File: _triton_ops.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (2529 lines) | stat: -rw-r--r-- 86,150 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import math
import os
import weakref
from functools import lru_cache
from typing import Optional, Tuple

import torch
from torch._dynamo.utils import warn_once
from torch.utils._triton import has_triton

from ._triton_ops_meta import get_meta


TORCH_SPARSE_BSR_SCATTER_MM_LRU_CACHE_SIZE = int(
    os.getenv("TORCH_SPARSE_BSR_SCATTER_MM_LRU_CACHE_SIZE", 2)
)


def check(cond, msg):
    if not cond:
        raise ValueError(msg)


def check_bsr_layout(f_name, t):
    check(
        t.layout == torch.sparse_bsr,
        f"{f_name}(): only BSR sparse format is supported for the sparse argument.",
    )


def check_device(f_name, t, device):
    check(
        t.device == device and t.device.type == "cuda",
        f"{f_name}(): all inputs are expected to be on the same GPU device.",
    )


def check_mm_compatible_shapes(f_name, lhs, rhs):
    check(
        lhs.dim() >= 2 and rhs.dim() >= 2,
        f"{f_name}(): all inputs involved in the matrix product are expected to be at least 2D, "
        f"but got lhs.dim() == {lhs.dim()} and rhs.dim() == {rhs.dim()}.",
    )

    _m, kl = lhs.shape[-2:]
    kr, _n = rhs.shape[-2:]

    check(
        kl == kr,
        f"{f_name}(): arguments' sizes involved in the matrix product are not compatible for matrix multiplication, "
        f"got lhs.shape[-1] == {kl} which is not equal to rhs.shape[-2] == {kr}.",
    )


def check_dtype(f_name, t, dtype, *additional_dtypes):
    check(
        t.dtype == dtype
        and t.dtype
        in ((torch.half, torch.bfloat16, torch.float) + tuple(*additional_dtypes)),
        f"{f_name}(): all inputs are expected to be of the same dtype "
        f"and one of (half, bfloat16, float32) or {additional_dtypes}, "
        f"but got dtype == {t.dtype}.",
    )


def check_blocksize(f_name, blocksize):
    assert len(blocksize) == 2

    def is_power_of_two(v):
        return not (v & (v - 1))

    def is_compatible_blocksize(b):
        res = True
        for blocksize in b:
            # Triton loads only blocks which are at least 16 and powers of 2.
            res = (blocksize >= 16 and is_power_of_two(blocksize)) and res
        return res

    check(
        is_compatible_blocksize(blocksize),
        f"{f_name}(): sparse inputs' blocksize ({blocksize[0]}, {blocksize[1]}) "
        "should be at least 16 and a power of 2 in each dimension.",
    )


def make_triton_contiguous(t):
    """Return input as a triton-contiguous tensor.

    A triton-contiguous tensor is defined as a tensor that has strides
    with minimal value smaller than or equal to 1.

    While triton kernels support triton-non-contiguous tensors (all
    strides being greater than 1) arguments, a considerable slow-down
    occurs because tensor data is copied element-wise rather than
    chunk-wise. Zero strides is assumed to not have this defect.
    """
    if min(t.stride()) > 1:
        # TODO: investigate if contiguity along other axes than the
        # last one can be beneficial for performance
        return t.contiguous()
    else:
        return t


def broadcast_batch_dims(f_name, *tensors):
    try:
        return torch.broadcast_shapes(*(t.shape[:-2] for t in tensors))
    except Exception:
        check(False, f"{f_name}(): inputs' batch dimensions are not broadcastable!")


def slicer(dim, slice_range, *tensors):
    for t in tensors:
        slices = [slice(None)] * t.dim()
        slices[dim] = slice_range
        yield t[slices]


def multidim_slicer(dims, slices, *tensors):
    for t in tensors:
        s = [slice(None)] * t.dim()
        for d, d_slice in zip(dims, slices):
            if d is not None:
                s[d] = d_slice
        yield t[s]


def ptr_stride_extractor(*tensors):
    for t in tensors:
        yield t
        yield from t.stride()


def grid_partitioner(full_grid, grid_blocks, tensor_dims_map):
    assert 0 <= len(full_grid) <= 3
    assert 0 <= len(grid_blocks) <= 3

    import itertools

    def generate_grid_points():
        for fg, mg in zip(full_grid, grid_blocks):
            yield range(0, fg, mg)

    def generate_sliced_tensors(slices):
        for t, t_dims in tensor_dims_map.items():
            yield next(multidim_slicer(t_dims, slices, t))

    for grid_point in itertools.product(*generate_grid_points()):
        grid = [
            min(fg - gp, mg) for fg, gp, mg in zip(full_grid, grid_point, grid_blocks)
        ]
        slices = [slice(gp, gp + g) for gp, g in zip(grid_point, grid)]
        # grid_points are iterated in a "contiguous" order, i.e.
        # left dimensions traversed slower than right dimensions.
        # This order is reversed for CUDA grids.
        yield grid[::-1], *generate_sliced_tensors(slices)


def launch_kernel(kernel, tensor_dims_map, full_grid, grid_blocks=None):
    # cuda_max_grid = (2 ** 31 - 1, 2 ** 16 - 1, 2 ** 16 - 1)
    cuda_max_grid = (2147483647, 65535, 65535)[::-1]
    if grid_blocks is None:
        grid_blocks = cuda_max_grid
    else:

        def valid_grid_dim(g, mg):
            if g is None:
                return mg
            else:
                # grid must be at least 1 and no greater than mg
                return max(1, min(g, mg))

        grid_blocks = tuple(
            valid_grid_dim(g, mg) for g, mg in zip(grid_blocks, cuda_max_grid)
        )  # type: ignore[assignment]

    for grid, *sliced_tensors in grid_partitioner(
        full_grid, grid_blocks, tensor_dims_map
    ):
        kernel(grid, *sliced_tensors)


def prepare_inputs(bsr, *dense_tensors):
    # Introduce fake batch dimension if not present for convenience.
    crow_indices = bsr.crow_indices().unsqueeze(0)
    col_indices = bsr.col_indices().unsqueeze(0)
    values = make_triton_contiguous(bsr.values().unsqueeze(0))
    tensors = [make_triton_contiguous(t.unsqueeze(0)) for t in dense_tensors]

    # Compute broadcasted batch dimension
    batch_dims_broadcasted = torch.broadcast_shapes(
        values.shape[:-3], *(t.shape[:-2] for t in tensors)
    )

