File: io_adapter.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (661 lines) | stat: -rw-r--r-- 23,155 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
# mypy: allow-untyped-defs
from __future__ import annotations

from typing import (
    Any,
    Callable,
    Mapping,
    Protocol,
    runtime_checkable,
    Sequence,
    TYPE_CHECKING,
)

import torch
import torch.export as torch_export
from torch.utils import _pytree as pytree


if TYPE_CHECKING:
    import inspect

# TODO(bowbao): Add diagnostics for IO adapters.


@runtime_checkable
class InputAdaptStep(Protocol):
    """A protocol that defines a step in the input adapting process.

    The input adapting process is a sequence of steps that are applied to the
    PyTorch model inputs to transform them into the inputs format expected by the
    exported ONNX model. Each step takes the PyTorch model inputs as arguments and
    returns the transformed inputs.

    This serves as a base formalized construct for the transformation done to model
    input signature by any individual component in the exporter.
    """

    def apply(
        self,
        model_args: Sequence[Any],
        model_kwargs: Mapping[str, Any],
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> tuple[Sequence[Any], Mapping[str, Any]]: ...


class InputAdapter:
    """A class that adapts the PyTorch model inputs to exported ONNX model inputs format."""

    def __init__(self, steps: list[InputAdaptStep] | None = None):
        self._steps = steps or []

    def append_step(self, step: InputAdaptStep) -> None:
        """Appends a step to the input adapt steps.

        Args:
            step: The step to append.
        """
        self._steps.append(step)

    def apply(
        self,
        *model_args,
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
        **model_kwargs,
    ) -> Sequence[int | float | bool | str | torch.Tensor | torch.dtype | None]:
        """Converts the PyTorch model inputs to exported ONNX model inputs format.

        Args:
            model_args: The PyTorch model inputs.
            model: The PyTorch model.
            model_kwargs: The PyTorch model keyword inputs.
        Returns:
            A sequence of tensors converted from PyTorch model inputs.
        """
        args: Sequence[Any] = model_args
        kwargs: Mapping[str, Any] = model_kwargs
        for step in self._steps:
            args, kwargs = step.apply(args, kwargs, model=model)
        assert not kwargs
        return args


@runtime_checkable
class OutputAdaptStep(Protocol):
    """A protocol that defines a step in the output adapting process.

    The output adapting process is a sequence of steps that are applied to the
    PyTorch model outputs to transform them into the outputs format produced by the
    exported ONNX model. Each step takes the PyTorch model outputs as arguments and
    returns the transformed outputs.

    This serves as a base formalized construct for the transformation done to model
    output signature by any individual component in the exporter.
    """

    def apply(
        self,
        model_outputs: Any,
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> Any: ...


class OutputAdapter:
    """A class that adapts the PyTorch model outputs to exported ONNX model outputs format."""

    def __init__(self, steps: list[OutputAdaptStep] | None = None):
        self._steps = steps or []

    def append_step(self, step: OutputAdaptStep) -> None:
        """Appends a step to the output format steps.

        Args:
            step: The step to append.
        """
        self._steps.append(step)

    def apply(
        self,
        model_outputs: Any,
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> Sequence[torch.Tensor | int | float | bool | str]:
        """Converts the PyTorch model outputs to exported ONNX model outputs format.

        Args:
            model_outputs: The PyTorch model outputs.
            model: The PyTorch model.

        Returns:
            PyTorch model outputs in exported ONNX model outputs format.
        """
        for step in self._steps:
            model_outputs = step.apply(model_outputs, model=model)
        return model_outputs


