File: _adafactor.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (649 lines) | stat: -rw-r--r-- 27,942 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
from typing import cast, Dict, List, Optional, Tuple, TYPE_CHECKING, Union

import torch
from torch import Tensor

from .optimizer import (
    _disable_dynamo_if_unsupported,
    _get_scalar_dtype,
    _maximize_doc,
    _params_doc,
    Optimizer,
    ParamsT,
    TensorListList,
)


__all__ = ["Adafactor", "adafactor"]


class Adafactor(Optimizer):
    def __init__(
        self,
        params: ParamsT,
        lr: Union[float, Tensor] = 1e-2,
        beta2_decay: float = -0.8,
        eps: Tuple[Optional[float], float] = (None, 1e-3),
        d: float = 1.0,
        weight_decay: float = 0.0,
        *,
        foreach: Optional[bool] = None,
        maximize: bool = False,
    ):
        if isinstance(lr, Tensor) and lr.numel() != 1:
            raise ValueError("Tensor lr must be 1-element")
        if not 0.0 <= lr:
            raise ValueError(f"Learning rate should be >= 0 but is: {lr}")
        if not 0.0 >= beta2_decay:
            raise ValueError(f"beta2_decay should be <= 0 but is: {beta2_decay}")
        if eps[0] is not None and not 0.0 <= eps[0]:
            raise ValueError(f"epsilon1 should be >= 0 but is: {eps[0]}")
        if not 0.0 <= eps[1]:
            raise ValueError(f"epsilon2 should be >= 0 but is: {eps[1]}")
        if not 1.0 <= d:
            raise ValueError(f"Clipping threshold d should be >= 1 but is: {d}")
        if not 0.0 <= weight_decay:
            raise ValueError(f"weight_decay should be >= 0 but is: {weight_decay}")
        defaults = dict(
            lr=lr,
            beta2_decay=beta2_decay,
            eps=eps,
            d=d,
            weight_decay=weight_decay,
            foreach=foreach,
            maximize=maximize,
        )
        super().__init__(params, defaults)

    def __setstate__(self, state):
        super().__setstate__(state)
        for group in self.param_groups:
            group.setdefault("foreach", None)
            for p in group["params"]:
                p_state = self.state.get(p, [])
                if len(p_state) != 0 and not torch.is_tensor(p_state["step"]):
                    step_val = float(p_state["step"])
                    p_state["step"] = torch.tensor(step_val, dtype=_get_scalar_dtype())

    def _init_group(
        self,
        group,
        params_with_grad,
        grads,
        row_vars,
        col_vars,
        variances,
        state_steps,
    ):
        for p in group["params"]:
            if p.grad is None:
                continue
            if torch.is_complex(p):
                raise RuntimeError("Adafactor does not support complex parameters")
            if p.grad.is_sparse:
                raise RuntimeError("Adafactor does not support sparse gradients")

            params_with_grad.append(p)
            grads.append(p.grad)

            state = self.state[p]

            # State initialization
            if len(state) == 0:
                # note(crcrpar): Deliberately host `step` on CPU if both capturable and fused are off.
                # This is because kernel launches are costly on CUDA and XLA.
                state["step"] = torch.tensor(0.0, dtype=_get_scalar_dtype())

                if p.grad.dim() > 1:
                    row_shape = list(p.grad.shape)
                    row_shape[-1] = 1
                    # Row factor of variance, NOT the same shape as grads (will be reduced along last dim)
                    state["row_var"] = p.grad.new_zeros(row_shape)

                    col_shape = list(p.grad.shape)
                    col_shape[-2] = 1
                    # Col factor of variance, NOT the same shape as grads (will be reduced along penultimate dim)
                    state["col_var"] = p.grad.new_zeros(col_shape)
                else:
                    state["variance"] = torch.zeros_like(
                        p.grad, memory_format=torch.preserve_format
                    )

            row_vars.append(state.get("row_var", None))
            col_vars.append(state.get("col_var", None))
            variances.append(state.get("variance", None))
            state_steps.append(state["step"])
        return False  # has_complex

    @torch.no_grad()
    def step(self, closure=None):
        r"""Perform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        self._cuda_graph_capture_health_check()