    # Broadcast batch dimensions and squash.
    # The result can be either a view or a copy.
    def batch_broadcast_and_squash(t, batch_dims, invariant_dims):
        return t.broadcast_to(batch_dims + invariant_dims).flatten(
            0, len(batch_dims) - 1
        )

    crow_indices = batch_broadcast_and_squash(
        crow_indices, batch_dims_broadcasted, (-1,)
    )

    col_indices = batch_broadcast_and_squash(col_indices, batch_dims_broadcasted, (-1,))
    values = batch_broadcast_and_squash(
        values, batch_dims_broadcasted, values.shape[-3:]
    )
    tensors = [
        batch_broadcast_and_squash(t, batch_dims_broadcasted, t.shape[-2:])
        for t in tensors
    ]

    return crow_indices, col_indices, values, *tensors


def broadcast_batch_dims_bsr(f_name, bsr, *tensors):
    batch_shape = broadcast_batch_dims(f_name, bsr, *tensors)

    crow_indices = bsr.crow_indices().broadcast_to(batch_shape + (-1,))
    col_indices = bsr.col_indices().broadcast_to(batch_shape + (-1,))
    values = bsr.values().broadcast_to(batch_shape + bsr.values().shape[-3:])
    size = batch_shape + bsr.shape[-2:]
    return torch.sparse_compressed_tensor(
        crow_indices, col_indices, values, size=size, layout=bsr.layout
    )


# NOTE: this function will ALWAYS create a view
def tile_to_blocksize(t, blocksize):
    *rest, m, n = t.shape
    new_shape = rest + [
        m // blocksize[0],
        blocksize[0],
        n // blocksize[1],
        blocksize[1],
    ]
    # using .view instead of .reshape to ensure that the result is
    # indeed a view:
    return t.view(new_shape).transpose(-3, -2)


def as1Dbatch(tensor):
    """Return tensor as 3D tensor by either prepending new dimensions to
    the tensor shape (when ``tensor.ndim < 3``), or by collapsing
    starting dimensions into the first dimension (when ``tensor.ndim >
    3``).
    """
    while tensor.ndim < 3:
        tensor = tensor.unsqueeze(0)
    if tensor.ndim > 3:
        tensor = tensor.flatten(0, tensor.ndim - 3)
    assert tensor.ndim == 3, tensor.shape
    return tensor


def scatter_mm(blocks, others, indices_data, *, accumulators=None):
    """Scattered matrix multiplication of tensors.

    A scattered matrix multiplication is defined as a series of matrix
    multiplications applied to input tensors according to the input
    and output mappings specified by indices data.

    The following indices data formats are supported for defining a
    scattered matrix multiplication operation (:attr:`indices_data[0]`
    holds the name of the indices data format as specified below):

    - ``"scatter_mm"`` - matrix multiplications scattered in batches
      of tensors.

      If :attr:`blocks` is a :math:`(* \times M \times K) tensor,
      :attr:`others` is a :math:`(* \times K \times N)` tensor,
      :attr:`accumulators` is a :math:`(* \times M \times N)` tensor,
      and :attr:`indices = indices_data['indices']` is a :math:`(*
      \times 3)` tensor, then the operation is equivalent to the
      following code::

        c_offsets, pq = indices_data[1:]
        for r in range(len(c_offsets) - 1):
            for g in range(c_offsets[r], c_offsets[r + 1]):
                p, q = pq[g]
                accumulators[r] += blocks[p] @ others[q]

    - ``"bsr_strided_mm"`` - matrix multiplications scattered in
      batches of tensors and a tensor.

      If :attr:`blocks` is a :math:`(Ms \times Ks) tensor,
      :attr:`others` is a :math:`(* \times K \times N)` tensor,
      :attr:`accumulators` is a :math:`(* \times M \times N)` tensor, then
      the operation is equivalent to the following code::

        c_indices, r_offsets, p_offsets, q_offsets, meta = indices_data[1:]
        for b in range(nbatches):
            for i, r in enumerate(r_offsets):
                r0, r1 = divmod(r, N)
                acc = accumulators[b, r0:r0 + Ms, r1:r1 + Ns]
                for g in range(c_indices[i], c_indices[i+1]):
                    p = p_offsets[g]
                    q0, q1 = divmod(q_offsets[g], N)
                    acc += blocks[p] @ others[b, q0:q0 + Ks, q1:q1 + Ns]

      where ``Ns = N // meta['SPLIT_N']``, and ``M`` and ``K`` are
      integer multiples of ``Ms`` and ``Ks``, respectively.

    - ``"bsr_strided_mm_compressed"`` - matrix multiplications
      scattered in batches of tensors and a tensor. A memory and
      processor efficient version of ``"bsr_strided_mm"`` format.  If
      :attr:`blocks` is a :math:`(Ms \times Ks) tensor, :attr:`others`
      is a :math:`(* \times K \times N)` tensor, :attr:`accumulators`
      is a :math:`(* \times M \times N)` tensor, then the operation is
      equivalent to the following code::

        c_indices, r_offsets, q_offsets, meta = indices_data[1:]
        for b in range(nbatches):
            for r in r_offsets:
                m = (r // N) // Ms
                n = (r % N) // Ns
                r0, r1 = divmod(r, N)
                c0, c1 = c_indices[m], c_indices[m + 1]
                acc = accumulators[b, r0:r0 + Ms, r1:r1 + Ns]
                for i, p in enumerate(range(c0, c1)):
                    q = q_offsets[n * c1 + (SPLIT_N - n) * c0 + i]
                    q0, q1 = divmod(q, N)
                    acc += blocks[p] @ others[b, q0:q0 + Ks, q1:q1 + Ns]

      where ``Ns = N // meta['SPLIT_N']``, and ``M`` and ``K`` are
      integer multiples of ``Ms`` and ``Ks``, respectively.

      Notice that the order of ``r_offsets`` items can be arbitrary;
      this property enables defining swizzle operators via
      rearrangements of ``r_offsets`` items..

    Auxilary functions are provided for pre-computing
    :attr:`indices_data`. For example,
    :func:`bsr_scatter_mm_indices_data` is used to define indices data
    for matrix multiplication of BSR and strided tensors.

    Parameters
    ----------
    blocks (Tensor): a 3-D tensor of first matrices to be multiplied

    others (Tensor): a tensor of second matrices to be multiplied. If
      ``indices_data[0]=="scatter_mm"``, the tensor is a 1-D batch
      tensor of second input matrices to be multiplied. Otherwise, the
      second input matrices are slices of the :attr:`others` tensor.
    indices_data (tuple): a format data that defines the inputs and
      outputs of scattered matrix multiplications.