# TODO: make_fx lose stack info https://github.com/pytorch/pytorch/issues/90276


# TODO(XuehaiPan): Dynamo does not support `dummy_leaf = object()` as a sentinel value in the frame.
class _DummyLeaf:  # use a class instead.
    pass


def _replace_list_with_tuple(spec: pytree.TreeSpec) -> pytree.TreeSpec:
    def replace_list_with_tuple(x: Any) -> Any:
        if type(x) is list:
            return pytree.tree_map(
                replace_list_with_tuple,
                tuple(x),
                is_leaf=lambda x: type(x) is list,
            )
        return x

    dummy_leaf = _DummyLeaf()
    dummy_tree = pytree.tree_unflatten([dummy_leaf] * spec.num_leaves, spec)
    dummy_tree = pytree.tree_map(
        replace_list_with_tuple,
        dummy_tree,
        is_leaf=lambda x: type(x) is list,
    )
    return pytree.tree_structure(dummy_tree)


def _open_top_level_sequence_if_single_element(
    spec: pytree.TreeSpec,
) -> pytree.TreeSpec:
    if spec.type in (tuple, list) and spec.num_children == 1:
        return spec.children_specs[0]
    return spec


def _assert_identical_pytree_spec(
    spec1: pytree.TreeSpec, spec2: pytree.TreeSpec, error_message: str
) -> None:
    """Assert the two `TreeSpec` objects are identical.

    Args:
        spec1: The first `TreeSpec` object.
        spec2: The second `TreeSpec` object.
        error_message: The error message to raise if the two `TreeSpec` objects are not
            identical.

    Raises:
        ValueError: If the two `TreeSpec` objects are not identical.
    """
    # TODO(bowbao): Turn this check into diagnostic. Consider warning instead of error.
    pass_if_any_checks: Sequence[Callable[[], bool]] = [
        lambda: spec1 == spec2,
        # FIXME: Bug in `dynamo.export`. Sometimes outputs returned in 'list' instead of 'tuple'.
        lambda: _replace_list_with_tuple(spec1) == _replace_list_with_tuple(spec2),
        # FIXME: Bug in `dynamo.export`. Sometimes single function return is wrapped in list.
        lambda: _open_top_level_sequence_if_single_element(spec1) == spec2,
        lambda: spec1 == _open_top_level_sequence_if_single_element(spec2),
    ]

    if not any(check() for check in pass_if_any_checks):
        raise ValueError(f"{error_message}\nExpect {spec1}.\nActual {spec2}.")


class BindInputStep(InputAdaptStep):
    """Bind the input arguments to the model signature."""

    def __init__(self, model_signature: inspect.Signature):
        self._model_signature = model_signature

    def apply(
        self,
        model_args: Sequence[Any],
        model_kwargs: Mapping[str, Any],
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> tuple[Sequence[Any], Mapping[str, Any]]:
        """Bind the input arguments to the model signature.

        We hope the input kwargs will be mapped to bound.args after binding.
        If not, we will raise an error.

        Args:
            model_args: The model args.
            model_kwargs: The model kwargs.
            model: The PyTorch model.

        Returns:
            A tuple of the model args and kwargs. args is always empty.

        Raises:
            ValueError: If there are keyword-only arguments left after binding args and
                kwargs to model signature.
        """
        bound = self._model_signature.bind(*model_args, **model_kwargs)
        bound.apply_defaults()

        # keyword-only arguments are not handled.
        # bound.kwargs only contains keyword-only arguments after calling
        # bind & apply_defaults, so we raise if it's not empty.
        if bound.kwargs:
            raise ValueError("Keyword-only arguments are not supported.")
        return (), bound.arguments


class MergeKwargsIntoArgsInputStep(InputAdaptStep):
    """Merge the input kwargs into the input args."""

    def apply(
        self,
        model_args: Sequence[Any],
        model_kwargs: Mapping[str, Any],
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> tuple[Sequence[Any], Mapping[str, Any]]:
        """Merge the input kwargs into the input args.

        Args:
            model_args: The model args.
            model_kwargs: The model kwargs.
            model: The PyTorch model.

        Returns:
            A tuple of the model args and kwargs. kwargs is always empty.
        """
        return tuple(model_args) + tuple(model_kwargs.values()), {}


class LiftParametersAndBuffersIntoArgsInputStep(InputAdaptStep):
    """Append parameters and buffers to model's positional argument list."""

    def __init__(self, inputs: tuple[torch.Tensor, ...]) -> None:
        self.inputs = inputs

    def apply(
        self,
        model_args: Sequence[Any],
        model_kwargs: Mapping[str, Any],
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> tuple[Sequence[Any], Mapping[str, Any]]:
        """Append model's parameters and buffers into its input.