        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            params_with_grad: List[Tensor] = []
            grads: List[Tensor] = []
            row_vars: List[Optional[Tensor]] = []
            col_vars: List[Optional[Tensor]] = []
            variances: List[Optional[Tensor]] = []
            state_steps: List[Tensor] = []
            eps1, eps2 = group["eps"]

            has_complex = self._init_group(
                group,
                params_with_grad,
                grads,
                row_vars,
                col_vars,
                variances,
                state_steps,
            )

            adafactor(
                params_with_grad,
                grads,
                row_vars,
                col_vars,
                variances,
                state_steps,
                d=group["d"],
                lr=group["lr"],
                beta2_decay=group["beta2_decay"],
                weight_decay=group["weight_decay"],
                eps1=eps1,
                eps2=eps2,
                foreach=group["foreach"],
                maximize=group["maximize"],
                grad_scale=getattr(self, "grad_scale", None),
                found_inf=getattr(self, "found_inf", None),
                has_complex=has_complex,
            )

        return loss


Adafactor.__doc__ = (
    r"""Implements Adafactor algorithm.

    .. math::
        \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{(lr)}, \: \tau
                \text{(}\beta_2\text{ decay)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)},    \\
            &\hspace{15mm}      \: \epsilon_1, \epsilon_2 \text{ (epsilons)}, \: d \text{(clipping threshold)}, \\
            &\hspace{15mm}      \: \lambda \text{(weight decay)},
                \: \textit{maximize}                                                             \\
            &\textbf{initialize} : \: R_0 \leftarrow 0 \text{ (second moment row factor)},       \\
            &\hspace{23mm} \: C_0 \leftarrow 0 \text{ (second moment col factor)},               \\
            &\hspace{23mm} \: \widehat{V}_0 \leftarrow 0 \text{ (second moment for vectors)}     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\

            &\hspace{5mm}\textbf{if} \: \textit{maximize}:                                       \\
            &\hspace{10mm}G_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}G_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
            &\hspace{5mm}\widehat{\beta}_{2_t} \leftarrow 1 - t^{\tau}                           \\
            &\hspace{5mm}\rho_t         \leftarrow min(lr, \frac{1}{\sqrt{t}})                   \\
            &\hspace{5mm}\alpha_t       \leftarrow max(\epsilon_2,
                \text{RMS}(\theta_{t-1}))\rho_t                                                  \\
            &\hspace{5mm}\theta_t       \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1}    \\
            &\hspace{5mm}\textbf{if} \: \text{dim}(G_t) > 1:                                     \\
            &\hspace{10mm}R_t           \leftarrow \widehat{\beta}_{2_t}R_{t-1}+
                (1-\widehat{\beta}_{2_t})(G_t \odot G_t) \cdot 1_m                               \\
            &\hspace{10mm}C_t           \leftarrow \widehat{\beta}_{2_t}C_{t-1}+
                (1-\widehat{\beta}_{2_t}) 1^\top_n \cdot (G_t \odot G_t)                         \\
            &\hspace{10mm}\widehat{V}_t \leftarrow
                \frac{R_t \cdot C_t}{max(1^\top_n \cdot R_t, \epsilon_1)}                        \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}\widehat{V}_t \leftarrow \widehat{\beta}_{2_t}\widehat{V}_{t-1}+
                (1-\widehat{\beta}_{2_t}) \cdot (G_t \odot G_t)                                  \\
            &\hspace{5mm}U_t            \leftarrow
                \frac{G_t}{max(\sqrt{\widehat{V}_t}, \epsilon_1)}                                \\
            &\hspace{5mm}\widehat{U}_t  \leftarrow \frac{U_t}{max(1, \frac{\text{RMS}(U_t)}{d})} \\
            &\hspace{5mm}\theta_t       \leftarrow \theta_{t-1} - \alpha_t \widehat{U}_t         \\