    Keyword arguments
    -----------------

    accumulators (Tensor, optional): a tensor of matrix product
      accumulators. If ``indices_data[0]=="scatter_mm"``, the tensor
      is a 1-D batch tensor of output matrices. Otherwise, output
      matrices are slices of the :attr:`accumulators` tensor.
    """
    indices_format = indices_data[0]

    assert blocks.ndim == 3
    _P, Ms, Ks = blocks.shape

    if indices_format == "scatter_mm":
        c_offsets, pq = indices_data[1:]

        assert others.ndim == 3
        _Q, Ks_, Ns = others.shape
        assert Ks == Ks_

        if accumulators is None:
            R = c_offsets.shape[0] - 1
            accumulators = torch.zeros(
                (R, Ms, Ns), dtype=blocks.dtype, device=blocks.device
            )
        else:
            R, Ms_, Ns_ = accumulators.shape
            assert Ms_ == Ms
            assert Ns_ == Ns

        if Ms % 16 or Ks % 16 or Ns % 16 or _scatter_mm2 is None:
            for r in range(c_offsets.shape[0] - 1):
                g0 = c_offsets[r]
                g1 = c_offsets[r + 1]
                for g in range(g0, g1):
                    p, q = pq[g]
                    accumulators[r] += blocks[p] @ others[q]
        else:
            _scatter_mm2(blocks, others, c_offsets, pq, accumulators)
        return accumulators

    elif indices_format == "bsr_strided_mm":
        others_shape = others.shape
        others = as1Dbatch(others)

        B, K, N = others.shape
        assert K % Ks == 0

        c_indices, r_offsets, p_offsets, q_offsets, meta = indices_data[1:]
        SPLIT_N = meta["SPLIT_N"]

        if accumulators is None:
            M = Ms + (r_offsets.max().item() + 1) // N
            accumulators = torch.zeros(
                (*others_shape[:-2], M, N), dtype=blocks.dtype, device=blocks.device
            )
        else:
            M, N_ = accumulators.shape[-2:]
            assert N_ == N

        accumulators_shape = accumulators.shape
        accumulators = as1Dbatch(accumulators)

        Ns = N // SPLIT_N

        if Ms % 16 or Ks % 16 or Ns % 16 or _scatter_mm6 is None:
            accumulators.zero_()
            for b in range(B):
                for r in range(r_offsets.shape[0]):
                    r_ = r_offsets[r].item()
                    g0 = c_indices[r].item()
                    g1 = c_indices[r + 1].item()
                    r0, r1 = divmod(r_, N)
                    acc = accumulators[b, r0 : r0 + Ms, r1 : r1 + Ns]
                    for g in range(g0, g1):
                        p, q = p_offsets[g], q_offsets[g]
                        q0, q1 = divmod(q.item(), N)
                        acc += blocks[p] @ others[b, q0 : q0 + Ks, q1 : q1 + Ns]
        else:
            _scatter_mm6(
                blocks,
                others,
                c_indices,
                r_offsets,
                p_offsets,
                q_offsets,
                meta,
                accumulators,
            )
        return accumulators.view(accumulators_shape)

    elif indices_format == "bsr_strided_mm_compressed":
        others_shape = others.shape
        others = as1Dbatch(others)

        B, K, N = others.shape
        assert K % Ks == 0

        c_indices, r_offsets, q_offsets, meta = indices_data[1:]
        SPLIT_N = meta["SPLIT_N"]

        if accumulators is None:
            M = Ms + (r_offsets.max().item() + 1) // N
            accumulators = torch.zeros(
                (*others_shape[:-2], M, N), dtype=blocks.dtype, device=blocks.device
            )
        else:
            M, N_ = accumulators.shape[-2:]
            assert N_ == N

        accumulators_shape = accumulators.shape
        accumulators = as1Dbatch(accumulators)

        Ns = N // SPLIT_N

        if Ms % 16 or Ks % 16 or Ns % 16 or _scatter_mm6 is None:
            for b in range(B):
                for j in range(len(r_offsets)):
                    r0, r1 = divmod(r_offsets[j].item(), N)
                    m = r0 // Ms
                    n = r1 // Ns
                    c0 = c_indices[m].item()
                    c1 = c_indices[m + 1].item()
                    acc = accumulators[b, r0 : r0 + Ms, r1 : r1 + Ns]
                    for i, p in enumerate(range(c0, c1)):
                        q = q_offsets[n * c1 + (SPLIT_N - n) * c0 + i].item()
                        q0, q1 = divmod(q, N)
                        acc += blocks[p] @ others[b, q0 : q0 + Ks, q1 : q1 + Ns]
        else:
            p_offsets = torch.empty(
                (0,), dtype=q_offsets.dtype, device=q_offsets.device
            )
            _scatter_mm6(
                blocks,
                others,
                c_indices,
                r_offsets,
                p_offsets,
                q_offsets,
                meta,
                accumulators,
            )
        return accumulators.view(accumulators_shape)

    else:
        raise NotImplementedError(indices_format)


