1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
|
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
from typing import cast, Dict, List, Optional, Tuple, TYPE_CHECKING, Union
import torch
from torch import Tensor
from .optimizer import (
_disable_dynamo_if_unsupported,
_get_scalar_dtype,
_maximize_doc,
_params_doc,
Optimizer,
ParamsT,
TensorListList,
)
__all__ = ["Adafactor", "adafactor"]
class Adafactor(Optimizer):
def __init__(
self,
params: ParamsT,
lr: Union[float, Tensor] = 1e-2,
beta2_decay: float = -0.8,
eps: Tuple[Optional[float], float] = (None, 1e-3),
d: float = 1.0,
weight_decay: float = 0.0,
*,
foreach: Optional[bool] = None,
maximize: bool = False,
):
if isinstance(lr, Tensor) and lr.numel() != 1:
raise ValueError("Tensor lr must be 1-element")
if not 0.0 <= lr:
raise ValueError(f"Learning rate should be >= 0 but is: {lr}")
if not 0.0 >= beta2_decay:
raise ValueError(f"beta2_decay should be <= 0 but is: {beta2_decay}")
if eps[0] is not None and not 0.0 <= eps[0]:
raise ValueError(f"epsilon1 should be >= 0 but is: {eps[0]}")
if not 0.0 <= eps[1]:
raise ValueError(f"epsilon2 should be >= 0 but is: {eps[1]}")
if not 1.0 <= d:
raise ValueError(f"Clipping threshold d should be >= 1 but is: {d}")
if not 0.0 <= weight_decay:
raise ValueError(f"weight_decay should be >= 0 but is: {weight_decay}")
defaults = dict(
lr=lr,
beta2_decay=beta2_decay,
eps=eps,
d=d,
weight_decay=weight_decay,
foreach=foreach,
maximize=maximize,
)
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("foreach", None)
for p in group["params"]:
p_state = self.state.get(p, [])
if len(p_state) != 0 and not torch.is_tensor(p_state["step"]):
step_val = float(p_state["step"])
p_state["step"] = torch.tensor(step_val, dtype=_get_scalar_dtype())
def _init_group(
self,
group,
params_with_grad,
grads,
row_vars,
col_vars,
variances,
state_steps,
):
for p in group["params"]:
if p.grad is None:
continue
if torch.is_complex(p):
raise RuntimeError("Adafactor does not support complex parameters")
if p.grad.is_sparse:
raise RuntimeError("Adafactor does not support sparse gradients")
params_with_grad.append(p)
grads.append(p.grad)
state = self.state[p]
# State initialization
if len(state) == 0:
# note(crcrpar): Deliberately host `step` on CPU if both capturable and fused are off.
# This is because kernel launches are costly on CUDA and XLA.
state["step"] = torch.tensor(0.0, dtype=_get_scalar_dtype())
if p.grad.dim() > 1:
row_shape = list(p.grad.shape)
row_shape[-1] = 1
# Row factor of variance, NOT the same shape as grads (will be reduced along last dim)
state["row_var"] = p.grad.new_zeros(row_shape)
col_shape = list(p.grad.shape)
col_shape[-2] = 1
# Col factor of variance, NOT the same shape as grads (will be reduced along penultimate dim)
state["col_var"] = p.grad.new_zeros(col_shape)
else:
state["variance"] = torch.zeros_like(
p.grad, memory_format=torch.preserve_format
)
row_vars.append(state.get("row_var", None))
col_vars.append(state.get("col_var", None))
variances.append(state.get("variance", None))
state_steps.append(state["step"])
return False # has_complex
@torch.no_grad()
def step(self, closure=None):
r"""Perform a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
self._cuda_graph_capture_health_check()
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad: List[Tensor] = []
grads: List[Tensor] = []
row_vars: List[Optional[Tensor]] = []
col_vars: List[Optional[Tensor]] = []
variances: List[Optional[Tensor]] = []
state_steps: List[Tensor] = []
eps1, eps2 = group["eps"]
has_complex = self._init_group(
group,
params_with_grad,
grads,
row_vars,
col_vars,
variances,
state_steps,
)
adafactor(
params_with_grad,
grads,
row_vars,
col_vars,
variances,
state_steps,
d=group["d"],
lr=group["lr"],
beta2_decay=group["beta2_decay"],
weight_decay=group["weight_decay"],
eps1=eps1,
eps2=eps2,
foreach=group["foreach"],
maximize=group["maximize"],
grad_scale=getattr(self, "grad_scale", None),
found_inf=getattr(self, "found_inf", None),
has_complex=has_complex,
)
return loss
Adafactor.__doc__ = (
r"""Implements Adafactor algorithm.
