1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
# mypy: allow-untyped-defs
from __future__ import annotations
import dataclasses
import functools
from typing import Any, TYPE_CHECKING
import onnxscript # type: ignore[import]
from onnxscript.function_libs.torch_lib import graph_building # type: ignore[import]
import torch
import torch.fx
from torch.onnx._internal import diagnostics
from torch.onnx._internal.diagnostics import infra
from torch.onnx._internal.diagnostics.infra import decorator, formatter
from torch.onnx._internal.fx import registration, type_utils as fx_type_utils
if TYPE_CHECKING:
import logging
# NOTE: The following limits are for the number of items to display in diagnostics for
# a list, tuple or dict. The limit is picked such that common useful scenarios such as
# operator arguments are covered, while preventing excessive processing loads on considerably
# large containers such as the dictionary mapping from fx to onnx nodes.
_CONTAINER_ITEM_LIMIT: int = 10
# NOTE(bowbao): This is a shim over `torch.onnx._internal.diagnostics`, which is
# used in `torch.onnx`, and loaded with `torch`. Hence anything related to `onnxscript`
# cannot be put there.
# [NOTE: `dynamo_export` diagnostics logging]
# The 'dynamo_export' diagnostics leverages the PT2 artifact logger to handle the verbosity
# level of logs that are recorded in each SARIF log diagnostic. In addition to SARIF log,
# terminal logging is by default disabled. Terminal logging can be activated by setting
# the environment variable `TORCH_LOGS="onnx_diagnostics"`. When the environment variable
# is set, it also fixes logging level to `logging.DEBUG`, overriding the verbosity level
# specified in the diagnostic options.
# See `torch/_logging/__init__.py` for more on PT2 logging.
_ONNX_DIAGNOSTICS_ARTIFACT_LOGGER_NAME = "onnx_diagnostics"
diagnostic_logger = torch._logging.getArtifactLogger(
"torch.onnx", _ONNX_DIAGNOSTICS_ARTIFACT_LOGGER_NAME
)
def is_onnx_diagnostics_log_artifact_enabled() -> bool:
return torch._logging._internal.log_state.is_artifact_enabled(
_ONNX_DIAGNOSTICS_ARTIFACT_LOGGER_NAME
)
@functools.singledispatch
def _format_argument(obj: Any) -> str:
return formatter.format_argument(obj)
def format_argument(obj: Any) -> str:
formatter = _format_argument.dispatch(type(obj))
return formatter(obj)
# NOTE: EDITING BELOW? READ THIS FIRST!
#
# The below functions register the `format_argument` function for different types via
# `functools.singledispatch` registry. These are invoked by the diagnostics system
# when recording function arguments and return values as part of a diagnostic.
# Hence, code with heavy workload should be avoided. Things to avoid for example:
# `torch.fx.GraphModule.print_readable()`.
@_format_argument.register
def _torch_nn_module(obj: torch.nn.Module) -> str:
return f"torch.nn.Module({obj.__class__.__name__})"
@_format_argument.register
def _torch_fx_graph_module(obj: torch.fx.GraphModule) -> str:
return f"torch.fx.GraphModule({obj.__class__.__name__})"
@_format_argument.register
def _torch_fx_node(obj: torch.fx.Node) -> str:
node_string = f"fx.Node({obj.target})[{obj.op}]:"
if "val" not in obj.meta:
return node_string + "None"
return node_string + format_argument(obj.meta["val"])
@_format_argument.register
def _torch_fx_symbolic_bool(obj: torch.SymBool) -> str:
return f"SymBool({obj})"
@_format_argument.register
def _torch_fx_symbolic_int(obj: torch.SymInt) -> str:
return f"SymInt({obj})"
@_format_argument.register
def _torch_fx_symbolic_float(obj: torch.SymFloat) -> str:
return f"SymFloat({obj})"
@_format_argument.register
def _torch_tensor(obj: torch.Tensor) -> str:
return f"Tensor({fx_type_utils.from_torch_dtype_to_abbr(obj.dtype)}{_stringify_shape(obj.shape)})"
@_format_argument.register
def _int(obj: int) -> str:
return str(obj)
@_format_argument.register
def _float(obj: float) -> str:
return str(obj)
@_format_argument.register
def _bool(obj: bool) -> str:
return str(obj)
@_format_argument.register
def _str(obj: str) -> str:
return obj
@_format_argument.register
def _registration_onnx_function(obj: registration.ONNXFunction) -> str:
# TODO: Compact display of `param_schema`.
return f"registration.ONNXFunction({obj.op_full_name}, is_custom={obj.is_custom}, is_complex={obj.is_complex})"
@_format_argument.register
def _list(obj: list) -> str:
list_string = f"List[length={len(obj)}](\n"
if not obj:
return list_string + "None)"
for i, item in enumerate(obj):
if i >= _CONTAINER_ITEM_LIMIT:
# NOTE: Print only first _CONTAINER_ITEM_LIMIT items.
list_string += "...,\n"
break
list_string += f"{format_argument(item)},\n"
return list_string + ")"
@_format_argument.register
def _tuple(obj: tuple) -> str:
tuple_string = f"Tuple[length={len(obj)}](\n"
if not obj:
return tuple_string + "None)"
for i, item in enumerate(obj):
if i >= _CONTAINER_ITEM_LIMIT:
# NOTE: Print only first _CONTAINER_ITEM_LIMIT items.
tuple_string += "...,\n"
break
tuple_string += f"{format_argument(item)},\n"
return tuple_string + ")"
@_format_argument.register
def _dict(obj: dict) -> str:
dict_string = f"Dict[length={len(obj)}](\n"
if not obj:
return dict_string + "None)"
for i, (key, value) in enumerate(obj.items()):
if i >= _CONTAINER_ITEM_LIMIT:
# NOTE: Print only first _CONTAINER_ITEM_LIMIT items.
dict_string += "...\n"
break
dict_string += f"{key}: {format_argument(value)},\n"
return dict_string + ")"
@_format_argument.register
def _torch_nn_parameter(obj: torch.nn.Parameter) -> str:
return f"Parameter({format_argument(obj.data)})"
@_format_argument.register
def _onnxscript_torch_script_tensor(obj: graph_building.TorchScriptTensor) -> str:
return f"`TorchScriptTensor({fx_type_utils.from_torch_dtype_to_abbr(obj.dtype)}{_stringify_shape(obj.shape)})`" # type: ignore[arg-type] # noqa: B950
@_format_argument.register
def _onnxscript_onnx_function(obj: onnxscript.OnnxFunction) -> str:
return f"`OnnxFunction({obj.name})`"
@_format_argument.register
def _onnxscript_traced_onnx_function(obj: onnxscript.TracedOnnxFunction) -> str:
return f"`TracedOnnxFunction({obj.name})`"
# from torch/fx/graph.py to follow torch format
def _stringify_shape(shape: torch.Size | None) -> str:
if shape is None:
return ""
return f"[{', '.join(str(x) for x in shape)}]"
rules = diagnostics.rules
levels = diagnostics.levels
RuntimeErrorWithDiagnostic = infra.RuntimeErrorWithDiagnostic
LazyString = formatter.LazyString
DiagnosticOptions = infra.DiagnosticOptions
@dataclasses.dataclass
class Diagnostic(infra.Diagnostic):
logger: logging.Logger = dataclasses.field(init=False, default=diagnostic_logger)
def log(self, level: int, message: str, *args, **kwargs) -> None:
if self.logger.isEnabledFor(level):
formatted_message = message % args
if is_onnx_diagnostics_log_artifact_enabled():
# Only log to terminal if artifact is enabled.
# See [NOTE: `dynamo_export` diagnostics logging] for details.
self.logger.log(level, formatted_message, **kwargs)
self.additional_messages.append(formatted_message)
@dataclasses.dataclass
class DiagnosticContext(infra.DiagnosticContext[Diagnostic]):
logger: logging.Logger = dataclasses.field(init=False, default=diagnostic_logger)
_bound_diagnostic_type: type[Diagnostic] = dataclasses.field(
init=False, default=Diagnostic
)
def __enter__(self):
self._previous_log_level = self.logger.level
# Adjust the logger level based on `options.verbosity_level` and the environment
# variable `TORCH_LOGS`. See [NOTE: `dynamo_export` diagnostics logging] for details.
if not is_onnx_diagnostics_log_artifact_enabled():
return super().__enter__()
else:
return self
diagnose_call = functools.partial(
decorator.diagnose_call,
diagnostic_type=Diagnostic,
format_argument=format_argument,
)
@dataclasses.dataclass
class UnsupportedFxNodeDiagnostic(Diagnostic):
unsupported_fx_node: torch.fx.Node | None = None
def __post_init__(self) -> None:
super().__post_init__()
# NOTE: This is a hack to make sure that the additional fields must be set and
# not None. Ideally they should not be set as optional. But this is a known
# limitation with `dataclasses`. Resolvable in Python 3.10 with `kw_only=True`.
# https://stackoverflow.com/questions/69711886/python-dataclasses-inheritance-and-default-values
if self.unsupported_fx_node is None:
raise ValueError("unsupported_fx_node must be specified.")
|