def scatter_mm_meta(
    M,
    K,
    N,
    Ms,
    Ks,
    GROUP_SIZE=None,
    TILE_M=None,
    TILE_N=None,
    SPLIT_N=None,
    num_warps=None,
    num_stages=None,
    **extra,
):
    if {TILE_M, TILE_N, SPLIT_N, num_warps, num_stages, GROUP_SIZE} == {None}:
        device_name = torch.cuda.get_device_name()
        meta = get_meta(
            "scatter_mm",
            (M, K, N, Ms, Ks),
            device_name,
            version=(0, torch.float16, 0.5),
        )
        if meta is not None:
            meta.update(**extra)
            return meta
        # The following parameters are optimized for the performance
        # equilibrium points of bsr-dense and dense-dense matrix
        # multiplications when using GPU card NVIDIA GeForce RTX 2060
        # SUPER. For points far from the performance equilibrium
        # points as well as for other GPU cards, the optimal
        # parameters are likely different from what specified below.
        if (M, K, N) == (256,) * 3:
            if (Ms, Ks) == (16, 16):
                SPLIT_N = 1
                TILE_M = 16
                TILE_N = 16
                GROUP_SIZE = 4
                num_stages = 1
                num_warps = 4  # noqa: E225,E231,E702
            elif (Ms, Ks) == (32, 32):
                SPLIT_N = 2
                TILE_M = 32
                TILE_N = 16
                GROUP_SIZE = 4
                num_stages = 1
                num_warps = 4  # noqa: E225,E231,E702
            elif (Ms, Ks) == (64, 64):
                SPLIT_N = 1
                TILE_M = 32
                TILE_N = 32
                GROUP_SIZE = 4
                num_stages = 1
                num_warps = 4  # noqa: E225,E231,E702
            elif (Ms, Ks) == (128, 128):
                SPLIT_N = 1
                TILE_M = 32
                TILE_N = 32
                GROUP_SIZE = 2
                num_stages = 1
                num_warps = 4  # noqa: E225,E231,E702
        elif (M, K, N) == (512,) * 3:
            if (Ms, Ks) == (16, 16):
                SPLIT_N = 8
                TILE_M = 16
                TILE_N = 64
                GROUP_SIZE = 2
                num_stages = 1
                num_warps = 2  # noqa: E225,E231,E702
            elif (Ms, Ks) == (32, 32):
                SPLIT_N = 8
                TILE_M = 32
                TILE_N = 64
                GROUP_SIZE = 4
                num_stages = 1
                num_warps = 2  # noqa: E225,E231,E702
            elif (Ms, Ks) == (64, 64):
                SPLIT_N = 4
                TILE_M = 32
                TILE_N = 128
                GROUP_SIZE = 4
                num_stages = 1
                num_warps = 4  # noqa: E225,E231,E702
            elif (Ms, Ks) == (128, 128):
                SPLIT_N = 8
                TILE_M = 64
                TILE_N = 64
                GROUP_SIZE = 4
                num_stages = 1
                num_warps = 4  # noqa: E225,E231,E702
        elif (M, K, N) == (1024,) * 3:
            if (Ms, Ks) == (16, 16):
                SPLIT_N = 4
                TILE_M = 16
                TILE_N = 128
                GROUP_SIZE = 2
                num_stages = 1
                num_warps = 1  # noqa: E225,E231,E702
            elif (Ms, Ks) == (32, 32):
                SPLIT_N = 8
                TILE_M = 32
                TILE_N = 64
                GROUP_SIZE = 2
                num_stages = 1
                num_warps = 1  # noqa: E225,E231,E702
            elif (Ms, Ks) == (64, 64):
                SPLIT_N = 16
                TILE_M = 64
                TILE_N = 64
                GROUP_SIZE = 4
                num_stages = 1
                num_warps = 2  # noqa: E225,E231,E702
            elif (Ms, Ks) == (128, 128):
                SPLIT_N = 16
                TILE_M = 64
                TILE_N = 64
                GROUP_SIZE = 4
                num_stages = 1
                num_warps = 4  # noqa: E225,E231,E702
            elif (Ms, Ks) == (256, 256):
                SPLIT_N = 16
                TILE_M = 64
                TILE_N = 64
                GROUP_SIZE = 2
                num_stages = 1
                num_warps = 4  # noqa: E225,E231,E702
        elif (M, K, N) == (2048,) * 3:
            if (Ms, Ks) == (16, 16):
                SPLIT_N = 4
                TILE_M = 16
                TILE_N = 128
                GROUP_SIZE = 8
                num_stages = 1
                num_warps = 1  # noqa: E225,E231,E702
            elif (Ms, Ks) == (32, 32):
                SPLIT_N = 4
                TILE_M = 32
                TILE_N = 64
                GROUP_SIZE = 4
                num_stages = 1
                num_warps = 1  # noqa: E225,E231,E702
            elif (Ms, Ks) == (64, 64):
                SPLIT_N = 4
                TILE_M = 64
                TILE_N = 128
                GROUP_SIZE = 4
                num_stages = 1
                num_warps = 4  # noqa: E225,E231,E702
            elif (Ms, Ks) == (128, 128):
                SPLIT_N = 8
                TILE_M = 64
                TILE_N = 64
                GROUP_SIZE = 4
                num_stages = 1
                num_warps = 4  # noqa: E225,E231,E702
            elif (Ms, Ks) == (256, 256):
                SPLIT_N = 4
                TILE_M = 64
                TILE_N = 64
                GROUP_SIZE = 2
                num_stages = 1
                num_warps = 4  # noqa: E225,E231,E702
        elif (M, K, N) == (4096,) * 3:
            if (Ms, Ks) == (16, 16):
                SPLIT_N = 2
                TILE_M = 16
                TILE_N = 256
                GROUP_SIZE = 2
                num_stages = 1
                num_warps = 2  # noqa: E225,E231,E702
            elif (Ms, Ks) == (32, 32):
                SPLIT_N = 2
                TILE_M = 32
                TILE_N = 64
                GROUP_SIZE = 2
                num_stages = 1
                num_warps = 1  # noqa: E225,E231,E702
            elif (Ms, Ks) == (64, 64):
                SPLIT_N = 2
                TILE_M = 64
                TILE_N = 128
                GROUP_SIZE = 2
                num_stages = 1
                num_warps = 4  # noqa: E225,E231,E702

    if SPLIT_N is None:
        # Assume NVIDIA GeForce RTX 2060 SUPER:
        # With the probality of 92% (99.9% when N > 512), the
        # performance will not be worse more than 2% from the
        # performance when using an optimal value.  Otherwise, when N
        # <= 512, using the following heuristics may give upto 15%
        # lower performance.
        SPLIT_N = {
            16: 1,
            32: 2,
            64: 4,
            128: 8,
            256: 16,
            512: 8,
            1024: 16,
            4096: 32,
            8192: 64,
        }.get(N, 16)
        if Ms >= 512 and N >= 2048:
            SPLIT_N = 1
    Ns = N // SPLIT_N
    if TILE_M is None:
        TILE_M = min(64 if Ns < 512 else 32, Ms)
    if TILE_N is None:
        TILE_N = min(64 if Ns < 512 else 32, Ns)
    num_stages = num_stages or 1
    if num_warps is None:
        if min(M, N) > 1024:
            num_warps = {16: 1, 32: 1, 64: 2}.get(Ms, 4)
        elif min(M, N) == 1024:
            num_warps = {16: 1, 32: 1, 64: 2}.get(Ms, 4)
        elif min(M, N) == 256:
            num_warps = {16: 1, 32: 4}.get(Ms, 4)
        else:
            num_warps = {16: 1, 32: 2}.get(Ms, 4)
    GROUP_SIZE = GROUP_SIZE or 4

    assert TILE_M <= Ms, dict(TILE_M=TILE_M, Ms=Ms)
    assert TILE_N <= Ns, dict(TILE_N=TILE_N, Ns=Ns)
    assert Ms <= M, dict(M=M, Ms=Ms)
    assert Ns <= N, dict(N=N, Ns=Ns)
    assert Ks <= K, dict(K=K, Ks=Ks)

    return dict(
        TILE_M=TILE_M,
        TILE_N=TILE_N,
        GROUP_SIZE=GROUP_SIZE,
        num_stages=num_stages,
        num_warps=num_warps,
        SPLIT_N=SPLIT_N,
        **extra,
    )