.. math::
\begin{aligned}
&\rule{110mm}{0.4pt} \\
&\textbf{input} : \gamma \text{(lr)}, \: \tau
\text{(}\beta_2\text{ decay)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)}, \\
&\hspace{15mm} \: \epsilon_1, \epsilon_2 \text{ (epsilons)}, \: d \text{(clipping threshold)}, \\
&\hspace{15mm} \: \lambda \text{(weight decay)},
\: \textit{maximize} \\
&\textbf{initialize} : \: R_0 \leftarrow 0 \text{ (second moment row factor)}, \\
&\hspace{23mm} \: C_0 \leftarrow 0 \text{ (second moment col factor)}, \\
&\hspace{23mm} \: \widehat{V}_0 \leftarrow 0 \text{ (second moment for vectors)} \\[-1.ex]
&\rule{110mm}{0.4pt} \\
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
&\hspace{5mm}\textbf{if} \: \textit{maximize}: \\
&\hspace{10mm}G_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{5mm}\textbf{else} \\
&\hspace{10mm}G_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{5mm}\widehat{\beta}_{2_t} \leftarrow 1 - t^{\tau} \\
&\hspace{5mm}\rho_t \leftarrow min(lr, \frac{1}{\sqrt{t}}) \\
&\hspace{5mm}\alpha_t \leftarrow max(\epsilon_2,
\text{RMS}(\theta_{t-1}))\rho_t \\
&\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\
&\hspace{5mm}\textbf{if} \: \text{dim}(G_t) > 1: \\
&\hspace{10mm}R_t \leftarrow \widehat{\beta}_{2_t}R_{t-1}+
(1-\widehat{\beta}_{2_t})(G_t \odot G_t) \cdot 1_m \\
&\hspace{10mm}C_t \leftarrow \widehat{\beta}_{2_t}C_{t-1}+
(1-\widehat{\beta}_{2_t}) 1^\top_n \cdot (G_t \odot G_t) \\
&\hspace{10mm}\widehat{V}_t \leftarrow
\frac{R_t \cdot C_t}{max(1^\top_n \cdot R_t, \epsilon_1)} \\
&\hspace{5mm}\textbf{else} \\
&\hspace{10mm}\widehat{V}_t \leftarrow \widehat{\beta}_{2_t}\widehat{V}_{t-1}+
(1-\widehat{\beta}_{2_t}) \cdot (G_t \odot G_t) \\
&\hspace{5mm}U_t \leftarrow
\frac{G_t}{max(\sqrt{\widehat{V}_t}, \epsilon_1)} \\
&\hspace{5mm}\widehat{U}_t \leftarrow \frac{U_t}{max(1, \frac{\text{RMS}(U_t)}{d})} \\
&\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \alpha_t \widehat{U}_t \\
&\rule{110mm}{0.4pt} \\[-1.ex]
&\bf{return} \: \theta_t \\[-1.ex]
&\rule{110mm}{0.4pt} \\[-1.ex]
\end{aligned}
For further details regarding the algorithm we refer to `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost`_.
"""
+ rf"""
Args:
{_params_doc}
lr (float, Tensor, optional): unlike other optimizers, Adafactor does not require a
learning rate, and Shazeer, Noam, and Mitchell Stern do not use lr at all.
