1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
|
# mypy: allow-untyped-defs
from __future__ import annotations
import abc
import collections
import copy
import operator
from typing import Any, Dict, Final, Generator, Iterator, Sequence, Tuple
import torch
import torch.fx
from torch.onnx._internal.fx import _pass, diagnostics
from torch.utils import _pytree as pytree
_FX_TRACER_NN_MODULE_META_TYPE = Tuple[str, type]
"""Legacy type of item from `node.meta["nn_module_stack"].items()` produced by FX symbolic tracer."""
_FX_TRACER_NN_MODULE_STACK_META_TYPE = collections.OrderedDict
"""Legacy type of `node.meta["nn_module_stack"]` produced by FX symbolic tracer."""
_DYNAMO_NN_MODULE_META_TYPE = Tuple[str, Tuple[str, type]]
"""Type of item from `node.meta["nn_module_stack"].items()` produced by FX dynamo tracer."""
_DYNAMO_NN_MODULE_STACK_META_TYPE = Dict[str, _DYNAMO_NN_MODULE_META_TYPE]
"""Type of `node.meta["nn_module_stack"]` produced by FX dynamo tracer."""
class _ModuleMeta:
"""Meta information about a module.
This class is used to represent the module information in a more structured way.
It parses raw module information from a single item from
`node.meta["nn_module_stack"].items()`.
See the uses of `from_raw_meta`, `from_fx_tracer_produced_raw_meta`, and
`from_dynamo_produced_raw_meta` for how to create an instance.
Attributes:
_module_class: The class of the module. E.g. `torch.nn.module.sparse.Embedding`.
_module_name: The name of the module. E.g. `L__self___h_1_mlp_c_proj`.
_raw_meta: The raw meta '(module_name, node.meta["nn_module_stack"][module_name])'.
"""
_module_class: Final[type | str | None] # type: ignore[misc]
_module_name: Final[str] # type: ignore[misc]
_raw_meta: Final[tuple[Any, Any]] # type: ignore[misc]
def __init__(
self,
module_name: str,
module_class: type | str | None,
raw_meta: tuple[Any, Any],
):
self._module_name = module_name
self._module_class = module_class
self._raw_meta = raw_meta
@property
def module_display_name(self) -> str:
"""The display name of the module.
E.g. `h_1_mlp_c_proj`.
"""
# E.g., from 'L__self___h_1_mlp_c_proj' to 'h_1_mlp_c_proj'.
name = self.module_name
if name.startswith("L__self___"):
name = name[len("L__self___") :]
return name
@property
def qualified_module_class_name(self) -> str:
"""Qualified name of the module class.
E.g. `torch_nn_module_sparse_Embedding`.
"""
if self._module_class is None:
return ""
mod_cls = self._module_class
if isinstance(mod_cls, type):
mod_cls = mod_cls.__module__ + "." + mod_cls.__qualname__
return mod_cls.replace(".", "_")
@property
def module_class_name(self) -> str:
"""Name of the module class.
E.g. `Embedding`.
"""
if self._module_class is None:
return ""
if isinstance(self._module_class, type):
return self._module_class.__name__
return self._module_class
@property
def module_name(self) -> str:
"""Name of the module.
E.g. `L__self___h_1_mlp_c_proj`.
"""
return self._module_name
@property
def raw_meta(self) -> tuple[Any, Any]:
"""Returns the raw module meta data.
I.e. (module_name, node.meta['nn_module_stack'][module_name]).
"""
return self._raw_meta
def __eq__(self, __value: object) -> bool:
if not isinstance(__value, _ModuleMeta):
return False
return (
self._module_name == __value._module_name
and self._module_class == __value._module_class
)
def __hash__(self) -> int:
return hash((self._module_name, self._module_class))
def __repr__(self) -> str:
return f"ModuleMeta(name={self._module_name}, class={self._module_class})"
@classmethod
def create_root(cls) -> _ModuleMeta:
"""Create an empty module meta representing root module."""
return _ModuleMeta("", None, ("", None))
@classmethod
def from_fx_tracer_produced_raw_meta(
cls, raw_meta: _FX_TRACER_NN_MODULE_META_TYPE
) -> _ModuleMeta:
"""Create a module meta from raw meta produced by FX symbolic tracer."""