def bsr_dense_addmm_meta(
    M,
    K,
    N,
    Ms,
    Ks,
    beta,
    alpha,
    SPLIT_N=None,
    GROUP_SIZE_ROW=None,
    num_warps=None,
    num_stages=None,
    sparsity=None,
    dtype=None,
    out_dtype=None,
    _version=0,
    **extra,
):
    # Specifying _version is useful for situations when one wants to
    # discard existing triton kernel tuning results, say, in testing
    # bsr_dense_addmm_meta functionality.
    if dtype is None:
        dtype = torch.float16
    if out_dtype is None:
        out_dtype = dtype
    if sparsity is None:
        sparsity = 0.5
    if {SPLIT_N, num_warps, num_stages, GROUP_SIZE_ROW} == {None}:
        device_name = torch.cuda.get_device_name()
        key = (M, K, N, Ms, Ks, beta == 0, beta == 1, alpha == 1)
        if dtype is out_dtype:
            version_dtype = dtype
        else:
            version_dtype = dtype, out_dtype
        meta = get_meta(
            "bsr_dense_addmm",
            key,
            device_name,
            version=(_version, version_dtype, sparsity),
        )
        if meta is None and sparsity != 0.5:
            meta = get_meta(
                "bsr_dense_addmm",
                key,
                device_name,
                version=(_version, version_dtype, 0.5),
            )
        if meta is None and dtype is not out_dtype:
            meta = get_meta(
                "bsr_dense_addmm", key, device_name, version=(_version, dtype, 0.5)
            )
        if meta is None:
            # find approximate meta such that N % SPLIT_N == 0.
            matching_meta = get_meta(
                "bsr_dense_addmm",
                (*key[:2], "*", *key[3:]),
                device_name,
                version=(_version, version_dtype, 0.5),
            )
            if matching_meta is None and dtype is not out_dtype:
                matching_meta = get_meta(
                    "bsr_dense_addmm",
                    (*key[:2], "*", *key[3:]),
                    device_name,
                    version=(_version, dtype, 0.5),
                )
            for mkey in sorted(matching_meta or {}):
                meta_ = matching_meta[mkey]
                n = mkey[2]
                split_n = meta_["SPLIT_N"]
                c = n // split_n
                if N % c == 0 and n <= N:
                    meta = dict(meta_)
                    meta["SPLIT_N"] = N // c
        if meta is not None:
            meta.update(**extra)
            return meta
        else:
            # see [Computing optimal kernel parameters] in
            # _triton_ops_meta.py for ways to avoid this warning
            # message
            warn_once(
                "bsr_dense_addmm uses non-optimal triton kernel parameters"
                f" for {M=} {K=} {N=} {Ms=}, {Ks=} {beta=} {alpha=} {dtype=} {out_dtype=}"
            )

    SPLIT_N = SPLIT_N or max(N // Ms, 1)
    GROUP_SIZE_ROW = GROUP_SIZE_ROW or 4
    num_stages = num_stages or 1
    num_warps = num_warps or 4
    return dict(
        SPLIT_N=SPLIT_N,
        GROUP_SIZE_ROW=GROUP_SIZE_ROW,
        num_stages=num_stages,
        num_warps=num_warps,
        **extra,
    )


class TensorAsKey:
    """A light-weight wrapper of a tensor that enables storing tensors as
    keys with efficient memory reference based comparision as an
    approximation to data equality based keys.

    Motivation: the hash value of a torch tensor is tensor instance
    based that does not use data equality and makes the usage of
    tensors as keys less useful. For instance, the result of
    ``len({a.crow_indices(), a.crow_indices()})`` is `2`, although,
    the tensor results from `crow_indices` method call are equal, in
    fact, these share the same data storage.
    On the other hand, for efficient caching of tensors we want to
    avoid calling torch.equal that compares tensors item-wise.

    TensorAsKey offers a compromise in that it guarantees key equality
    of tensors that references data in the same storage in the same
    manner and without accessing underlying data. However, this
    approach does not always guarantee correctness. For instance, for
    a complex tensor ``x``, we have ``TensorAsKey(x) ==
    TensorAsKey(x.conj())`` while ``torch.equal(x, x.conj())`` would
    return False.
    """

    def __init__(self, obj):
        def get_tensor_key(obj):
            # Warning: TensorAsKey does not track negative nor
            # conjugate bits of its input object because in the use
            # case of wrapping compressed/plain indices of compressed
            # sparse tensors (that are always integer tensors with
            # non-negative items) these bits are never set. However,
            # when extending the use of TensorAsKey to float or
            # complex tensors, the values of these bits (see is_neg
            # and is_conj methods) must be included in the key as
            # well.
            assert not (obj.dtype.is_floating_point or obj.dtype.is_complex), obj.dtype
            return (
                obj.data_ptr(),
                obj.storage_offset(),
                obj.shape,
                obj.stride(),
                obj.dtype,
            )

        self._obj_ref = weakref.ref(obj)
        if obj.layout is torch.strided:
            self.key = get_tensor_key(obj)
        elif obj.layout in {torch.sparse_csr, torch.sparse_bsr}:
            self.key = (
                get_tensor_key(obj.crow_indices()),
                get_tensor_key(obj.col_indices()),
            )
        elif obj.layout in {torch.sparse_csc, torch.sparse_bsc}:
            self.key = (
                get_tensor_key(obj.ccol_indices()),
                get_tensor_key(obj.row_indices()),
            )
        else:
            raise NotImplementedError(obj.layout)
        self._hash = hash(self.key)

    def __hash__(self):
        return self._hash

    def __eq__(self, other):
        if not isinstance(other, TensorAsKey):
            return False
        if self.obj is None or other.obj is None:
            # dead objects always compare unequal unless these are
            # same objects
            return self is other
        return self.key == other.key

    @property
    def obj(self):
        """Return object if alive, otherwise None."""
        return self._obj_ref()


@lru_cache(maxsize=TORCH_SPARSE_BSR_SCATTER_MM_LRU_CACHE_SIZE)
def _bsr_scatter_mm_indices_data(
    indices_format, M, K, N, Ms, Ks, nbatches, SPLIT_N, compressed_sparse_tensor_as_key
):
    bsr = compressed_sparse_tensor_as_key.obj
    assert bsr is not None
    crow_indices, col_indices = bsr.crow_indices(), bsr.col_indices()
    device = crow_indices.device
    indices_dtype = torch.int32

    if indices_format == "bsr_strided_mm_compressed":
        Ns = N // SPLIT_N
        q_offsets_lst = []
        b = torch.arange(SPLIT_N, dtype=indices_dtype, device=device) * Ns
        for m in range(M // Ms):
            r0 = crow_indices[m].item()
            r1 = crow_indices[m + 1].item()
            if r1 == r0:
                continue
            q_offsets_lst.append(
                (col_indices[r0:r1] * (Ks * N)).repeat(SPLIT_N)
                + b.repeat_interleave(r1 - r0)
            )
        q_offsets = torch.cat(q_offsets_lst)
        crow_indices_diff = crow_indices.diff()
        non_zero_row_indices = crow_indices_diff.nonzero()
        a = non_zero_row_indices * (Ms * N)
        r_offsets = (a + b).view(-1)
        c_indices = crow_indices
        # swizzle operation: mm elements with longer sums are computed first:
        nnz_per_row = crow_indices_diff[non_zero_row_indices].repeat_interleave(SPLIT_N)
        nnz_per_row, indices = nnz_per_row.sort(descending=True, stable=True)
        r_offsets = r_offsets[indices]
        return (indices_format, c_indices, r_offsets, q_offsets)