Deviating from the paper, this implementation uses lr for applying weight
decay and as the maximum value for relative step size rho_t. Note that in
the paper, a constant of 0.01 is used as the maximum value for relative
step size, and so we set 0.01 as the default value. (default: 1e-2)
beta2_decay (float, optional): the decay rate of beta2. beta2 standardly refers
to the coefficient used for computing the running average of the gradient
squared. (default: -0.8)
eps (Tuple[float, float], optional): epsilon1 is the term added to the denominator
of the update calculation to improve numerical stability. This use of epsilon1
deviates from the algorithm written in the paper! See note below for more details.
epsilon2 is the term used to avoid having too small a weight update when applying
parameter scaling. (default: (None, 1e-3))
d (float, optional): the clipping threshold, used to avoid larger-than-desired
updates.
weight_decay (float, optional): weight decay coefficient (default: 1e-2)
foreach (bool, optional): whether foreach implementation of optimizer is used. Note
that the foreach implementation uses ~ sizeof(params) more peak memory than the
for-loop version due to the intermediates being a tensorlist vs just one tensor.
As Adafactor is commonly used when memory is prohibitive, Adafactor will default
to the slower single tensor for-loop implementation unless this flag is explicitly
True. This behavior is contrary to other optimizers, which will attempt defaulting
to foreach on CUDA for faster runtime. (default: None)
{_maximize_doc}"""
+ r"""
.. Note::
The implementation of Adafactor subtly differs from Shazeer, Noam, and Mitchell Stern
and implementations in some other frameworks with its use of learning rate and
:math:`\epsilon_1`.
Regarding the learning rate hyperparameter: Shazeer, Noam, and Mitchell Stern do not
use lr at all, as the stated algorithm uses :math:`\rho_t` and update clipping to
affect the step size.
This implementation allows `lr` to influence the maximum value for :math:`\rho_t`:
.. math::
\begin{aligned}
&\hspace{5mm}\rho_t \leftarrow min(lr, \frac{1}{\sqrt{t}})
\end{aligned}
This differs from Shazeer, Noam, and Mitchell Stern, who use a constant of 0.01 as
the maximum value of :math:`\rho_t`
.. math::
\begin{aligned}
&\hspace{5mm}\rho_t \leftarrow min(0.01, \frac{1}{\sqrt{t}})
\end{aligned}
Shazeer, Noam, and Mitchell Stern do not enforce an opinion on how weight decay should
be computed, and so we use the learning rate as a coefficient for decoupled weight
decay, similar to what is suggested in `Decoupled Weight Decay Regularization`_.
Regarding the use of :math:`\epsilon_1`: The implementation attempts to replicate the
presumed intention of Shazeer, Noam, and Mitchell Stern to use :math:`\epsilon_1` as
a stabilizing term when the squared gradient becomes small.
This stabilization can be written as
.. math::
\begin{aligned}
&\hspace{5mm}R_t \leftarrow \widehat{\beta}_{2_t}R_{t-1}+
(1-\widehat{\beta}_{2_t})(G_t \odot G_t + 1_n \cdot 1^\top_m) \cdot 1_m \\
&\hspace{5mm}C_t \leftarrow \widehat{\beta}_{2_t}C_{t-1}+
(1-\widehat{\beta}_{2_t}) 1^\top_n \cdot (G_t \odot G_t + 1_n \cdot 1^\top_m) \\
&\hspace{5mm}\widehat{V}_t \leftarrow
\frac{R_t \cdot C_t}{max(1^\top_n \cdot R_t, \epsilon_1)} \\
&\hspace{5mm}U_t \leftarrow \frac{G_t}{max(\sqrt{\widehat{V}_t}, \epsilon_1)} \\
\end{aligned}
where the row and column factors of gradient squared :math:`R_t` and :math:`C_t`
are left alone, and we apply :math:`\epsilon_1` at the final calculation of
the variance estimate :math:`\widehat{V}_t` and for the update :math:`U_t`.