        Args:
            model_args: The model args.
            model_kwargs: The model kwargs.
            model: The PyTorch model.

        Returns:
            A tuple of the model args + appended inputs and kwargs.
        """
        return (*model_args, *self.inputs), model_kwargs


class ConvertComplexToRealRepresentationInputStep(InputAdaptStep):
    """Convert complex dtype tensors to real representation tensors.

    ONNX does not support complex dtype tensors. Thus, we convert complex dtype tensors
    to real representation tensors (i.e., float dtype tensors with an extra dimension
    representing the real and imaginary parts of the complex number).

    """

    def apply(
        self,
        model_args: Sequence[Any],
        model_kwargs: Mapping[str, Any],
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> tuple[Sequence[Any], Mapping[str, Any]]:
        """Convert complex tensors to float tensors.

        Args:
            model_args: The model args.
            model_kwargs: The model kwargs.
            model: The PyTorch model.

        Returns:
            A tuple of the model args and kwargs.
        """
        return (
            tuple(
                torch.view_as_real(arg.resolve_conj())
                if isinstance(arg, torch.Tensor) and arg.is_complex()
                else arg
                for arg in model_args
            ),
            model_kwargs,
        )


class RemoveNoneInputStep(InputAdaptStep):
    """Remove `None` from arguments.

    This adapt step assumes ``model_kwargs`` is empty. It also assumes ``model_args``
    is flattened, i.e. it does not check `None` inside nested collections.
    """

    def apply(
        self,
        model_args: Sequence[Any],
        model_kwargs: Mapping[str, Any],
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> tuple[Sequence[Any], Mapping[str, Any]]:
        """Remove `None` from arguments.

        Args:
            model_args: The model args.
            model_kwargs: The model kwargs.
            model: The PyTorch model.

        Returns:
            A tuple of the model args and kwargs.

        Raises:
            ValueError: If `model_kwargs` is not empty.
        """
        assert not model_kwargs
        return tuple(arg for arg in model_args if arg is not None), {}


class RemoveNonTensorInputStep(InputAdaptStep):
    """Remove the non-tensor input arguments.

    Dynamo does not support non-tensor input arguments (https://github.com/pytorch/pytorch/issues/99534).

    Specifically, it does put the input into graph with an empty node, but consumed by no ones.
    The concrete value is embedded into the graph as a constant arg of a target node. Meta
    suggests in this case that one should rewrite the model code to make it tensor if the
    input value is supposed to change at runtime. We might need to further investigate
    the feasibility of that suggestion.

    For example,

        def func(x, b=1.0):
            y = x + b
            z = y.relu()
            return (y, z)

        x = torch.randn(1, 1, 2, dtype=torch.float32)
        gm_fun, _ = dynamo.export(func, x, b=8.0, aten_graph=True, tracing_mode="real")

        # class GraphModule(torch.nn.Module):
        #     def forward(self, x, b):
        #         arg0: f32[1, 1, 2], arg1, = fx_pytree.tree_flatten_spec(([x, b], {}), self._in_spec)
        #         # File: path/to/pytorch/test_constant_input.py:5, code: y = x + b
        #         add_tensor: f32[1, 1, 2] = torch.ops.aten.add.Tensor(arg0, 8.0);  arg0 = None

        #         # File: path/to/pytorch/test_constant_input.py:6, code: z = y.relu()
        #         relu_default: f32[1, 1, 2] = torch.ops.aten.relu.default(add_tensor)
        #         return pytree.tree_unflatten([add_tensor, relu_default], self._out_spec)

    Empty torch.fx.Node input leading to a mismatched number of input with PyTorch, as
    it's ignored in ONNX graph. Thus, we delete the useless input here.