    elif indices_format == "bsr_strided_mm":
        Ns = N // SPLIT_N
        p_offsets_lst = []
        q_offsets_lst = []
        b = torch.arange(SPLIT_N, dtype=indices_dtype, device=device) * Ns
        for m in range(M // Ms):
            r0 = crow_indices[m].item()
            r1 = crow_indices[m + 1].item()
            if r1 == r0:
                continue
            p_offsets_lst.append(
                torch.arange(r0, r1, dtype=indices_dtype, device=device).repeat(SPLIT_N)
            )
            q_offsets_lst.append(
                (col_indices[r0:r1] * (Ks * N)).repeat(SPLIT_N)
                + b.repeat_interleave(r1 - r0)
            )
        q_offsets = torch.cat(q_offsets_lst)
        crow_indices_diff = crow_indices.diff()
        non_zero_row_indices = crow_indices_diff.nonzero()
        a = non_zero_row_indices * (Ms * N)
        r_offsets = (a + b).view(-1)
        c_indices = torch.cat(
            (
                crow_indices[:1],
                torch.cumsum(
                    crow_indices_diff[non_zero_row_indices].repeat_interleave(SPLIT_N),
                    0,
                ),
            )
        )
        p_offsets = torch.cat(p_offsets_lst)
        return (indices_format, c_indices, r_offsets, p_offsets, q_offsets)

    elif indices_format == "scatter_mm":
        Ns = Ms
        c_indices = [0]
        pq_offsets = []
        # todo: eliminate inner for-loops for efficiency
        for b in range(nbatches):
            for m in range(M // Ms):
                r0 = crow_indices[m].item()
                r1 = crow_indices[m + 1].item()
                for n in range(N // Ns):
                    c_indices.append(c_indices[-1] + r1 - r0)
                    for t in range(r1 - r0):
                        p = r0 + t
                        q = (col_indices[p].item() + b * (K // Ks)) * (N // Ns) + n
                        pq_offsets.append([p, q])

        return (
            indices_format,
            torch.tensor(c_indices, dtype=indices_dtype, device=device),
            torch.tensor(pq_offsets, dtype=indices_dtype, device=device),
        )

    else:
        raise ValueError(
            f"Invalid {indices_format=}. Expected bsr_strided_mm_compressed|bsr_strided_mm|scatter_mm"
        )


def bsr_scatter_mm_indices_data(
    bsr, other, indices_format="bsr_strided_mm_compressed", **meta_input
):
    """Computes indices data for :func:`scatter_mm` used in BSR and
    strided tensor matrix multiplication.
    """
    assert bsr.dense_dim() == 0
    assert bsr.ndim == 2  # no batch dims
    blocksize = bsr.values().shape[-2:]
    M, K = bsr.shape
    Ms, Ks = blocksize
    K_, N = other.shape[-2:]
    assert K_ == K
    nbatches = other.shape[:-2].numel()

    meta = scatter_mm_meta(M, K, N, Ms, Ks, **meta_input)
    if "allow_tf32" not in meta_input:
        meta.update(allow_tf32=bsr.dtype in {torch.float16, torch.bfloat16})
    SPLIT_N = meta["SPLIT_N"]
    indices_data = _bsr_scatter_mm_indices_data(
        indices_format, M, K, N, Ms, Ks, nbatches, SPLIT_N, TensorAsKey(bsr)
    )

    if indices_format == "bsr_strided_mm_compressed":
        meta.update(is_compressed=True)
        return indices_data + (meta,)
    elif indices_format == "bsr_strided_mm":
        meta.update(is_compressed=False)
        return indices_data + (meta,)
    else:
        return indices_data


def bsr_scatter_mm(bsr, other, indices_data=None, out=None):
    """BSR @ strided -> strided"""

    assert bsr.ndim == 2
    assert other.ndim >= 2

    Ms, Ks, Ns = bsr.shape[-2], bsr.shape[-1], other.shape[-1]
    blocksize = bsr.values().shape[-2:]

    if indices_data is None:
        indices_data = bsr_scatter_mm_indices_data(
            bsr, other, indices_format="bsr_strided_mm_compressed"
        )

    indices_format = indices_data[0]

    if out is None:
        out = torch.empty(
            (*other.shape[:-2], Ms, Ns), dtype=bsr.dtype, device=bsr.device
        )
    out_shape = out.shape
    out = as1Dbatch(out)

    if bsr._nnz() == 0:
        out.zero_()
    elif indices_format in {"bsr_strided_mm_compressed", "bsr_strided_mm"}:
        out.zero_()
        scatter_mm(bsr.values(), other, indices_data, accumulators=out)
    elif indices_format == "scatter_mm":
        nbatches = other.shape[:-2].numel()
        accumulators = torch.zeros(
            (
                nbatches * Ms // blocksize[0] * Ns // blocksize[0],
                blocksize[0],
                blocksize[0],
            ),
            dtype=bsr.dtype,
            device=bsr.device,
        )
        others = (
            as1Dbatch(other)
            .transpose(-2, -1)
            .view(
                nbatches,
                Ns // blocksize[0],
                blocksize[0],
                Ks // blocksize[1],
                blocksize[1],
            )
            .movedim(
                (3, 1, 4, 2), (1, 2, 3, 4)
            )  # equivalent to .transpose(-3, -2).transpose(-2, -1).transpose(-4, -3)
            .flatten(0, 2)
        )
        scatter_mm(bsr.values(), others, indices_data, accumulators=accumulators)
        out.copy_(
            accumulators.unflatten(
                0, (nbatches, Ms // blocksize[0], Ns // blocksize[0])
            )
            .movedim(
                (1, 2, 3, 4), (3, 1, 4, 2)
            )  # equivalent to .transpose(-4, -3).transpose(-2, -1).transpose(-3, -2)
            .reshape(nbatches, Ns, Ms)
            .transpose(-2, -1)
        )
    else:
        raise NotImplementedError(indices_format)

    return out.view(out_shape)


def _int_bsr_dense_addmm(
    input: torch.Tensor,
    bsr: torch.Tensor,
    dense: torch.Tensor,
    *,
    beta=1,
    alpha=1,
    left_alpha: Optional[torch.Tensor] = None,
    right_alpha: Optional[torch.Tensor] = None,
    out: Optional[torch.Tensor] = None,
    skip_checks: bool = False,
    max_grid: Optional[Tuple[Optional[int], Optional[int], Optional[int]]] = None,
    meta: Optional[dict] = None,
):
    if out is None and dense.dtype is torch.int8:
        f_name = "_int_bsr_dense_addmm"
        crow_indices = bsr.crow_indices()
        batch_ndim = crow_indices.dim() - 1
        M = bsr.shape[batch_ndim]
        N = dense.shape[-1]
        original_batch_dims_broadcasted = broadcast_batch_dims(f_name, bsr, dense)
        out = torch.empty(
            original_batch_dims_broadcasted + (M, N),
            dtype=torch.int32,
            device=dense.device,
        )
    return bsr_dense_addmm(
        input,
        bsr,
        dense,
        beta=beta,
        alpha=alpha,
        left_alpha=left_alpha,
        right_alpha=right_alpha,
        out=out,
        skip_checks=skip_checks,
        max_grid=max_grid,
        meta=meta,
    )


def bsr_dense_addmm(
    input: torch.Tensor,
    bsr: torch.Tensor,
    dense: torch.Tensor,
    *,
    beta=1,
    alpha=1,
    left_alpha: Optional[torch.Tensor] = None,
    right_alpha: Optional[torch.Tensor] = None,
    out: Optional[torch.Tensor] = None,
    skip_checks: bool = False,
    max_grid: Optional[Tuple[Optional[int], Optional[int], Optional[int]]] = None,
    meta: Optional[dict] = None,
):
    """Compute

      out = beta * input + left_alpha.reshape(-1, 1) * (alpha * (bsr @ dense)) * right_alpha.reshape(1, -1)

    where left_alpha, right_alpha are (* + 1)-D tensors when
    specified, otherwise, these are treated as tensors filled with
    ones.
    """
    f_name = "bsr_dense_addmm"
    values = bsr.values()
    crow_indices = bsr.crow_indices()
    col_indices = bsr.col_indices()
    batch_ndim = crow_indices.dim() - 1
    M, K = bsr.shape[batch_ndim : batch_ndim + 2]
    blocksize = values.shape[batch_ndim + 1 : batch_ndim + 3]
    N = dense.shape[-1]