This is in contrast to Shazeer, Noam, and Mitchell Stern and other frameworks which
apply :math:`\epsilon_1` to both row and column factors of the squared gradient, but
not in the calculations after:
.. math::
\begin{aligned}
&\hspace{5mm}R_t \leftarrow \widehat{\beta}_{2_t}R_{t-1}+
(1-\widehat{\beta}_{2_t})(G_t \odot G_t + \epsilon_1 1_n \cdot 1^\top_m) \cdot 1_m \\
&\hspace{5mm}C_t \leftarrow \widehat{\beta}_{2_t}C_{t-1}+
(1-\widehat{\beta}_{2_t}) 1^\top_n \cdot (G_t \odot G_t + \epsilon_1 1_n \cdot 1^\top_m) \\
&\hspace{5mm}\widehat{V}_t \leftarrow \frac{R_t \cdot C_t}{1^\top_n \cdot R_t} \\
&\hspace{5mm}U_t \leftarrow \frac{G_t}{\sqrt{\widehat{V}_t}} \\
\end{aligned}
.. _Adafactor\: Adaptive Learning Rates with Sublinear Memory Cost:
https://arxiv.org/pdf/1804.04235
.. _Decoupled Weight Decay Regularization:
https://arxiv.org/abs/1711.05101
"""
)
def _single_tensor_adafactor(
params: List[Tensor],
grads: List[Tensor],
# If grad is 1-dimensional (aka a vector), there is no factorization necessary
# so row_var and col_var will be None while variance will be filled.
# Contrarily, for a grad with multiple dimensions, we will factor along the last
# 2 dimensions, and so row_var and col_var will be filled and variance will be None.
row_vars: List[Optional[Tensor]],
col_vars: List[Optional[Tensor]],
variances: List[Optional[Tensor]],
state_steps: List[Tensor],
grad_scale: Optional[Tensor],
found_inf: Optional[Tensor],
*,
d: float,
lr: Union[Tensor, float],
beta2_decay: float,
weight_decay: float,
eps1: Optional[float],
eps2: float,
maximize: bool,
has_complex: bool,
):
assert (
grad_scale is None and found_inf is None
), "Grad scaling should occur outside of optimizer.step()"
if torch.jit.is_scripting():
# this assert is due to JIT being dumb and not realizing that the ops below
# have overloads to handle both float and Tensor lrs, so we just assert it's
# a float since most people using JIT are using floats
assert isinstance(lr, float)
for i, param in enumerate(params):
grad = grads[i] if not maximize else -grads[i]
step_t = state_steps[i]
row_var = row_vars[i]
col_var = col_vars[i]
variance = variances[i]
if eps1 is None:
eps1 = torch.finfo(param.dtype).eps
# update step
step_t += 1
step_float = step_t.item()
one_minus_beta2_t = step_float**beta2_decay
rho_t = min(lr, 1 / (step_float**0.5))
alpha = max(eps2, param.norm(2).item() / (param.numel() ** 0.5)) * rho_t
# Perform stepweight decay
if weight_decay != 0:
param.mul_(1 - lr * weight_decay)
if grad.dim() > 1:
assert (
row_var is not None and col_var is not None
), "row_var and col_var should be defined when grad is multidimensional"
# same as (g * g).mean(dim=-1) w/o materializing an intermediate size g
row_mean = (
torch.norm(grad, dim=-1, keepdim=True).square_().div_(grad.size(-1))
)
row_var.lerp_(row_mean, one_minus_beta2_t)
# same as (g * g).mean(dim=-2) w/o materializing an intermediate size g
col_mean = (
torch.norm(grad, dim=-2, keepdim=True).square_().div_(grad.size(-2))
)
col_var.lerp_(col_mean, one_minus_beta2_t)
var_estimate = row_var @ col_var
var_estimate.div_(row_var.mean(dim=-2, keepdim=True).clamp_(min=eps1))
else:
assert (
variance is not None
), "variance should be defined when grad is a vector"
grad_squared = grad * grad
variance.lerp_(grad_squared, one_minus_beta2_t)
# avoid writing into variance during update
var_estimate = variance.clone()
# square the eps1 as we sqrt after to keep eps1's magnitude
update = var_estimate.clamp_(min=eps1 * eps1).rsqrt_()
update.mul_(grad)
denom = max(1.0, update.norm(2).item() / ((update.numel() ** 0.5) * d))
param.add_(update, alpha=-alpha / denom)
def _group_tensors_by_device_dtype_and_is_multidim(
tensorlists: TensorListList,
) -> Dict[
Tuple[Optional[torch.device], Optional[torch.dtype], bool],
List[List[Optional[Tensor]]],
]:
"""Groups tensors by device, dtype, AND multidimensionality -- whether the tensor
has multiple dims or just one dim (is a vector). This allows the foreach impl of
Adafactor to assume that every group of params will either be factored or not."""