module_name, module_class = raw_meta
return _ModuleMeta(module_name, module_class, raw_meta)
@classmethod
def from_dynamo_produced_raw_meta(
cls, raw_meta: _DYNAMO_NN_MODULE_META_TYPE
) -> _ModuleMeta:
"""Create a module meta from raw meta produced by FX dynamo tracer."""
module_name, (_qualified_name, module_class) = raw_meta
return _ModuleMeta(module_name.split("@")[0], module_class, raw_meta)
@classmethod
def from_raw_meta(
cls,
raw_meta: _FX_TRACER_NN_MODULE_META_TYPE | _DYNAMO_NN_MODULE_META_TYPE,
) -> _ModuleMeta:
if (
isinstance(raw_meta, tuple)
and len(raw_meta) == 2
and isinstance(raw_meta[1], type)
):
# Trying to do `instance(raw_meta, _FX_TRACER_NN_MODULE_META_TYPE)`
return _ModuleMeta.from_fx_tracer_produced_raw_meta(raw_meta)
if (
isinstance(raw_meta, tuple)
and len(raw_meta) == 2
and isinstance(raw_meta[1], tuple)
):
# Trying to do `instance(raw_meta, _DYNAMO_NN_MODULE_META_TYPE)`
return _ModuleMeta.from_dynamo_produced_raw_meta(raw_meta)
raise TypeError(
f"Unknown type of raw meta item from node.meta['nn_module_stack'].items(): {type(raw_meta)}"
)
class _ModuleStackMeta:
"""Meta information about the module call stack.
This class is used to represent the module call stack information in a more
structured way. It parses raw module stack information from `node.meta["nn_module_stack"]`.
Example of raw module stack information:
If produced by dynamo:
{
'L__self___h_1': (
"L['self'].h[1]",
<class 'transformers.models.gpt2.modeling_gpt2.GPT2Block'>
),
'L__self___h_1_attn': (
"L['self'].h[1].attn",
<class 'transformers.models.gpt2.modeling_gpt2.GPT2Attention'>
)
}
If produced by fx.symbolic_trace:
{
'h.1': <class 'transformers.models.gpt2.modeling_gpt2.GPT2Block'>,
'h.1.attn': <class 'transformers.models.gpt2.modeling_gpt2.GPT2Attention'>
}
"""
_module_stack: Final[list[_ModuleMeta]] # type: ignore[misc]
def __init__(
self,
nn_module_stack_meta: _FX_TRACER_NN_MODULE_STACK_META_TYPE
| _DYNAMO_NN_MODULE_STACK_META_TYPE
| None,
is_exported_program: bool = True,
):
self._module_stack = []
if nn_module_stack_meta is None:
return
raw_meta = copy.copy(nn_module_stack_meta)
for item in raw_meta.items():
# If produced by torch.export.export, there is another call stack layer
# that we need to skip
if is_exported_program:
is_exported_program = False
continue
self.push(_ModuleMeta.from_raw_meta(item)) # type: ignore[arg-type]
def __len__(self) -> int:
return len(self._module_stack)
def __getitem__(self, index: int) -> _ModuleMeta:
return self._module_stack[index]
def __iter__(self) -> Iterator[_ModuleMeta]:
return iter(self._module_stack)
def is_empty_or_root(self) -> bool:
return len(self._module_stack) == 0
def top(self) -> _ModuleMeta:
"""Returns the top module meta in the stack. I.e., the meta for leaf module.
Example:
Consider the following module stack:
stack = [GPT, block1, Attention_1, MLP]
stack.top() == MLP
"""
if self.is_empty_or_root():
return _ModuleMeta.create_root()
return self._module_stack[-1]
def is_superset_of(
self,
module_stack: _ModuleStackMeta,
) -> bool:
"""Determines if self is a superset of the provided module stack.
I.e., If self includes all elements from the provided module stack, plus additional
elements on top. If self is empty or root, this method always return False.
