File: _capture_strategies.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (385 lines) | stat: -rw-r--r-- 13,318 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
"""Strategies for capturing ExportedPrograms."""

# mypy: allow-untyped-defs
from __future__ import annotations

import abc
import contextlib
import dataclasses
import datetime
import logging
import pathlib
from typing import Any, Callable, TYPE_CHECKING

import torch
from torch.utils import _pytree


if TYPE_CHECKING:
    import os


logger = logging.getLogger(__name__)


def _verbose_printer(verbose: bool | None) -> Callable[..., None]:
    """Prints messages based on `verbose`."""
    if verbose is False:
        return lambda *_, **__: None
    return lambda *args, **kwargs: print("[torch.onnx]", *args, **kwargs)


def _take_first_line(text: str) -> str:
    """Take the first line of a text."""
    lines = text.split("\n", maxsplit=1)
    first_line = lines[0]
    if len(lines) > 1:
        first_line += "[...]"
    return first_line


@contextlib.contextmanager
def _patch_dynamo_unsupported_functions():
    """Patch PyTorch to bypass some functions torch.export.export does not support."""
    # TODO: Remove the patches once dynamo supports these functions.
    import torch.jit

    # Replace torch.jit.isinstance with isinstance
    jit_isinstance = torch.jit.isinstance
    torch.jit.isinstance = isinstance
    logger.info("Replaced torch.jit.isinstance with isinstance to allow dynamo tracing")
    try:
        yield
    finally:
        torch.jit.isinstance = jit_isinstance


@dataclasses.dataclass
class Result:
    exported_program: torch.export.ExportedProgram | None
    strategy: str
    exception: Exception | None = None

    @property
    def success(self) -> bool:
        return self.exported_program is not None


class CaptureStrategy(abc.ABC):
    """Strategy for capturing a module as ExportedProgram.

    To use a strategy, create an instance and call it with the model, args, kwargs, and dynamic_shapes.
    Example::

        strategy = TorchExportStrategy(verbose=True)
        result = strategy(model, args, kwargs, dynamic_shapes)
    """

    def __init__(
        self,
        *,
        verbose: bool = False,
        dump: bool = False,
        artifacts_dir: str | os.PathLike = ".",
        timestamp: str | None = None,
    ):
        """Initialize the strategy.

        Args:
            verbose: Whether to print verbose messages.
            dump: Whether to dump the intermediate artifacts to a file.
        """
        self._verbose_print = _verbose_printer(verbose)
        self._dump = dump
        self._artifacts_dir = pathlib.Path(artifacts_dir)
        self._timestamp = timestamp or datetime.datetime.now().strftime(
            "%Y-%m-%d_%H-%M-%S-%f"
        )

    def __call__(
        self,
        model: torch.nn.Module | torch.jit.ScriptFunction,
        args: tuple[Any, ...],
        kwargs: dict[str, Any] | None,
        dynamic_shapes,
    ) -> Result:
        self._enter(model)
        if kwargs is None:
            kwargs = {}
        try:
            exported_program = self._capture(model, args, kwargs, dynamic_shapes)
        except Exception as e:
            self._failure(model, e)
            return Result(
                exported_program=None,
                strategy=self.__class__.__name__,
                exception=e,
            )
        self._success(model)
        return Result(exported_program, strategy=self.__call__.__name__)

    @abc.abstractmethod
    def _capture(
        self, model, args, kwargs, dynamic_shapes
    ) -> torch.export.ExportedProgram:
        raise NotImplementedError

    def _enter(self, model: torch.nn.Module | torch.jit.ScriptFunction) -> None:
        return

    def _success(self, model: torch.nn.Module | torch.jit.ScriptFunction) -> None:
        return

    def _failure(
        self, model: torch.nn.Module | torch.jit.ScriptFunction, e: Exception
    ) -> None:
        return


