1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
# mypy: allow-untyped-defs
from __future__ import annotations
import collections.abc
import dataclasses
import inspect
import logging
import types
import typing
from typing import Any, Iterator, Mapping, Optional, Sequence, TypeVar, Union
import onnx
import onnxscript
from onnxscript import ir
logger = logging.getLogger(__name__)
# A special value to indicate that the default value is not specified
class _Empty:
def __repr__(self):
return "_EMPTY_DEFAULT"
_EMPTY_DEFAULT = _Empty()
# Map from python type to corresponding ONNX AttributeProto type
_PY_TYPE_TO_ATTR_TYPE = {
float: ir.AttributeType.FLOAT,
int: ir.AttributeType.INT,
str: ir.AttributeType.STRING,
bool: ir.AttributeType.INT,
ir.Tensor: ir.AttributeType.TENSOR,
ir.TensorProtocol: ir.AttributeType.TENSOR,
ir.Graph: ir.AttributeType.GRAPH,
ir.GraphProtocol: ir.AttributeType.GRAPH,
}
# Map from python type to corresponding ONNX AttributeProto type,
# for repeated (i.e., list of) values
_LIST_TYPE_TO_ATTR_TYPE = {
float: ir.AttributeType.FLOATS,
int: ir.AttributeType.INTS,
str: ir.AttributeType.STRINGS,
bool: ir.AttributeType.INTS,
ir.Tensor: ir.AttributeType.TENSORS,
ir.TensorProtocol: ir.AttributeType.TENSORS,
ir.Graph: ir.AttributeType.GRAPHS,
ir.GraphProtocol: ir.AttributeType.GRAPHS,
}
_ALL_VALUE_TYPES = (
{ir.TensorType(dtype) for dtype in ir.DataType}
| {ir.SequenceType(ir.TensorType(dtype)) for dtype in ir.DataType}
| {ir.OptionalType(ir.TensorType(dtype)) for dtype in ir.DataType}
)
# TypeAnnotationValue represents the (value of) valid type-annotations recognized
# by ONNX Script. Currently, it supports
# - float, int, str (primitive attribute types)
# - Sequence[float], Sequence[int], Sequence[str] (attribute types)
# - Tensor types
# - Sequence[Tensor] types
# - Union of above 2
# - TypeVars with above bounds
# - Above types with annotation attached
TypeAnnotationValue = Any
@dataclasses.dataclass(frozen=True)
class TypeConstraintParam:
"""Type constraint for a parameter.
Attributes:
name: Name of the parameter. E.g. "TFloat"
allowed_types: Allowed types for the parameter.
"""
name: str
allowed_types: set[ir.TypeProtocol]
description: str = ""
def __hash__(self) -> int:
return hash((self.name, tuple(self.allowed_types)))
def __str__(self) -> str:
allowed_types_str = " | ".join(str(t) for t in self.allowed_types)
return f"{self.name}={allowed_types_str}"
@classmethod
def any_tensor(cls, name: str, description: str = "") -> TypeConstraintParam:
return cls(name, {ir.TensorType(dtype) for dtype in ir.DataType}, description)
@classmethod
def any_value(cls, name: str, description: str = "") -> TypeConstraintParam:
return cls(name, _ALL_VALUE_TYPES, description) # type: ignore[arg-type]
@dataclasses.dataclass(frozen=True)
class Parameter:
"""A formal parameter of an operator."""
name: str
type_constraint: TypeConstraintParam
required: bool
variadic: bool
default: Any = _EMPTY_DEFAULT
# TODO: Add other properties too
def __str__(self) -> str:
type_str = self.type_constraint.name
if self.has_default():
return f"{self.name}: {type_str} = {self.default}"
return f"{self.name}: {type_str}"
def has_default(self) -> bool:
return self.default is not _EMPTY_DEFAULT
@dataclasses.dataclass(frozen=True)
class AttributeParameter:
"""A parameter in the function signature that represents an ONNX attribute."""
name: str
type: ir.AttributeType
required: bool
default: ir.Attr | None = None
def __str__(self) -> str:
type_str = self.type.name
if self.has_default():
return f"{self.name}: {type_str} = {self.default}"
return f"{self.name}: {type_str}"
def has_default(self) -> bool:
return self.default is not None
def _get_type_from_str(
type_str: str,
) -> ir.TensorType | ir.SequenceType | ir.OptionalType:
"""Converter a type_str from ONNX Opschema to ir.TypeProtocol.