Example:
Consider the following module stack:
stack_1 = [GPT, block1, Attention_1, MLP]
stack_2 = [GPT, block1]
stack_1.is_superset_of(stack_2) == True
stack_2.is_superset_of(stack_1) == False
stack_3 = [GPT, block2, Attention_1]
stack_1.is_superset_of(stack_3) == False
stack_3.is_superset_of(stack_1) == False
"""
if self.is_empty_or_root():
return False
if module_stack.is_empty_or_root() is None:
return True
if len(self) <= len(module_stack):
return False
for i, parent_key in enumerate(module_stack):
if self[i] != parent_key:
return False
return True
def push(self, module_meta: _ModuleMeta) -> None:
"""Pushes a module meta to the stack."""
self._module_stack.append(module_meta)
def __eq__(self, __value: object) -> bool:
if not isinstance(__value, _ModuleStackMeta):
return False
return self._module_stack == __value._module_stack
@property
def raw_meta(self) -> dict[str, tuple[str, type]] | None:
"""Returns the raw module stack meta data, i.e. node.meta['nn_module_stack']."""
return {
module_meta.raw_meta[0]: module_meta.raw_meta[1]
for module_meta in self._module_stack
}
def __repr__(self) -> str:
return f"ModuleStackMeta({self._module_stack})"
@property
def module_display_name(self) -> str:
"""Returns the module display name of the top module."""
return self.top().module_display_name
@property
def qualified_module_class_name(self) -> str:
"""Returns the qualified module class name of the top module."""
return self.top().qualified_module_class_name
@property
def module_class(self) -> type | str | None:
"""Returns the module class of the top module."""
return self.top()._module_class
def _module_stack_meta_from_node(
node: torch.fx.Node, is_exported_program: bool = False
) -> _ModuleStackMeta:
return _ModuleStackMeta(
node.meta.get("nn_module_stack"), is_exported_program=is_exported_program
)
def _get_unique_module_name(module_names: dict[str, int], module_name: str) -> str:
module_names.setdefault(module_name, 0)
module_names[module_name] += 1
return f"{module_name}_{module_names[module_name]}"
class _IRNode(abc.ABC):
"""Base class for IR nodes.
IR nodes are used for Modularize pass only. They add a layer of abstraction on top of
torch.fx.Node.
[NOTE: Modularize Pass Implementation]
The main job of the pass is to group `fx.Node`s that belong to the same `nn.Module`
forward call, and then create `call_module` node and sub `fx.GraphModule` from them.
Each `fx.Node` possesses an `nn_module_stack` meta data that contains information
about the module call stack. See `_ModuleStackMeta` for examples.
Analysis step
-------------
Each module call is identified by a set of base stack layers. For each module call,
the pass creates a `_ModuleNode` and groups the sequence of nodes that shares the
same base stack layers.
For example,
stack_of_node_0 = [GPT, block0]
stack_of_node_1 = [GPT, block1]
stack_of_node_2 = [GPT, block1, Attention1, MLP]
stack_of_node_3 = [GPT, block1, Attention1]
stack_of_node_4 = [GPT, block2]
All nodes belong to the `GPT` module call, since they share the base stack layers [GPT].
[node_1, node_2, node_3] are grouped for `GPT.block1`, because they share the base
stack layers [GPT, block1]. And [node_2, node_3] for `GPT.block1.Attention1`, [node_0]
for `GPT.block0`, and [node_4] for `GPT.block2` respectfully.
After the analysis step, a hierarchical representation is generated.
For above example, the representation is:
_ModuleNode(GPT)
_ModuleNode(block0)
_LeafNode(node_0)
_ModuleNode(block1)
_LeafNode(node_1)
_ModuleNode(Attention1)
_ModuleNode(MLP)
_LeafNode(node_2)
_LeafNode(node_3)
_ModuleNode(block2)
_LeafNode(node_4)
Construction step
-----------------
The second step is to build the actual `call_module` node and the sub `fx.GraphModule`.
This is done recursively from the leaf `_ModuleNode` to the root.
For example, the first submodule to be built is `GPT.block1.Attention1.MLP`. Below pair
is generated from `_ModuleNode(MLP)`.
fx.GraphModule(GPT.block1.Attention1.MLP)
graph:
node_2
new_mlp_node = `call_module[GPT.block1.Attention1.MLP](...)`
Next, the `GPT.block1.Attention1` submodule is built. Below is generated from
`_ModuleNode(Attention1)`.
fx.GraphModule(GPT.block1.Attention1)
graph:
new_mlp_node
node_3
new_attention1_node = `call_module[GPT.block1.Attention1](...)`
Until every submodule is built, the new modularized `fx.GraphModule` is generated.