            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
        \end{aligned}

    For further details regarding the algorithm we refer to `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost`_.
    """
    + rf"""
    Args:
        {_params_doc}
        lr (float, Tensor, optional): unlike other optimizers, Adafactor does not require a
            learning rate, and Shazeer, Noam, and Mitchell Stern do not use lr at all.
            Deviating from the paper, this implementation uses lr for applying weight
            decay and as the maximum value for relative step size rho_t. Note that in
            the paper, a constant of 0.01 is used as the maximum value for relative
            step size, and so we set 0.01 as the default value. (default: 1e-2)
        beta2_decay (float, optional): the decay rate of beta2. beta2 standardly refers
            to the coefficient used for computing the running average of the gradient
            squared. (default: -0.8)
        eps (Tuple[float, float], optional): epsilon1 is the term added to the denominator
            of the update calculation to improve numerical stability. This use of epsilon1
            deviates from the algorithm written in the paper! See note below for more details.
            epsilon2 is the term used to avoid having too small a weight update when applying
            parameter scaling. (default: (None, 1e-3))
        d (float, optional): the clipping threshold, used to avoid larger-than-desired
            updates.
        weight_decay (float, optional): weight decay coefficient (default: 1e-2)
        foreach (bool, optional): whether foreach implementation of optimizer is used. Note
            that the foreach implementation uses ~ sizeof(params) more peak memory than the
            for-loop version due to the intermediates being a tensorlist vs just one tensor.
            As Adafactor is commonly used when memory is prohibitive, Adafactor will default
            to the slower single tensor for-loop implementation unless this flag is explicitly
            True. This behavior is contrary to other optimizers, which will attempt defaulting
            to foreach on CUDA for faster runtime. (default: None)
        {_maximize_doc}"""
    + r"""
    .. Note::
        The implementation of Adafactor subtly differs from Shazeer, Noam, and Mitchell Stern
        and implementations in some other frameworks with its use of learning rate and
        :math:`\epsilon_1`.

        Regarding the learning rate hyperparameter: Shazeer, Noam, and Mitchell Stern do not
        use lr at all, as the stated algorithm uses :math:`\rho_t` and update clipping to
        affect the step size.

        This implementation allows `lr` to influence the maximum value for :math:`\rho_t`:

        .. math::
            \begin{aligned}
                &\hspace{5mm}\rho_t \leftarrow min(lr, \frac{1}{\sqrt{t}})
            \end{aligned}

        This differs from Shazeer, Noam, and Mitchell Stern, who use a constant of 0.01 as
        the maximum value of :math:`\rho_t`

        .. math::
            \begin{aligned}
                &\hspace{5mm}\rho_t \leftarrow min(0.01, \frac{1}{\sqrt{t}})
            \end{aligned}

        Shazeer, Noam, and Mitchell Stern do not enforce an opinion on how weight decay should
        be computed, and so we use the learning rate as a coefficient for decoupled weight
        decay, similar to what is suggested in `Decoupled Weight Decay Regularization`_.

        Regarding the use of :math:`\epsilon_1`: The implementation attempts to replicate the
        presumed intention of Shazeer, Noam, and Mitchell Stern to use :math:`\epsilon_1` as
        a stabilizing term when the squared gradient becomes small.

        This stabilization can be written as

        .. math::
            \begin{aligned}
                &\hspace{5mm}R_t \leftarrow \widehat{\beta}_{2_t}R_{t-1}+
                    (1-\widehat{\beta}_{2_t})(G_t \odot G_t + 1_n \cdot 1^\top_m) \cdot 1_m          \\
                &\hspace{5mm}C_t \leftarrow \widehat{\beta}_{2_t}C_{t-1}+
                    (1-\widehat{\beta}_{2_t}) 1^\top_n \cdot (G_t \odot G_t + 1_n \cdot 1^\top_m)    \\
                &\hspace{5mm}\widehat{V}_t \leftarrow
                    \frac{R_t \cdot C_t}{max(1^\top_n \cdot R_t, \epsilon_1)}                        \\
                &\hspace{5mm}U_t \leftarrow \frac{G_t}{max(\sqrt{\widehat{V}_t}, \epsilon_1)}        \\
            \end{aligned}

        where the row and column factors of gradient squared :math:`R_t` and :math:`C_t`
        are left alone, and we apply :math:`\epsilon_1` at the final calculation of
        the variance estimate :math:`\widehat{V}_t` and for the update :math:`U_t`.