A type str has the form of "tensor(float)" or composite type like "seq(tensor(float))".
"""
# TODO: Upstream this to IR
# Split the type_str a sequence types and dtypes
# 1. Remove the ending ")"
striped = type_str.rstrip(")")
# 2. Split the type_str by "("
type_parts = striped.split("(")
# Convert the dtype to ir.DataType
dtype = ir.DataType[type_parts[-1].upper()]
# Create a place holder type first
type_: ir.TypeProtocol = ir.TensorType(ir.DataType.UNDEFINED)
# Construct the type
for type_part in reversed(type_parts[:-1]):
if type_part == "tensor":
type_ = ir.TensorType(dtype)
elif type_part == "seq":
type_ = ir.SequenceType(type_)
elif type_part == "optional":
type_ = ir.OptionalType(type_)
else:
raise ValueError(f"Unknown type part: '{type_part}' in type '{type_str}'")
return type_ # type: ignore[return-value]
def _convert_formal_parameter(
param: onnx.defs.OpSchema.FormalParameter,
type_constraints: Mapping[str, TypeConstraintParam],
) -> Parameter:
"""Convert a formal parameter from ONNX Opschema to Parameter."""
if param.type_str in type_constraints:
type_constraint = type_constraints[param.type_str]
else:
# param.type_str can be a plain type like 'int64'.
type_constraint = TypeConstraintParam(
name=param.name,
allowed_types={_get_type_from_str(param.type_str)},
)
return Parameter(
name=param.name,
type_constraint=type_constraint,
required=param.option != onnx.defs.OpSchema.FormalParameterOption.Optional,
variadic=param.option == onnx.defs.OpSchema.FormalParameterOption.Variadic,
)
def _is_optional(type_: type) -> bool:
"""Returns whether a type_ is an Optional."""
origin_type = typing.get_origin(type_)
if origin_type is Union and type(None) in typing.get_args(type_):
# Python < 3.10
return True
if origin_type is Optional:
# Python >= 3.10
return True
if (
hasattr(types, "UnionType")
and origin_type is types.UnionType
and type(None) in typing.get_args(type_)
):
# Python >= 3.10
return True
return False
def _get_attr_type(type_: type) -> ir.AttributeType:
"""Obtain the type of the attribute from a Python class."""
try:
if type_ in _PY_TYPE_TO_ATTR_TYPE:
return _PY_TYPE_TO_ATTR_TYPE[type_]
origin_type = typing.get_origin(type_)
if origin_type is None:
return ir.AttributeType.UNDEFINED
if origin_type in (
collections.abc.Sequence,
Sequence,
typing.List,
list,
typing.Tuple,
tuple,
):
inner_type = typing.get_args(type_)[0]
if inner_type in _LIST_TYPE_TO_ATTR_TYPE:
return _LIST_TYPE_TO_ATTR_TYPE[inner_type]
except TypeError:
logger.warning("TypeError when checking %s.", type_, exc_info=True)
return ir.AttributeType.UNDEFINED
def _get_type_constraint_name(type_: TypeAnnotationValue) -> str | None:
"""Returns the name of the type constraint for a given type annotation.
Args:
type_: A Python type.
Returns:
The name of the type constraint if it is a TypeVar.
- Prefixes the name with "Sequence_" if the type annotation is a Sequence[].
"""
if isinstance(type_, TypeVar):
return type_.__name__
if _is_optional(type_):
subtypes = typing.get_args(type_)
for subtype in subtypes:
if subtype is type(None):
continue
type_param_name = _get_type_constraint_name(subtype)
return type_param_name if type_param_name else None
origin_type = typing.get_origin(type_)
if isinstance(origin_type, type) and issubclass(origin_type, Sequence):
subtypes = typing.get_args(type_)
type_param_name = _get_type_constraint_name(subtypes[0])
return f"Sequence_{type_param_name}" if type_param_name else None
return None
def _get_allowed_types_from_type_annotation(
type_: TypeAnnotationValue,
) -> set[ir.TypeProtocol]:
"""Obtain the allowed types from a type annotation."""