Alternatives
------------
The current algorithm adopts a top down approach. A bottom up approach is similar.
In contrast to these two, an alternative flat order approach is also possible, where
each node is traversed and copied to the corresponding submodule.
The advantage of the current approach lies in the encapsulation of the fx.GraphModule
construction for each individual submodule within a single `build_module` method, which
can be called separately once the analysis phase is completed, making debugging more
convenient.
Regarding construction step, an alternative implementation is to utilize `fx.Interpreter`
for traversing all the nodes under the flattened root module and copying the nodes
into their respective submodule under construction. This approach is not adopted because
1. It uses the flat order approach discussed above. This means one cannot individually
construct a submodule and examine it while debugging.
2. The graph execution functionality of `fx.Interpreter` is not necessary for the
purpose of this pass. Ignoring that, `fx.Interpreter.run` achieves the same effect
as a for loop over all the nodes.
"""
@property
@abc.abstractmethod
def stack_meta(self) -> _ModuleStackMeta:
"""The module stack meta data associated with this node."""
...
@property
@abc.abstractmethod
def stack_trace(self) -> str | None:
"""The stack trace associated with this node."""
...
class _ModuleNode(_IRNode):
"""Representing a sequence of fx.Nodes to be formed into a fx.GraphModule.
This class encapsulates metadata and provides building block methods to construct this
layered abstraction from a sequence of flat fx.Nodes.
Attributes:
- _stack_meta: Metadata of the module stack.
- _nodes: List of IR nodes in the module.
- _reference_root_module: Reference to the root flat fx.GraphModule instance.
"""
def __init__(
self, reference_root_module: torch.fx.GraphModule, stack_meta: _ModuleStackMeta
):
self._stack_meta = stack_meta
self._nodes: list[_IRNode] = []
self._reference_module = reference_root_module
@property
def stack_meta(self) -> _ModuleStackMeta:
return self._stack_meta
@property
def stack_trace(self) -> str | None:
assert self._nodes
return self._nodes[0].stack_trace
def __str__(self) -> str:
return f"ModuleNode({self._stack_meta})"
def is_same_module_as(self, node: _IRNode) -> bool:
"""Determines if the provided node pertains to the same module as this node."""
return self.stack_meta == node.stack_meta
def is_parent_module_of(self, node: _IRNode) -> bool:
"""Determines if this node represents a parent module of the provided node."""
return node.stack_meta.is_superset_of(self.stack_meta)
def add_leaf_node(self, leaf_node: _LeafNode) -> None:
"""Adds a leaf node to the module.
The leaf node must belong to the same or a child module. This method will recursively
construct _ModuleNode instance based on the stack_meta information of the leaf node.
"""
if self.is_same_module_as(leaf_node) or leaf_node.fx_op == "call_module":
self._nodes.append(leaf_node)
elif leaf_node.fx_op == "placeholder":
# Although the original placeholder has empty nn_module_stack, the placeholder lifted
# from get_attr nodes by exported program has their original nn_module_stack. Here
# we need to avoid them building submodule.
self._nodes.append(leaf_node)
elif self.is_parent_module_of(leaf_node):
# This node belongs in a submodule.
# Check if the last node is a submodule and if it is the parent of this node.
last_node = self._nodes[-1] if self._nodes else None
if isinstance(last_node, _ModuleNode) and (
last_node.is_parent_module_of(leaf_node)
or last_node.is_same_module_as(leaf_node)
):
# This node belongs to the last_node.
last_node.add_leaf_node(leaf_node)
else:
# Create a new SubmoduleNode for the immediate child module of the current
# module. The leaf node may be a grandchild of the current module.
# Example:
# self.stack_meta = [A, B, C]
# leaf_node.stack_meta = [A, B, C, D, E, F]
# Create a new ModuleNode with stack_meta = [A, B, C, D] and add leaf_node to it.
stack_meta = copy.deepcopy(self.stack_meta)
stack_meta.push(leaf_node.stack_meta[len(self.stack_meta)])
last_node = _ModuleNode(
self._reference_module,
stack_meta,
)
self._nodes.append(last_node)
last_node.add_leaf_node(leaf_node)
else:
raise AssertionError(
f"Node {leaf_node} ({leaf_node.stack_meta}) does not belong to module "
f"{self._stack_meta}."