    """

    def apply(
        self,
        model_args: Sequence[Any],
        model_kwargs: Mapping[str, Any],
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> tuple[Sequence[Any], Mapping[str, Any]]:
        """Remove Constant from arguments.

        Args:
            model_args: The model args.
            model_kwargs: The model kwargs.
            model: The PyTorch model.

        Returns:
            A tuple of the model args and kwargs.

        Raises:
            ValueError: If `model_kwargs` is not empty.
        """
        assert not model_kwargs
        return (
            tuple(
                arg
                for arg in model_args
                if not isinstance(arg, (int, float, bool, str))
            ),
            {},
        )


class FlattenInputWithTreeSpecValidationInputStep(InputAdaptStep):
    """Flatten nested collection types and return a flat list of elements.

    ONNX can't represent collection types (e.g., dictionary, tuple of tuple of tensor,
    etc).

    This class stores the `SpecTree` output produced when `adapt` was called the first
    time. It then validates the `SpecTree` output produced from later `adapt` calls.
    """

    _spec: pytree.TreeSpec | None = None

    def apply(
        self,
        model_args: Sequence[Any],
        model_kwargs: Mapping[str, Any],
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> tuple[Sequence[Any], Mapping[str, Any]]:
        """Flatten the model args and kwargs and validate the `SpecTree` output.

        Args:
            model_args: The model args.
            model_kwargs: The model kwargs.
            model: The PyTorch model.

        Returns:
            A tuple of the flattened model args and kwargs. The kwargs is empty, because
            they are flattened and merged into the args.

        Raises:
            ValueError: If the `SpecTree` output produced from the current `model_outputs`
                is not identical to the `SpecTree` output produced from the first
                `model_outputs` that was passed to this method.
        """
        flattened_args, spec = pytree.tree_flatten((model_args, model_kwargs))
        if self._spec is None:
            self._spec = spec
        else:
            _assert_identical_pytree_spec(
                self._spec,
                spec,
                error_message="Model inputs incompatible with the format that was exported. ",
            )
        return flattened_args, {}


class FlattenOutputStep(OutputAdaptStep):
    """Flatten nested collection types and return a flat list of elements.

    ONNX can't represent collection types (e.g., dictionary, tuple of tuple of tensor,
    etc).

    NOTE: Ideally we would want to use ``FlattenOutputWithTreeSpecValidationOutputStep``, such
    that `SpecTree` can be validate for new model outputs. However, this is not possible
    currently because we never have access to real PyTorch model outputs during export.
    Only traced outputs may be available, but they are not an accurate reflection of the
    original PyTorch model outputs format as they are typically in their own unique format,
    depending on the tracing strategy.
    """

    def apply(
        self,
        model_outputs: Any,
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> Sequence[Any]:
        """Flatten the model outputs.

        Args:
            model_outputs: The model outputs to flatten.
            model: The PyTorch model.

        Returns:
            A tuple of the flattened model outputs.
        """
        return pytree.tree_leaves(model_outputs)


class ConvertComplexToRealRepresentationOutputStep(OutputAdaptStep):
    """Convert complex dtype tensors to real representation tensors.

    ONNX does not support complex dtype tensors. Thus, we convert complex dtype tensors
    to real representation tensors (i.e., float dtype tensors with an extra dimension
    representing the real and imaginary parts of the complex number).

    """

    def apply(
        self,
        model_outputs: Any,
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> Any:
        """Convert float tensors to complex tensors.

        Args:
            model_output: The model output.
            model: The PyTorch model.

        Returns:
            A tuple of the model output.
        """
        return [
            torch.view_as_real(output.resolve_conj())
            if isinstance(output, torch.Tensor) and torch.is_complex(output)
            else output
            for output in model_outputs
        ]


class FlattenOutputWithTreeSpecValidationOutputStep(OutputAdaptStep):
    """Same as ``FlattenOutputStep``, with additional `TreeSpec` validation.

