes**
    ::

        # The previous model can be exported with dynamic shapes
        export_options = torch.onnx.ExportOptions(dynamic_shapes=True)
        onnx_program = torch.onnx.dynamo_export(
            model, *args, **kwargs, export_options=export_options
        )
        onnx_program.save("my_dynamic_model.onnx")


    By printing input dynamic dimensions we can see the input shape is no longer (2,2,2)
    ::

        >>> print(onnx_program.model_proto.graph.input[0])
        name: "arg0"
        type {
          tensor_type {
            elem_type: 1
            shape {
              dim {
                dim_param: "arg0_dim_0"
              }
              dim {
                dim_param: "arg0_dim_1"
              }
              dim {
                dim_param: "arg0_dim_2"
              }
            }
          }
        }
    """

    if export_options is not None:
        resolved_export_options = (
            export_options
            if isinstance(export_options, ResolvedExportOptions)
            else ResolvedExportOptions(export_options, model=model)
        )
    else:
        resolved_export_options = ResolvedExportOptions(ExportOptions(), model=model)

    _assert_dependencies(resolved_export_options)

    try:
        from torch._dynamo import config as _dynamo_config

        with _dynamo_config.patch(do_not_emit_runtime_asserts=True):
            return Exporter(
                options=resolved_export_options,
                model=model,
                model_args=model_args,
                model_kwargs=model_kwargs,
            ).export()
    except Exception as e:
        sarif_report_path = _DEFAULT_FAILED_EXPORT_SARIF_LOG_PATH
        resolved_export_options.diagnostic_context.dump(sarif_report_path)
        message = (
            f"Failed to export the model to ONNX. Generating SARIF report at '{sarif_report_path}'. "
            "SARIF is a standard format for the output of static analysis tools. "
            "SARIF logs can be loaded in VS Code SARIF viewer extension, "
            "or SARIF web viewer (https://microsoft.github.io/sarif-web-component/). "
            f"Please report a bug on PyTorch Github: {_PYTORCH_GITHUB_ISSUES_URL}"
        )
        raise errors.OnnxExporterError(message) from e


def common_pre_export_passes(
    options: ResolvedExportOptions,
    original_model: torch.nn.Module | Callable,
    fx_module: torch.fx.GraphModule,
    fx_module_args: Sequence[Any],
):
    # TODO: Import here to prevent circular dependency
    from torch.onnx._internal.fx import analysis, passes

    diagnostic_context = options.diagnostic_context

    # Apply decomposition table to the input graph.
    module = passes.Decompose(
        diagnostic_context,
        fx_module,
        options.decomposition_table,
        enable_dynamic_axes=options.dynamic_shapes,
        allow_fake_constant=options.fake_context is not None,
    ).run(*fx_module_args)

    # ONNX does not support views and mutations.
    # Functionalize to get a semantically equivalent graph without mutations.
    module = passes.Functionalize(
        diagnostic_context,
        module,
        enable_dynamic_axes=options.dynamic_shapes,
        allow_fake_constant=options.fake_context is not None,
    ).run(*fx_module_args)

    # Input mutations are detected and distilled after `Functionalize` pass.
    # Remove them since ONNX inference does not need them.
    module = passes.RemoveInputMutation(diagnostic_context, module).run(*fx_module_args)

    # ONNX does not support concept of (implicit) type promotion.
    # Insert type casts explicitly where needed.
    module = passes.InsertTypePromotion(diagnostic_context, module).run()

    analysis.UnsupportedFxNodesAnalysis(
        diagnostic_context, module, options.onnxfunction_dispatcher
    ).analyze(infra.levels.ERROR)

    if isinstance(original_model, torch.nn.Module):
        module = passes.RestoreParameterAndBufferNames(
            diagnostic_context, module, original_model
        ).run()

    # This operation should be invoked as the last pre export pass.
    # See [NOTE: Modularize pass ordering]
    module = passes.Modularize(diagnostic_context, module).run()

    # ONNX does not support None inputs. During graph building, all None inputs
    # are removed. Here we register this step to input adapter.
    options.fx_tracer.input_adapter.append_step(io_adapter.RemoveNoneInputStep())

    # NOTE: temp workaround for https://github.com/pytorch/pytorch/issues/99534
    # Dynamo doesn't support non-tensor inputs.
    options.fx_tracer.input_adapter.append_step(io_adapter.RemoveNonTensorInputStep())

    # ONNX does not support complex inputs. During graph building, all complex inputs
    # are converted to real representation inputs. Here we register this step to
    # input/output adapter.
    options.fx_tracer.input_adapter.append_step(
        io_adapter.ConvertComplexToRealRepresentationInputStep()
    )

    # ONNX can't represent collection types (e.g., dictionary, tuple of tuple of
    # tensor, etc), we flatten the collection and register each element as output.
    options.fx_tracer.output_adapter.append_step(io_adapter.FlattenOutputStep())

    # Output post-processing steps should happen after `FlattenOutputStep`.
    options.fx_tracer.output_adapter.append_step(
        io_adapter.ConvertComplexToRealRepresentationOutputStep()
    )

    return module