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(tensorlists)
ultra_grouped_tensors: Dict[
Tuple[Optional[torch.device], Optional[torch.dtype], bool],
List[List[Optional[Tensor]]],
] = {}
for (device, dtype), (tensorlists, _) in grouped_tensors.items():
matrix_key = (device, dtype, True)
vector_key = (device, dtype, False)
# assumes grad is the second tensorlist
for j, tensor in enumerate(tensorlists[1]):
assert tensor is not None, "grad should not be None"
if tensor.dim() > 1:
if matrix_key not in ultra_grouped_tensors:
ultra_grouped_tensors[matrix_key] = [[] for _ in tensorlists]
for i in range(len(tensorlists)):
ultra_grouped_tensors[matrix_key][i].append(tensorlists[i][j])
else:
if vector_key not in ultra_grouped_tensors:
ultra_grouped_tensors[vector_key] = [[] for _ in tensorlists]
for i in range(len(tensorlists)):
ultra_grouped_tensors[vector_key][i].append(tensorlists[i][j])
return ultra_grouped_tensors
def _multi_tensor_adafactor(
params: List[Tensor],
grads: List[Tensor],
# If grad is 1-dimensional (aka a vector), there is no factorization necessary
# so row_var and col_var will be None while variance will be filled.
# Contrarily, for a grad with multiple dimensions, we will factor along the last
# 2 dimensions, and so row_var and col_var will be filled and variance will be None.
row_vars: List[Optional[Tensor]],
col_vars: List[Optional[Tensor]],
variances: List[Optional[Tensor]],
state_steps: List[Tensor],
grad_scale: Optional[Tensor],
found_inf: Optional[Tensor],
*,
d: float,
lr: Union[Tensor, float],
beta2_decay: float,
weight_decay: float,
eps1: Optional[float],
eps2: float,
maximize: bool,
has_complex: bool,
):
if len(params) == 0:
return
assert (
grad_scale is None and found_inf is None
), "Grad scaling should occur outside of optimizer.step()"
grouped_tensors = _group_tensors_by_device_dtype_and_is_multidim(
[params, grads, row_vars, col_vars, variances, state_steps] # type: ignore[list-item]
)
for (_, dtype, is_multidim), (
(
device_params_,
device_grads_,
device_row_vars_,
device_col_vars_,
device_variances_,
device_state_steps_,
)
) in grouped_tensors.items():
device_params = cast(List[Tensor], device_params_)
device_grads = cast(List[Tensor], device_grads_)
device_state_steps = cast(List[Tensor], device_state_steps_)
if eps1 is None:
assert (
dtype is not None
), "dtype is needed to compute eps1 when eps1 is unset"
eps1 = torch.finfo(dtype).eps
if TYPE_CHECKING:
assert device_state_steps[0] is not None
if maximize:
device_grads = torch._foreach_neg(device_grads) # type: ignore[assignment]