)
def fx_nodes(self) -> Generator[torch.fx.Node, None, None]:
"""Returns an iterator for the sequence of fx nodes this instance holds."""
for node in self._nodes:
if isinstance(node, _ModuleNode):
yield from node.fx_nodes()
else:
assert isinstance(node, _LeafNode)
yield node.fx_node
def module_inputs(self) -> Sequence[torch.fx.Node]:
"""Extract module inputs from the sequence of fx nodes this instance holds.
All node args that are produced by nodes outside of the module are considered module
inputs. The order of returned module inputs is the same as the their use order.
### Known limitations
The original ordering of module inputs is not preserved. There is no meta information
to be found from the `fx.GraphModule` that can be used to recover the original ordering.
Returns:
Sequence of module inputs.
"""
nodes = list(self.fx_nodes())
assert len(nodes) > 0, "Cannot extract module inputs from empty nodes."
module_inputs: dict[torch.fx.Node, None] = {}
node_set: set[torch.fx.Node] = set(nodes)
def _extract_arg_if_node_outside_module(arg: Any):
if isinstance(arg, torch.fx.Node) and arg not in node_set:
module_inputs[arg] = None
for node in nodes:
pytree.tree_map(_extract_arg_if_node_outside_module, node.args)
pytree.tree_map(_extract_arg_if_node_outside_module, node.kwargs)
return list(module_inputs.keys())
def module_outputs(self) -> Sequence[torch.fx.Node]:
"""Extract module outputs from the sequence of fx nodes this instance holds.
All nodes that are used by nodes outside of the module are considered module
outputs. The order of returned module outputs is the same as the their creation order.
### Known limitations
The original ordering of module outputs is not preserved. There is no meta information
to be found from the `fx.GraphModule` that can be used to recover the original ordering.
Returns:
Sequence of module outputs.
"""
nodes = list(self.fx_nodes())
assert len(nodes) > 0, "Cannot extract module inputs from empty nodes."
# Need ordered set. Emulate with dict.
module_outputs: dict[torch.fx.Node, None] = {}
node_set: set[torch.fx.Node] = set(nodes)
for node in nodes:
if any(user not in node_set for user in node.users):
module_outputs[node] = None
return list(module_outputs.keys())
def build_module(self, module_names: dict[str, int]) -> torch.fx.GraphModule:
"""
Constructs the fx.GraphModule for this node, registering submodules as necessary.
Args:
module_names: A dictionary of module names and their counts. This is used to
generate unique module names for submodules. This should be an empty
dictionary when the method is called on a root module.
"""
module_class_name = self._stack_meta.qualified_module_class_name
fx_graph = torch.fx.Graph()
copy_env: dict[torch.fx.Node, torch.fx.Node] = {}
def _arg_transform(node: torch.fx.Node) -> torch.fx.Node:
return copy_env[node]
ref_inputs = self.module_inputs()
for node in ref_inputs:
copy_env[node] = fx_graph.placeholder(node.name, node.type)
copy_env[node].meta = copy.copy(node.meta)
for ir_node in self._nodes:
if isinstance(ir_node, _LeafNode):
fx_node = ir_node.fx_node
copy_env[fx_node] = fx_graph.node_copy(
fx_node, arg_transform=_arg_transform
)
continue
assert isinstance(ir_node, _ModuleNode)
# Create fx.GraphModule for child submodule.
submodule = ir_node.build_module(module_names)
ref_submodule_inputs = ir_node.module_inputs()
ref_submodule_outputs = ir_node.module_outputs()
unique_submodule_name = _get_unique_module_name(
module_names, ir_node.stack_meta.module_display_name
)