if type_ is onnxscript.onnx_types.TensorType:
# Any tensor type
return {ir.TensorType(dtype) for dtype in ir.DataType}
allowed_types: set[ir.TypeProtocol]
if isinstance(type_, TypeVar):
allowed_types = set()
if constraints := type_.__constraints__:
for constraint in constraints:
allowed_types.update(
_get_allowed_types_from_type_annotation(constraint)
)
else:
bound = type_.__bound__
if bound is None:
allowed_types = _ALL_VALUE_TYPES # type: ignore[assignment]
else:
allowed_types.update(_get_allowed_types_from_type_annotation(bound))
return allowed_types
if hasattr(type_, "dtype"):
# A single tensor type like INT64, FLOAT, etc.
return {ir.TensorType(ir.DataType(type_.dtype))}
if _is_optional(type_):
allowed_types = set()
subtypes = typing.get_args(type_)
for subtype in subtypes:
if subtype is type(None):
continue
allowed_types.update(_get_allowed_types_from_type_annotation(subtype))
# NOTE: We do not consider dynamic optional types like optional(float) because they are not very useful.
return allowed_types
origin_type = typing.get_origin(type_)
if origin_type is Union:
allowed_types = set()
subtypes = typing.get_args(type_)
for subtype in subtypes:
assert (
subtype is not type(None)
), "Union should not contain None type because it is handled by _is_optional."
allowed_types.update(_get_allowed_types_from_type_annotation(subtype))
return allowed_types
if isinstance(origin_type, type) and issubclass(origin_type, Sequence):
subtypes = typing.get_args(type_)
return {
ir.SequenceType(t)
for t in _get_allowed_types_from_type_annotation(subtypes[0])
}
# Allow everything by default
return _ALL_VALUE_TYPES # type: ignore[return-value]
@dataclasses.dataclass
class OpSignature:
"""Schema for an operator.
Attributes:
domain: Domain of the operator. E.g. "".
name: Name of the operator. E.g. "Add".
overload: Overload name of the operator.
params: Input parameters. When the op is an ONNX function definition,
the order is according to the function signature. This mean we can
interleave ONNX inputs and ONNX attributes in the list.
outputs: Output parameters.
"""
domain: str
name: str
overload: str
params: Sequence[Parameter | AttributeParameter]
outputs: Sequence[Parameter]
params_map: Mapping[str, Parameter | AttributeParameter] = dataclasses.field(
init=False, repr=False
)
opset_version: int | None = None
def __post_init__(self):
self.params_map = {param.name: param for param in self.params}
def get(self, name: str) -> Parameter | AttributeParameter:
return self.params_map[name]
def __contains__(self, name: str) -> bool:
return name in self.params_map
def __iter__(self) -> Iterator[Parameter | AttributeParameter]:
return iter(self.params)
def __str__(self) -> str:
domain = self.domain or "''"
# TODO: Double check the separator for overload
overload = f"::{self.overload}" if self.overload else ""
params = ", ".join(str(param) for param in self.params)
outputs = ", ".join(str(param.type_constraint.name) for param in self.outputs)
type_constraints = {}
for param in self.params:
if isinstance(param, Parameter):
type_constraints[param.type_constraint.name] = param.type_constraint
for param in self.outputs:
type_constraints[param.type_constraint.name] = param.type_constraint
type_constraints_str = ", ".join(
str(type_constraint) for type_constraint in type_constraints.values()
)
return f"{domain}::{self.name}{overload}({params}) -> ({outputs}) where {type_constraints_str}"
@classmethod
def from_opschema(cls, opschema: onnx.defs.OpSchema) -> OpSignature:
"""Produce an OpSignature from an ONNX Opschema."""