        This is in contrast to Shazeer, Noam, and Mitchell Stern and other frameworks which
        apply :math:`\epsilon_1` to both row and column factors of the squared gradient, but
        not in the calculations after:

        .. math::
            \begin{aligned}
                &\hspace{5mm}R_t \leftarrow \widehat{\beta}_{2_t}R_{t-1}+
                            (1-\widehat{\beta}_{2_t})(G_t \odot G_t + \epsilon_1 1_n \cdot 1^\top_m) \cdot 1_m          \\
                &\hspace{5mm}C_t \leftarrow \widehat{\beta}_{2_t}C_{t-1}+
                            (1-\widehat{\beta}_{2_t}) 1^\top_n \cdot (G_t \odot G_t + \epsilon_1 1_n \cdot 1^\top_m)    \\
                &\hspace{5mm}\widehat{V}_t \leftarrow \frac{R_t \cdot C_t}{1^\top_n \cdot R_t}                          \\
                &\hspace{5mm}U_t \leftarrow \frac{G_t}{\sqrt{\widehat{V}_t}}                                            \\
            \end{aligned}


    .. _Adafactor\: Adaptive Learning Rates with Sublinear Memory Cost:
        https://arxiv.org/pdf/1804.04235
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101
    """
)


def _single_tensor_adafactor(
    params: List[Tensor],
    grads: List[Tensor],
    # If grad is 1-dimensional (aka a vector), there is no factorization necessary
    # so row_var and col_var will be None while variance will be filled.
    # Contrarily, for a grad with multiple dimensions, we will factor along the last
    # 2 dimensions, and so row_var and col_var will be filled and variance will be None.
    row_vars: List[Optional[Tensor]],
    col_vars: List[Optional[Tensor]],
    variances: List[Optional[Tensor]],
    state_steps: List[Tensor],
    grad_scale: Optional[Tensor],
    found_inf: Optional[Tensor],
    *,
    d: float,
    lr: Union[Tensor, float],
    beta2_decay: float,
    weight_decay: float,
    eps1: Optional[float],
    eps2: float,
    maximize: bool,
    has_complex: bool,
):
    assert (
        grad_scale is None and found_inf is None
    ), "Grad scaling should occur outside of optimizer.step()"

    if torch.jit.is_scripting():
        # this assert is due to JIT being dumb and not realizing that the ops below
        # have overloads to handle both float and Tensor lrs, so we just assert it's
        # a float since most people using JIT are using floats
        assert isinstance(lr, float)

    for i, param in enumerate(params):
        grad = grads[i] if not maximize else -grads[i]
        step_t = state_steps[i]
        row_var = row_vars[i]
        col_var = col_vars[i]
        variance = variances[i]
        if eps1 is None:
            eps1 = torch.finfo(param.dtype).eps

        # update step
        step_t += 1
        step_float = step_t.item()

        one_minus_beta2_t = step_float**beta2_decay
        rho_t = min(lr, 1 / (step_float**0.5))
        alpha = max(eps2, param.norm(2).item() / (param.numel() ** 0.5)) * rho_t

        # Perform stepweight decay
        if weight_decay != 0:
            param.mul_(1 - lr * weight_decay)

        if grad.dim() > 1:
            assert (
                row_var is not None and col_var is not None
            ), "row_var and col_var should be defined when grad is multidimensional"
            # same as (g * g).mean(dim=-1) w/o materializing an intermediate size g
            row_mean = (
                torch.norm(grad, dim=-1, keepdim=True).square_().div_(grad.size(-1))
            )
            row_var.lerp_(row_mean, one_minus_beta2_t)
            # same as (g * g).mean(dim=-2) w/o materializing an intermediate size g
            col_mean = (
                torch.norm(grad, dim=-2, keepdim=True).square_().div_(grad.size(-2))
            )
            col_var.lerp_(col_mean, one_minus_beta2_t)
            var_estimate = row_var @ col_var
            var_estimate.div_(row_var.mean(dim=-2, keepdim=True).clamp_(min=eps1))
        else:
            assert (
                variance is not None
            ), "variance should be defined when grad is a vector"
            grad_squared = grad * grad
            variance.lerp_(grad_squared, one_minus_beta2_t)
            # avoid writing into variance during update
            var_estimate = variance.clone()