# Link the newly generated sub fx.GraphModule with the root reference module.
# This step is essential to meet the needs of the subsequent fx.GraphModule initialization
# for the fx.GraphModule being created by this method.
# The initialization of fx.GraphModule will replicate all necessary attributes from a reference
# fx.GraphModule for the fx.Graph. While the root reference module possesses all
# parameters and buffers, it does not include the newly created sub fx.GraphModule.
# Therefore, it's necessary to register it under the root reference at this stage.
self._reference_module.add_submodule(unique_submodule_name, submodule)
# create call_module fx.Node
submodule_node = fx_graph.call_module(
unique_submodule_name,
tuple(_arg_transform(node) for node in ref_submodule_inputs),
)
if len(ref_submodule_outputs) > 1:
# Module node has multiple output. Create 'getitem' node for each output.
submodule_node.meta["val"] = tuple(
ref_output.meta.get("val") for ref_output in ref_submodule_outputs
)
for i, ref_output in enumerate(ref_submodule_outputs):
getitem_node = fx_graph.call_function(
operator.getitem,
args=(submodule_node, i),
type_expr=ref_output.type,
)
getitem_node.meta = copy.copy(ref_output.meta)
# Make a copy for "nn_module_stack" since the current module will be
# popped from the stack for this 'getitem' node.
getitem_node.meta["nn_module_stack"] = copy.copy(
ref_output.meta["nn_module_stack"]
)
# The node is associated with the parent module.
getitem_node.meta["nn_module_stack"].popitem()
copy_env[ref_output] = getitem_node
else:
# Module node has single output. Use module node directly.
copy_env[ref_submodule_outputs[0]] = submodule_node
submodule_node.meta = copy.copy(ref_submodule_outputs[0].meta)
# Update meta for new call_module node.
if (stack_trace := ir_node.stack_trace) is not None:
submodule_node.meta["stack_trace"] = stack_trace
raw_module_stack_meta = ir_node.stack_meta.raw_meta
assert raw_module_stack_meta is not None
submodule_node.meta["nn_module_stack"] = copy.copy(raw_module_stack_meta)
# The node is associated with the parent module.
submodule_node.meta["nn_module_stack"].popitem()
new_nodes = fx_graph.nodes
# Skip if the last node is already 'output'. This is the case for root module.
# Otherwise create an 'output' node for the inferred outputs.
if next(iter(reversed(new_nodes))).op != "output":
ref_submodule_outputs = self.module_outputs()
new_outputs = [copy_env[ref_output] for ref_output in self.module_outputs()]
node = fx_graph.output(
new_outputs[0] if len(new_outputs) == 1 else new_outputs
)
graph_module = torch.fx.GraphModule(
self._reference_module, fx_graph, module_class_name
)
if (module_class := self._stack_meta.module_class) is not None:
graph_module.meta["onnx"] = _pass.GraphModuleOnnxMeta(
_pass.PackageInfo.from_python_class(module_class)
)
return graph_module
class _LeafNode(_IRNode):
"""Representing a single fx.Node."""
def __init__(self, node: torch.fx.Node, is_exported_program: bool = False):
self._node = node
self._stack_meta = _module_stack_meta_from_node(
node, is_exported_program=is_exported_program
)
@property
def fx_op(self) -> str:
"""Syntax sugar for self.fx_node.op."""
return self._node.op
@property
def fx_node(self) -> torch.fx.Node:
"""Returns the fx.Node this instance represents."""
return self._node
@property
def stack_meta(self) -> _ModuleStackMeta:
"""Returns the module stack meta data associated with this node."""
return self._stack_meta
@property
def stack_trace(self) -> str | None:
"""Returns the stack trace associated with this node."""
return self.fx_node.meta.get("stack_trace")
def __str__(self) -> str:
return f"LeafNode({self._node})"
class Modularize(_pass.Transform):
"""Transforms a flattened `fx.GraphModule` into a modular structure.
In the flattened `fx.GraphModule`, each `nn.Module` forward call has been traced as
a sequence of `fx.Node`s. All these `fx.Node`s are flattened and reside in the same
`fx.GraphModule`. `fx.GraphModule` could be from `torch.export.ExportedProgram` or
directly generated by `torch._dynamo.export` with torch.nn.Module.
This pass generates a new `fx.GraphModule`. It groups the flattened `fx.Node`s that belong
to the same `nn.Module` forward call into a sub `fx.GraphModule`. It then replaces the
sequence of flattened `fx.Node`s with a single `call_module` node, which is linked with
the sub `fx.GraphModule` by `node.target`. The sub `fx.GraphModule` is registered as a
submodule of the new `fx.GraphModule`.