# Update steps
# If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
# and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
# wrapped it once now. The alpha is required to assure we go to the right overload.
if not torch.compiler.is_compiling() and device_state_steps[0].is_cpu:
torch._foreach_add_(
device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0
)
else:
torch._foreach_add_(device_state_steps, 1.0)
one_minus_beta2_ts = []
beta2_ts = []
rho_ts = []
for s in device_state_steps:
one_minus_beta2_ts.append(s.item() ** beta2_decay)
beta2_ts.append(1 - s.item() ** beta2_decay)
rho_ts.append(min(lr, 1 / (s.item() ** 0.5)))
alphas = [
max(eps2, p.norm(2).item() / (p.numel() ** 0.5)) * r
for p, r in zip(device_params, rho_ts)
]
# Perform stepweight decay
if weight_decay != 0:
torch._foreach_mul_(device_params, 1 - lr * weight_decay)
if is_multidim:
device_row_vars = cast(List[Tensor], device_row_vars_)
device_col_vars = cast(List[Tensor], device_col_vars_)
assert (
device_row_vars[0] is not None and device_col_vars[0] is not None
), "row_var and col_var should be defined when grad is multidimensional"
# same as (g * g).mean(dim=-1) w/o materializing an intermediate size g
row_means = [
torch.norm(grad, dim=-1, keepdim=True) for grad in device_grads
]
torch._foreach_mul_(row_means, row_means)
torch._foreach_div_(row_means, [grad.size(-1) for grad in device_grads])
torch._foreach_lerp_(device_row_vars, row_means, one_minus_beta2_ts)
del row_means
# same as (g * g).mean(dim=-2) w/o materializing an intermediate size g
col_means = [
torch.norm(grad, dim=-2, keepdim=True) for grad in device_grads
]
torch._foreach_mul_(col_means, col_means)
torch._foreach_div_(col_means, [grad.size(-2) for grad in device_grads])
torch._foreach_lerp_(device_col_vars, col_means, one_minus_beta2_ts)
del col_means
var_estimates = [
row_var @ col_var
for row_var, col_var in zip(device_row_vars, device_col_vars)
]
row_var_means = [
row_var.mean(dim=-2, keepdim=True) for row_var in device_row_vars
]
torch._foreach_clamp_min_(row_var_means, eps1)
torch._foreach_div_(var_estimates, row_var_means)
del row_var_means
else:
device_variances = cast(List[Tensor], device_variances_)
assert (
device_variances[0] is not None
), "variance should be defined when grad is a vector"
grads_squared = torch._foreach_mul(device_grads, device_grads)
torch._foreach_lerp_(device_variances, grads_squared, one_minus_beta2_ts)
del grads_squared
# avoid writing into variance during update
var_estimates = [v.clone() for v in device_variances]
# square the eps1 as we sqrt after to keep eps1's magnitude
torch._foreach_clamp_min_(var_estimates, eps1 * eps1)
torch._foreach_rsqrt_(var_estimates)
torch._foreach_mul_(var_estimates, device_grads)
updates = var_estimates
alphas = [
-a / (max(1.0, update.norm(2).item() / ((update.numel() ** 0.5) * d)))
for a, update in zip(alphas, updates)
]
torch._foreach_mul_(updates, alphas)
torch._foreach_add_(device_params, updates)
@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adafactor)
def adafactor(
params: List[Tensor],
grads: List[Tensor],
row_vars: List[Optional[Tensor]],
col_vars: List[Optional[Tensor]],
variances: List[Optional[Tensor]],
state_steps: List[Tensor],
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
foreach: Optional[bool] = None,
grad_scale: Optional[Tensor] = None,
found_inf: Optional[Tensor] = None,
has_complex: bool = False,
*,
d: float,
lr: Union[float, Tensor],
beta2_decay: float,
weight_decay: float,
eps1: float,
eps2: float,
maximize: bool,
):
r"""Functional API that performs Adafactor algorithm computation.
See :class:`~torch.optim.Adafactor` for details.
"""
if not torch.compiler.is_compiling() and not all(
isinstance(t, torch.Tensor) for t in state_steps
):
raise RuntimeError(
"`state_steps` argument must contain a list of singleton tensors"
)
if foreach:
func = _multi_tensor_adafactor
else:
func = _single_tensor_adafactor
func(
params,
grads,
row_vars,
col_vars,
variances,
state_steps,
d=d,
lr=lr,
beta2_decay=beta2_decay,
weight_decay=weight_decay,
eps1=eps1,
eps2=eps2,
maximize=maximize,
grad_scale=grad_scale,
found_inf=found_inf,
has_complex=has_complex,
)
|