    # todo: implement checks

    original_batch_dims_broadcasted = broadcast_batch_dims(f_name, bsr, dense)
    if out is None:
        out = dense.new_empty(original_batch_dims_broadcasted + (M, N))

    if bsr._nnz() == 0 or alpha == 0 or N == 0 or M == 0 or K == 0:
        if beta == 0:
            out.zero_()
        else:
            out.copy_(input)
            if beta != 1:
                out.mul_(beta)
        return out

    left_alpha_is_one = False
    right_alpha_is_one = False
    if left_alpha is None:
        left_alpha_is_one = True
        left_alpha = dense.new_empty(()).expand(
            *original_batch_dims_broadcasted, M, N
        )  # not referenced
    else:
        left_alpha = left_alpha.view(*original_batch_dims_broadcasted, M, 1).expand(
            *original_batch_dims_broadcasted, M, N
        )

    if right_alpha is None:
        right_alpha_is_one = True
        right_alpha = dense.new_empty(()).expand(
            *original_batch_dims_broadcasted, M, N
        )  # not referenced
    else:
        right_alpha = right_alpha.view(*original_batch_dims_broadcasted, 1, N).expand(
            *original_batch_dims_broadcasted, M, N
        )
    assert left_alpha.stride()[-1] == 0
    assert right_alpha.stride()[-2] == 0

    if meta is None:
        sparsity = round(1 - bsr._nnz() * blocksize[0] * blocksize[1] / (M * K), 2)
        meta = bsr_dense_addmm_meta(
            M,
            K,
            N,
            blocksize[0],
            blocksize[1],
            beta,
            alpha,
            sparsity=sparsity,
            dtype=dense.dtype,
            out_dtype=out.dtype,
        )
    out_backup = out

    (
        crow_indices,
        col_indices,
        values,
        input,
        dense,
        left_alpha,
        right_alpha,
        out,
    ) = prepare_inputs(bsr, input, dense, left_alpha, right_alpha, out)

    BM, BK = blocksize
    SPLIT_N = meta.get("SPLIT_N", N // BM)
    BN = N // SPLIT_N

    out_untiled = out
    out = tile_to_blocksize(out, (BM, BN))
    dense = tile_to_blocksize(dense, (BK, BN))
    input = tile_to_blocksize(input, (BM, BN))
    left_alpha = tile_to_blocksize(left_alpha, (BM, BN))
    right_alpha = tile_to_blocksize(right_alpha, (BM, BN))

    # tl.dot supports float16, float32, int32 as accumulator types.
    dot_out_dtype = {
        torch.float16: tl.float32,
        torch.bfloat16: tl.float32,
        torch.float32: tl.float64,
        torch.float64: tl.float64,
        torch.int8: tl.int32,
        torch.int32: tl.int32,
    }[out.dtype]

    n_batches = dense.size(0)
    n_block_rows = crow_indices.size(-1) - 1
    n_block_cols = dense.size(-3)

    full_grid = (n_batches, n_block_cols, n_block_rows)
    if max_grid is not None:
        grid_blocks = tuple(max_grid[:3][::-1]) + (None,) * (3 - len(max_grid[:3]))
    else:
        grid_blocks = None

    tensor_dims_map = {
        values: (0, None, None),
        crow_indices: (0, None, -1),
        col_indices: (0, None, None),
        input: (0, -3, -4),
        dense: (0, -3, None),
        left_alpha: (0, -3, -4),
        right_alpha: (0, -3, -4),
        out: (0, -3, -4),
    }

    assert alpha != 0

    def kernel(grid, *sliced_tensors):
        _bsr_strided_addmm_kernel[grid](
            *ptr_stride_extractor(*sliced_tensors),
            beta,
            alpha,
            beta_is_one=beta == 1,
            beta_is_nonzero=beta != 0,
            alpha_is_one=alpha == 1,
            left_alpha_is_one=left_alpha_is_one,
            right_alpha_is_one=right_alpha_is_one,
            BLOCKSIZE_ROW=BM,
            BLOCKSIZE_INNER=BK,
            BLOCKSIZE_COL=BN,
            allow_tf32=dot_out_dtype == tl.float32,
            acc_dtype=dot_out_dtype,
            **meta,
        )

    launch_kernel(kernel, tensor_dims_map, full_grid, grid_blocks)

    if out.data_ptr() != out_backup.data_ptr():
        # prepare_inputs has made a copy of out, copy its content back
        # to out_backup:
        out_backup.copy_(out_untiled.view(out_backup.shape))

    return out_backup


if has_triton():
    import triton
    import triton.language as tl

    @triton.jit
    def _sampled_addmm_kernel(
        alpha,
        beta,
        IS_BETA_ZERO: tl.constexpr,
        BLOCKSIZE_ROW: tl.constexpr,
        BLOCKSIZE_COL: tl.constexpr,
        k,
        TILE_K: tl.constexpr,
        values_ptr,
        values_batch_stride,
        values_nnz_stride,
        values_row_block_stride,
        values_col_block_stride,
        crow_indices_ptr,
        crow_indices_batch_stride,
        crow_indices_stride,
        col_indices_ptr,
        col_indices_batch_stride,
        col_indices_stride,
        mat1_ptr,
        mat1_batch_stride,
        mat1_tiled_row_stride,
        mat1_tiled_col_stride,
        mat1_row_block_stride,
        mat1_col_block_stride,
        mat2_ptr,
        mat2_batch_stride,
        mat2_tiled_row_stride,
        mat2_tiled_col_stride,
        mat2_row_block_stride,
        mat2_col_block_stride,
        acc_dtype: tl.constexpr,
        allow_tf32: tl.constexpr,
    ):
        batch_pid = tl.program_id(axis=1)
        row_block_pid = tl.program_id(axis=0)

        crow_indices_offset_ptr = (
            crow_indices_ptr
            + crow_indices_batch_stride * batch_pid
            + crow_indices_stride * row_block_pid
        )
        nnz_offset = tl.load(crow_indices_offset_ptr)
        nnz_offset_next = tl.load(crow_indices_offset_ptr + crow_indices_stride)