The process is done based on information from the `nn_module_stack` metadata of each node, i.e.
`node.meta["nn_module_stack"]`. For more implementation details, see [NOTE: Modularize Pass Implementation].
An fx submodule under this context can typically be interpreted in three different ways:
1. As an embodiment of an nn.Module class, which is considered stateless.
Its execution path can vary depending on the configuration of module initialization,
which should also be part of the inputs.
2. As a representation of an nn.Module instance. It maintains the state initialized in the module.
The execution path can vary based on actual input data.
3. As a captured call of an nn.Module instance, where the execution path
is set.
The generality decreases along this list. Within the scope of this function, the pass
creates fx submodules according to the third interpretation.
The first interpretation is the most general case. It requires complex analysis and additional
metadata and code information to construct its general form. Consider an example nn.Module
that generates arbitrary submodules based on an initialization configuration file. It's impractical
to extract this logic for the generated fx submodule to function with arbitrary configuration.
The second interpretation demands less analysis and is sturdier than the
first. In most use cases, it's equivalent to the third. It only differs in exceptional situations
where a complex nn.Module instance is called multiple times, each with a different set of inputs
leading to a unique execution branching path.
The third interpretation is the most specific scenario. It necessitates the minimum
analysis and creates the most stable representation. The drawback is that it
generates more redundancy than the other two methods. If needed, a subsequent post-processing
pass can be applied to consolidate completely identical functions and reduce duplication.
### Known constraints
Two successive calls to the same module instance will be conflated. They are indistinguishable.
This is due to limitations of the current fx metadata "nn_module_stack".
[NOTE: Modularize pass ordering]
This pass groups fx nodes into subgraphs that reside within the `call_module` fx node.
Other fx passes (including some outside the exporter) might not recognize `call_module`.
They may assume that all nodes are flattened. Hence it is recommended to invoke this pass
as the last pre onnx export fx pass. If not for this consideration, this operation could
potentially be relocated anywhere earlier in the pipeline.
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_ONNX)
>>> import torch
>>> from torch.onnx._internal.fx import passes
>>> from torch.onnx._internal.diagnostics import infra
>>>
>>> class CustomModule(torch.nn.Module):
>>> def __init__(self) -> None:
>>> super().__init__()
>>> self.embedding = torch.nn.Embedding(10, 32)
>>> self.relu = torch.nn.ReLU()
>>>
>>> def forward(self, x):
>>> out = self.embedding(x)
>>> out = self.relu(out)
>>> return out
>>>
>>> class TestModule(torch.nn.Module):
>>> def __init__(self) -> None:
>>> super().__init__()
>>> self.layer = CustomModule()
>>> self.linear = torch.nn.Linear(32, 10)
>>>
>>> def forward(self, x):
>>> out = self.layer(x)
>>> out = self.linear(out)
>>> return out
>>>
>>> gm, _ = torch._dynamo.export(TestModule(), aten_graph=True)(
... torch.tensor([0, 1, 2])
... )
>>> gm.print_readable()
>>> gm = passes.Modularize(infra.DiagnosticContext("test_context", "1.0"), gm).run()
>>> gm.print_readable()
"""
def __init__(
self,
diagnostic_context: diagnostics.DiagnosticContext,
module: torch.fx.GraphModule,
is_exported_program: bool = False,
):
super().__init__(diagnostic_context, module)
self.module = module
self.is_exported_program = is_exported_program
def _run(self) -> torch.fx.GraphModule:
# DCE to remove unused nodes.
# If a submodule is unused, it is hard to analyze which nodes constitutes the submodule
# outputs. But since it is unused, we can just remove it.
self.module.graph.eliminate_dead_code()
reference_module = torch.fx.GraphModule(self.module, self.module.graph)
root_module_node = _ModuleNode(
reference_module,
_ModuleStackMeta(
nn_module_stack_meta=None, is_exported_program=self.is_exported_program
),
)
for fx_node in self.module.graph.nodes:
root_module_node.add_leaf_node(
_LeafNode(fx_node, is_exported_program=self.is_exported_program)
)
return root_module_node.build_module({})
|