class TorchExportStrategy(CaptureStrategy):
    def _capture(
        self, model, args, kwargs, dynamic_shapes
    ) -> torch.export.ExportedProgram:
        with _patch_dynamo_unsupported_functions():
            try:
                return torch.export.export(
                    model, args, kwargs=kwargs, dynamic_shapes=dynamic_shapes
                )
            except torch._dynamo.exc.UserError as exc:
                # Refine the dynamic shapes based on the suggested fixes.
                try:
                    new_shapes = torch.export.dynamic_shapes.refine_dynamic_shapes_from_suggested_fixes(
                        exc.msg, dynamic_shapes
                    )
                except Exception:
                    # If the dynamic shapes cannot be refined, re-raise the exception.
                    raise exc from None
                return torch.export.export(
                    model, args, kwargs=kwargs, dynamic_shapes=new_shapes
                )

    def _enter(self, model) -> None:
        model_repr = _take_first_line(repr(model))
        self._verbose_print(
            f"Obtain model graph for `{model_repr}` with `torch.export.export`..."
        )

    def _success(self, model) -> None:
        model_repr = _take_first_line(repr(model))
        self._verbose_print(
            f"Obtain model graph for `{model_repr}` with `torch.export.export`... ✅"
        )

    def _failure(self, model, e) -> None:
        del e  # Unused
        model_repr = _take_first_line(repr(model))
        self._verbose_print(
            f"Obtain model graph for `{model_repr}` with `torch.export.export`... ❌"
        )


class TorchExportNonStrictStrategy(CaptureStrategy):
    def _capture(
        self, model, args, kwargs, dynamic_shapes
    ) -> torch.export.ExportedProgram:
        try:
            return torch.export.export(
                model, args, kwargs=kwargs, dynamic_shapes=dynamic_shapes, strict=False
            )
        except torch._dynamo.exc.UserError as exc:
            # Refine the dynamic shapes based on the suggested fixes.
            try:
                new_shapes = torch.export.dynamic_shapes.refine_dynamic_shapes_from_suggested_fixes(
                    exc.msg, dynamic_shapes
                )
            except Exception:
                # If the dynamic shapes cannot be refined, re-raise the exception.
                raise exc from None
            return torch.export.export(
                model, args, kwargs=kwargs, dynamic_shapes=new_shapes, strict=False
            )

    def _enter(self, model) -> None:
        model_repr = _take_first_line(repr(model))
        self._verbose_print(
            f"Obtain model graph for `{model_repr}` with `torch.export.export(..., strict=False)`..."
        )

    def _success(self, model) -> None:
        model_repr = _take_first_line(repr(model))
        self._verbose_print(
            f"Obtain model graph for `{model_repr}` with `torch.export.export(..., strict=False)`... ✅"
        )

    def _failure(self, model, e) -> None:
        del e  # Unused
        model_repr = _take_first_line(repr(model))
        self._verbose_print(
            f"Obtain model graph for `{model_repr}` with `torch.export.export(..., strict=False)`... ❌"
        )


class JitTraceConvertStrategy(CaptureStrategy):
    def _capture(
        self, model, args, kwargs, dynamic_shapes
    ) -> torch.export.ExportedProgram:
        # Avoid circular import
        from torch._export import converter as _torchscript_converter

        del dynamic_shapes  # Unused

        flattened_args, spec = _pytree.tree_flatten((args, kwargs))
        flattened_args = tuple(flattened_args)

        # Since torch.jit.trace only accepts Tensors as inputs, we filter
        # out non-Tensor arguments and reconstruct the arguments after entering
        # the WrappedModel.
        tensor_placeholder = object()
        non_tensor_args = [
            arg if not isinstance(arg, torch.Tensor) else tensor_placeholder
            for arg in flattened_args
        ]
        tensor_args = tuple(
            arg for arg in flattened_args if isinstance(arg, torch.Tensor)
        )

        class WrappedModel(torch.nn.Module):
            """Wrap the model so that it takes flattened arguments."""