        # square the eps1 as we sqrt after to keep eps1's magnitude
        update = var_estimate.clamp_(min=eps1 * eps1).rsqrt_()
        update.mul_(grad)
        denom = max(1.0, update.norm(2).item() / ((update.numel() ** 0.5) * d))
        param.add_(update, alpha=-alpha / denom)


def _group_tensors_by_device_dtype_and_is_multidim(
    tensorlists: TensorListList,
) -> Dict[
    Tuple[Optional[torch.device], Optional[torch.dtype], bool],
    List[List[Optional[Tensor]]],
]:
    """Groups tensors by device, dtype, AND multidimensionality -- whether the tensor
    has multiple dims or just one dim (is a vector). This allows the foreach impl of
    Adafactor to assume that every group of params will either be factored or not."""
    grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(tensorlists)
    ultra_grouped_tensors: Dict[
        Tuple[Optional[torch.device], Optional[torch.dtype], bool],
        List[List[Optional[Tensor]]],
    ] = {}
    for (device, dtype), (tensorlists, _) in grouped_tensors.items():
        matrix_key = (device, dtype, True)
        vector_key = (device, dtype, False)

        # assumes grad is the second tensorlist
        for j, tensor in enumerate(tensorlists[1]):
            assert tensor is not None, "grad should not be None"
            if tensor.dim() > 1:
                if matrix_key not in ultra_grouped_tensors:
                    ultra_grouped_tensors[matrix_key] = [[] for _ in tensorlists]
                for i in range(len(tensorlists)):
                    ultra_grouped_tensors[matrix_key][i].append(tensorlists[i][j])
            else:
                if vector_key not in ultra_grouped_tensors:
                    ultra_grouped_tensors[vector_key] = [[] for _ in tensorlists]
                for i in range(len(tensorlists)):
                    ultra_grouped_tensors[vector_key][i].append(tensorlists[i][j])
    return ultra_grouped_tensors


def _multi_tensor_adafactor(
    params: List[Tensor],
    grads: List[Tensor],
    # If grad is 1-dimensional (aka a vector), there is no factorization necessary
    # so row_var and col_var will be None while variance will be filled.
    # Contrarily, for a grad with multiple dimensions, we will factor along the last
    # 2 dimensions, and so row_var and col_var will be filled and variance will be None.
    row_vars: List[Optional[Tensor]],
    col_vars: List[Optional[Tensor]],
    variances: List[Optional[Tensor]],
    state_steps: List[Tensor],
    grad_scale: Optional[Tensor],
    found_inf: Optional[Tensor],
    *,
    d: float,
    lr: Union[Tensor, float],
    beta2_decay: float,
    weight_decay: float,
    eps1: Optional[float],
    eps2: float,
    maximize: bool,
    has_complex: bool,
):
    if len(params) == 0:
        return

    assert (
        grad_scale is None and found_inf is None
    ), "Grad scaling should occur outside of optimizer.step()"

    grouped_tensors = _group_tensors_by_device_dtype_and_is_multidim(
        [params, grads, row_vars, col_vars, variances, state_steps]  # type: ignore[list-item]
    )
    for (_, dtype, is_multidim), (
        (
            device_params_,
            device_grads_,
            device_row_vars_,
            device_col_vars_,
            device_variances_,
            device_state_steps_,
        )
    ) in grouped_tensors.items():
        device_params = cast(List[Tensor], device_params_)
        device_grads = cast(List[Tensor], device_grads_)
        device_state_steps = cast(List[Tensor], device_state_steps_)
        if eps1 is None:
            assert (
                dtype is not None
            ), "dtype is needed to compute eps1 when eps1 is unset"
            eps1 = torch.finfo(dtype).eps

        if TYPE_CHECKING:
            assert device_state_steps[0] is not None

        if maximize:
            device_grads = torch._foreach_neg(device_grads)  # type: ignore[assignment]

        # Update steps
        # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
        # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
        # wrapped it once now. The alpha is required to assure we go to the right overload.
        if not torch.compiler.is_compiling() and device_state_steps[0].is_cpu:
            torch._foreach_add_(
                device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0
            )
        else:
            torch._foreach_add_(device_state_steps, 1.0)

        one_minus_beta2_ts = []
        beta2_ts = []
        rho_ts = []
        for s in device_state_steps:
            one_minus_beta2_ts.append(s.item() ** beta2_decay)
            beta2_ts.append(1 - s.item() ** beta2_decay)
            rho_ts.append(min(lr, 1 / (s.item() ** 0.5)))

        alphas = [
            max(eps2, p.norm(2).item() / (p.numel() ** 0.5)) * r
            for p, r in zip(device_params, rho_ts)
        ]