    This class stores the `SpecTree` output produced when `adapt` was called the first
    time. It then validates the `SpecTree` output produced from later `adapt` calls.
    """

    _spec: pytree.TreeSpec | None = None

    def apply(
        self,
        model_outputs: Any,
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> Sequence[Any]:
        """Flatten the model outputs and validate the `SpecTree` output.

        Args:
            model_outputs: The model outputs to flatten.
            model: The PyTorch model.

        Returns:
            flattened_outputs: The flattened model outputs.

        Raises:
            ValueError: If the `SpecTree` output produced from the current `model_outputs`
                is not identical to the `SpecTree` output produced from the first
                `model_outputs` that was passed to this method.
        """
        flattened_outputs, spec = pytree.tree_flatten(model_outputs)
        if self._spec is None:
            self._spec = spec
        else:
            _assert_identical_pytree_spec(
                self._spec,
                spec,
                error_message="Model outputs incompatible with the format that was exported. ",
            )
        return flattened_outputs


class PrependParamsBuffersConstantAotAutogradInputStep(InputAdaptStep):
    """Prepend model parameters, buffers and constants to the user input.

    :func:`torch.export.export` lifts model parameters, buffers and constants as model input, thus, they
    must be added to the user input before the model is executed.

    Args:
        model: The PyTorch model with embedded parameters and buffers.
    """

    def apply(
        self,
        model_args: Sequence[Any],
        model_kwargs: Mapping[str, Any],
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> tuple[Sequence[Any], Mapping[str, Any]]:
        """Convert complex tensors to float tensors.

        Args:
            model_args: The model args.
            model_kwargs: The model kwargs.
            model: The PyTorch model.

        Returns:
            A tuple of the model args and kwargs.
        """
        ordered_params = tuple(
            model.state_dict[name]  # type: ignore[union-attr,index]
            for name in model.graph_signature.parameters  # type: ignore[union-attr]
        )
        non_persistent_buffers = set(model.graph_signature.non_persistent_buffers)  # type: ignore[arg-type, union-attr]
        ordered_buffers = []
        for name in model.graph_signature.buffers:  # type: ignore[union-attr]
            if name in non_persistent_buffers:
                ordered_buffers.append(model.constants[name])  # type: ignore[index, union-attr]
            else:
                ordered_buffers.append(model.state_dict[name])  # type: ignore[union-attr,index]
        ordered_constant_tensors = tuple(
            model.constants[fqn]  # type: ignore[union-attr,index]
            for fqn in model.graph_signature.lifted_tensor_constants  # type: ignore[union-attr]
        )

        # NOTE: calling convention is first params, then buffers, then args as user supplied them.
        # See: torch/_functorch/aot_autograd.py#L1034
        updated_args = (
            *ordered_params,
            *ordered_buffers,
            *ordered_constant_tensors,
            *model_args,
        )
        if model_kwargs:
            return MergeKwargsIntoArgsInputStep().apply(
                updated_args, model_kwargs, model=model
            )
        return updated_args, {}


class PrependParamsAndBuffersAotAutogradOutputStep(OutputAdaptStep):
    """Prepend model's mutated buffers to the user output.

    :func:`torch.export.export` lifts model's mutated buffers as outputs, thus, they
    must be added to the user output after the model is executed.

    Args:
        model: The PyTorch model with mutated buffers.
    """

    def apply(
        self,
        model_outputs: Any,
        model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None,
    ) -> Sequence[Any]:
        """Flatten the model outputs and validate the `SpecTree` output.

        Args:
            model_outputs: The model outputs to flatten.
            model: The PyTorch model.

        Returns:
            flattened_outputs: The flattened model outputs.
        """

        assert isinstance(
            model, torch_export.ExportedProgram
        ), "'model' must be torch_export.ExportedProgram"
        ordered_buffers = tuple(
            model.state_dict[name]
            if name in model.state_dict
            else model.constants[name]
            for name in model.graph_signature.buffers_to_mutate.values()
        )

        # NOTE: calling convention is first mutated buffers, then outputs args as model returned them.
        updated_outputs = (*ordered_buffers, *model_outputs)
        return updated_outputs