type_constraints = {
constraint.type_param_str: TypeConstraintParam(
name=constraint.type_param_str,
allowed_types={
_get_type_from_str(type_str)
for type_str in constraint.allowed_type_strs
},
description=constraint.description,
)
for constraint in opschema.type_constraints
}
params = [
_convert_formal_parameter(param, type_constraints)
for param in opschema.inputs
]
for param in opschema.attributes.values():
default_attr = (
ir.serde.deserialize_attribute(param.default_value)
if param.default_value is not None
else None
)
if default_attr is not None:
# Set the name of the default attribute because it may have a different name from the parameter
default_attr.name = param.name
params.append(
AttributeParameter(
name=param.name,
type=ir.AttributeType(param.type), # type: ignore[arg-type]
required=param.required,
default=default_attr, # type: ignore[arg-type]
)
)
outputs = [
_convert_formal_parameter(param, type_constraints)
for param in opschema.outputs
]
return cls(
domain=opschema.domain,
name=opschema.name,
overload="",
params=params,
outputs=outputs,
opset_version=opschema.since_version,
)
@classmethod
def from_function(
cls,
func,
domain: str,
name: str | None = None,
overload: str = "",
*,
opset_version: int = 1,
) -> OpSignature:
"""Produce an OpSignature from a function using type annotation."""
py_signature = inspect.signature(func)
# Not using inspect.get_annotations because typing.get_type_hints seems to handle more cases
# https://github.com/python/cpython/issues/102405
type_hints = typing.get_type_hints(func)
params: list[Parameter | AttributeParameter] = []
# Create a mapping from type to a unique name
type_constraints: dict[str, TypeConstraintParam] = {}
for param in py_signature.parameters.values():
if param.name not in type_hints:
logger.warning(
"Missing annotation for parameter '%s' from %s. Treating as an Input.",
param.name,
py_signature,
)
type_constraint = TypeConstraintParam.any_value(f"T_{param.name}")
type_constraints[param.name] = type_constraint
params.append(
Parameter(
name=param.name,
type_constraint=type_constraint,
required=param.default is inspect.Parameter.empty,
# TODO: Handle variadic
variadic=False,
default=param.default
if param.default is not inspect.Parameter.empty
else _EMPTY_DEFAULT,
)
)
else:
type_ = type_hints[param.name]
if (attr_type := _get_attr_type(type_)) != ir.AttributeType.UNDEFINED:
# Construct the default attribute
if param.default is not inspect.Parameter.empty:
# TODO: Use ir_convenience instead to handle int as float
default = ir.Attr(param.name, attr_type, param.default)
else:
default = None
params.append(
AttributeParameter(
name=param.name,
type=attr_type,
required=param.default is inspect.Parameter.empty,
default=default,
)
)
else:
# Obtain the type constraint from the type annotation
# 1. Get a type constraint name from the type annotation
# If the type annotation is a TypeVar or Optional[TypeVar], get its name
# Otherwise, name it T_{param.name}
type_constraint_name = _get_type_constraint_name(type_)
if type_constraint_name is None:
type_constraint_name = f"T_{param.name}"
# 2. If the type constraint param is already initialized, use it
if type_constraint_name in type_constraints:
type_constraint = type_constraints[type_constraint_name]
else:
# 3. Otherwise, create a new TypeConstraintParam
type_constraint = TypeConstraintParam(
name=type_constraint_name,
allowed_types=_get_allowed_types_from_type_annotation(
type_
),
)
type_constraints[type_constraint_name] = type_constraint
# 4. Create Parameter
params.append(
Parameter(
name=param.name,
type_constraint=type_constraint,
required=param.default is inspect.Parameter.empty,
# TODO: Handle variadic
variadic=False,
default=param.default
if param.default is not inspect.Parameter.empty
else _EMPTY_DEFAULT,
)
)
return_type = type_hints.get("return")
outputs = []
if return_type is None:
# No returns
pass
else:
if typing.get_origin(return_type) is tuple:
# Multiple returns
return_types = typing.get_args(return_type)
else:
return_types = [return_type] # type: ignore[assignment]
for i, return_type_i in enumerate(return_types):
if (
return_param_name := _get_type_constraint_name(return_type_i)
) in type_constraints:
type_constraint = type_constraints[return_param_name]
else:
return_param_name = f"TReturn{i}"
type_constraint = TypeConstraintParam(
name=return_param_name,
allowed_types=_get_allowed_types_from_type_annotation(
return_type_i
),
)
type_constraints[return_param_name] = type_constraint
outputs.append(
Parameter(
name=return_param_name,
type_constraint=type_constraint,
required=True,
variadic=False,
default=_EMPTY_DEFAULT,
)
)
return cls(
domain=domain,
name=name or func.__name__,
overload=overload,
params=params,
outputs=outputs,
opset_version=opset_version,
)
|