        # Perform stepweight decay
        if weight_decay != 0:
            torch._foreach_mul_(device_params, 1 - lr * weight_decay)

        if is_multidim:
            device_row_vars = cast(List[Tensor], device_row_vars_)
            device_col_vars = cast(List[Tensor], device_col_vars_)
            assert (
                device_row_vars[0] is not None and device_col_vars[0] is not None
            ), "row_var and col_var should be defined when grad is multidimensional"
            # same as (g * g).mean(dim=-1) w/o materializing an intermediate size g
            row_means = [
                torch.norm(grad, dim=-1, keepdim=True) for grad in device_grads
            ]
            torch._foreach_mul_(row_means, row_means)
            torch._foreach_div_(row_means, [grad.size(-1) for grad in device_grads])
            torch._foreach_lerp_(device_row_vars, row_means, one_minus_beta2_ts)
            del row_means

            # same as (g * g).mean(dim=-2) w/o materializing an intermediate size g
            col_means = [
                torch.norm(grad, dim=-2, keepdim=True) for grad in device_grads
            ]
            torch._foreach_mul_(col_means, col_means)
            torch._foreach_div_(col_means, [grad.size(-2) for grad in device_grads])
            torch._foreach_lerp_(device_col_vars, col_means, one_minus_beta2_ts)
            del col_means

            var_estimates = [
                row_var @ col_var
                for row_var, col_var in zip(device_row_vars, device_col_vars)
            ]
            row_var_means = [
                row_var.mean(dim=-2, keepdim=True) for row_var in device_row_vars
            ]
            torch._foreach_clamp_min_(row_var_means, eps1)
            torch._foreach_div_(var_estimates, row_var_means)
            del row_var_means
        else:
            device_variances = cast(List[Tensor], device_variances_)
            assert (
                device_variances[0] is not None
            ), "variance should be defined when grad is a vector"

            grads_squared = torch._foreach_mul(device_grads, device_grads)
            torch._foreach_lerp_(device_variances, grads_squared, one_minus_beta2_ts)
            del grads_squared

            # avoid writing into variance during update
            var_estimates = [v.clone() for v in device_variances]

        # square the eps1 as we sqrt after to keep eps1's magnitude
        torch._foreach_clamp_min_(var_estimates, eps1 * eps1)
        torch._foreach_rsqrt_(var_estimates)
        torch._foreach_mul_(var_estimates, device_grads)
        updates = var_estimates

        alphas = [
            -a / (max(1.0, update.norm(2).item() / ((update.numel() ** 0.5) * d)))
            for a, update in zip(alphas, updates)
        ]
        torch._foreach_mul_(updates, alphas)
        torch._foreach_add_(device_params, updates)


@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adafactor)
def adafactor(
    params: List[Tensor],
    grads: List[Tensor],
    row_vars: List[Optional[Tensor]],
    col_vars: List[Optional[Tensor]],
    variances: List[Optional[Tensor]],
    state_steps: List[Tensor],
    # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
    # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
    foreach: Optional[bool] = None,
    grad_scale: Optional[Tensor] = None,
    found_inf: Optional[Tensor] = None,
    has_complex: bool = False,
    *,
    d: float,
    lr: Union[float, Tensor],
    beta2_decay: float,
    weight_decay: float,
    eps1: float,
    eps2: float,
    maximize: bool,
):
    r"""Functional API that performs Adafactor algorithm computation.

    See :class:`~torch.optim.Adafactor` for details.
    """
    if not torch.compiler.is_compiling() and not all(
        isinstance(t, torch.Tensor) for t in state_steps
    ):
        raise RuntimeError(
            "`state_steps` argument must contain a list of singleton tensors"
        )

    if foreach:
        func = _multi_tensor_adafactor
    else:
        func = _single_tensor_adafactor

    func(
        params,
        grads,
        row_vars,
        col_vars,
        variances,
        state_steps,
        d=d,
        lr=lr,
        beta2_decay=beta2_decay,
        weight_decay=weight_decay,
        eps1=eps1,
        eps2=eps2,
        maximize=maximize,
        grad_scale=grad_scale,
        found_inf=found_inf,
        has_complex=has_complex,
    )