            def __init__(self, m):
                super().__init__()
                self.model = m

            def forward(self, *_args):
                # Take the non-Tensor arguments list as a starting point and
                # replace the tensor_placeholder with the actual tensor arguments
                # from _args.
                reconstructed_flattened_args = non_tensor_args.copy()
                _args_iter = iter(_args)
                for i, arg in enumerate(reconstructed_flattened_args):
                    if arg is tensor_placeholder:
                        reconstructed_flattened_args[i] = next(_args_iter)
                # Unflatten the arguments and kwargs to pass to the model.
                unflattened_args, unflattened_kwargs = _pytree.tree_unflatten(
                    reconstructed_flattened_args, spec
                )
                results = self.model(*unflattened_args, **unflattened_kwargs)
                if not isinstance(results, tuple):
                    results = (results,)
                flattened_results, _ = _pytree.tree_flatten(results)
                if len(flattened_results) == 1:
                    return flattened_results[0]
                return tuple(flattened_results)

        jit_model = torch.jit.trace(
            WrappedModel(model),
            example_inputs=tensor_args,
            check_trace=False,
            strict=False,
        )
        if self._dump:
            program_path = self._artifacts_dir / f"onnx_export_{self._timestamp}.pt"
            try:
                torch.jit.save(jit_model, program_path)
            except Exception as e:
                self._verbose_print(
                    f"Failed to save Torch Script model due to an error: {e}"
                )
            else:
                self._verbose_print(
                    f"Torch Script model has been saved to '{program_path}'."
                )
        return _torchscript_converter.TS2EPConverter(
            jit_model, flattened_args
        ).convert()

    def _enter(self, model) -> None:
        model_repr = _take_first_line(repr(model))
        self._verbose_print(
            f"Obtain model graph for `{model_repr}` with Torch Script..."
        )

    def _success(self, model) -> None:
        model_repr = _take_first_line(repr(model))
        self._verbose_print(
            f"Obtain model graph for `{model_repr}` with Torch Script... ✅"
        )

    def _failure(self, model, e) -> None:
        del e  # Unused
        model_repr = _take_first_line(repr(model))
        self._verbose_print(
            f"Obtain model graph for `{model_repr}` with Torch Script... ❌"
        )


class LegacyDynamoStrategy(CaptureStrategy):
    """Strategy implemented by the ONNX team using internal dynamo APIs and custom fx passes."""

    def _capture(
        self, model, args, kwargs, dynamic_shapes
    ) -> torch.export.ExportedProgram:
        # NOTE: Import here to prevent circular dependency
        from torch.onnx._internal.fx import diagnostics, passes

        graph_module, _ = torch._dynamo.export(
            model,
            tracing_mode="symbolic",
            dynamic_shapes=dynamic_shapes,
        )(
            *args,
            **kwargs,
        )
        torch._dynamo.reset()

        diagnostic_context = diagnostics.DiagnosticContext(
            "torch.onnx.export",
            torch.__version__,
        )

        flattened_args, _ = _pytree.tree_flatten((args, kwargs))
        flattened_args = tuple(flattened_args)

        # ONNX does not support views and mutations.
        # Functionalize to get a semantically equivalent graph without mutations.
        graph_module = passes.Functionalize(
            diagnostic_context,
            graph_module,
            enable_dynamic_axes=bool(dynamic_shapes),
        ).run(*flattened_args)

        # Input mutations are detected and distilled after `Functionalize` pass.
        # Remove them since ONNX inference does not need them.
        graph_module = passes.RemoveInputMutation(diagnostic_context, graph_module).run(
            *flattened_args
        )

        # Use torch.export to recapture the GraphModule into an ExportedProgram.
        return torch.export.export(graph_module, flattened_args)

    def _enter(self, model) -> None:
        model_repr = _take_first_line(repr(model))
        self._verbose_print(
            f"Obtain model graph for `{model_repr}` with internal Dynamo apis..."
        )

    def _success(self, model) -> None:
        model_repr = _take_first_line(repr(model))
        self._verbose_print(
            f"Obtain model graph for `{model_repr}` with internal Dynamo apis... ✅"
        )

    def _failure(self, model, e) -> None:
        del e  # Unused
        model_repr = _take_first_line(repr(model))
        self._verbose_print(
            f"Obtain model graph for `{model_repr}` with internal Dynamo apis... ❌"
        )


CAPTURE_STRATEGIES = (
    TorchExportNonStrictStrategy,  # strict=False is preferred over strict=True because it does not have dynamo issues
    TorchExportStrategy,
    JitTraceConvertStrategy,
    LegacyDynamoStrategy,
)