        # Compute nnz for the row with number row_block_pid.
        # If it is zero, skip the row.
        row_nnz = nnz_offset_next - nnz_offset
        if row_nnz == 0:
            return

        row_block_arange = tl.arange(0, BLOCKSIZE_ROW)
        col_block_arange = tl.arange(0, BLOCKSIZE_COL)

        # Pointers are set to the first block of the current row.
        values_block_ptrs = (
            values_ptr
            + values_batch_stride * batch_pid
            + values_nnz_stride * nnz_offset
            + values_row_block_stride * row_block_arange[:, None]
            + values_col_block_stride * col_block_arange[None, :]
        )

        col_index_nnz_ptr = (
            col_indices_ptr
            + col_indices_batch_stride * batch_pid
            + col_indices_stride * nnz_offset
        )

        # Advance mat1 to the current tiled row, ignore columns.
        mat1_block_ptrs = (
            mat1_ptr
            + mat1_batch_stride * batch_pid
            + mat1_tiled_row_stride * row_block_pid
            + mat1_row_block_stride * row_block_arange[:, None]
        )

        # Advance mat2 in batch and block col dimension.
        mat2_block_ptrs = (
            mat2_ptr
            + mat2_batch_stride * batch_pid
            + mat2_col_block_stride * col_block_arange[None, :]
        )

        k_tile_arange = tl.arange(0, TILE_K)
        for _ in range(row_nnz):
            acc_block = tl.zeros((BLOCKSIZE_ROW, BLOCKSIZE_COL), dtype=acc_dtype)

            # find column block index
            col_block = tl.load(col_index_nnz_ptr)

            for k_tile in range(0, k, TILE_K):
                k_offsets = k_tile + k_tile_arange
                mask_k = k_offsets < k

                mat1_block = tl.load(
                    mat1_block_ptrs + mat1_col_block_stride * k_offsets[None, :],
                    mask=mask_k[None, :],
                    other=0.0,
                )

                mat2_block = tl.load(
                    mat2_block_ptrs
                    + mat2_tiled_col_stride * col_block
                    + mat2_row_block_stride * k_offsets[:, None],
                    mask=mask_k[:, None],
                    other=0.0,
                )

                acc_block += tl.dot(
                    mat1_block, mat2_block, allow_tf32=allow_tf32, out_dtype=acc_dtype
                )

            if IS_BETA_ZERO:
                acc_block *= alpha
            else:
                acc_block = alpha * acc_block + beta * tl.load(values_block_ptrs)

            # write result
            tl.store(values_block_ptrs, acc_block.to(values_ptr.dtype.element_ty))

            # advance val/col_index ptrs to the next block in the row.
            values_block_ptrs += values_nnz_stride
            col_index_nnz_ptr += col_indices_stride

    @triton.jit
    def _bsr_strided_dense_rowspace_kernel(
        # values prologue
        values_ptr,
        values_batch_stride,
        values_nnz_stride,
        values_row_block_stride,
        values_col_block_stride,
        # values epilogue
        # crow_indices prologue
        crow_indices_ptr,
        crow_indices_batch_stride,
        crow_indices_stride,
        # crow_indices epilogue
        # col_indices prologue
        col_indices_ptr,
        col_indices_batch_stride,
        col_indices_stride,
        # col_indices epilogue
        # dense prologue
        dense_ptr,
        dense_batch_stride,
        dense_tiled_row_stride,
        dense_tiled_col_stride,
        dense_row_block_stride,
        dense_col_block_stride,
        # dense epilogue
        # output prologue
        output_ptr,
        output_batch_stride,
        output_tiled_row_stride,
        output_tiled_col_stride,
        output_row_block_stride,
        output_col_block_stride,
        # output epilogue
        #
        # gh-113754: Always keep all constexpr arguments at the end of
        # triton kernel arguments list because with triton 2.1 or
        # earlier non-contiguous outputs will corrupt CUDA state due
        # to a triton bug (fixed in openai/triton#2262).
        BLOCKSIZE_ROW: tl.constexpr,
        BLOCKSIZE_COL: tl.constexpr,
        acc_dtype: tl.constexpr,
        allow_tf32: tl.constexpr,
        GROUP_SIZE_ROW: tl.constexpr,
    ):
        batch_pid = tl.program_id(axis=2)
        row_block_pid = tl.program_id(axis=0)
        col_block_pid = tl.program_id(axis=1)
        n_block_rows = tl.num_programs(axis=0)
        n_block_cols = tl.num_programs(axis=1)

        row_block_pid, col_block_pid = tl.swizzle2d(
            row_block_pid, col_block_pid, n_block_rows, n_block_cols, GROUP_SIZE_ROW
        )

        crow_indices_offset_ptr = (
            crow_indices_ptr
            + crow_indices_batch_stride * batch_pid
            + crow_indices_stride * row_block_pid
        )
        nnz_offset = tl.load(crow_indices_offset_ptr)
        nnz_offset_next = tl.load(crow_indices_offset_ptr + crow_indices_stride)

        # Compute nnz for the row with number row_block_pid.
        # If it is zero, skip the row.
        row_nnz = nnz_offset_next - nnz_offset
        if row_nnz == 0:
            return

        row_block_arange = tl.arange(0, BLOCKSIZE_ROW)
        col_block_arange = tl.arange(0, BLOCKSIZE_COL)

        # Pointers are set to the first block of the current row.
        values_block_ptrs = (
            values_ptr
            + values_batch_stride * batch_pid
            + values_nnz_stride * nnz_offset
            + values_row_block_stride * row_block_arange[:, None]
            + values_col_block_stride * col_block_arange[None, :]
        )

        # NOTE: dense is advanced into all dimensions but the tiled row one.
        # That will be advanced in the loop according to values in col_indices.
        dense_block_ptrs = (
            dense_ptr
            + dense_batch_stride * batch_pid
            + dense_tiled_col_stride * col_block_pid
            + dense_row_block_stride * col_block_arange[:, None]
            + dense_col_block_stride * row_block_arange[None, :]
        )

        # Pointers are set to exact write-to locations
        output_ptrs = (
            output_ptr
            + output_batch_stride * batch_pid
            + output_tiled_row_stride * row_block_pid
            + output_tiled_col_stride * col_block_pid
            + output_row_block_stride * row_block_arange[:, None]
            + output_col_block_stride * row_block_arange[None, :]
        )

        # Set pointer to the first nonzero element in the current row
        col_index_nnz_ptr = (
            col_indices_ptr
            + col_indices_batch_stride * batch_pid
            + col_indices_stride * nnz_offset
        )

        output_acc_block = tl.zeros((BLOCKSIZE_ROW, BLOCKSIZE_COL), dtype=acc_dtype)
        for _ in range(row_nnz):
            values_block = tl.load(values_block_ptrs)

            # find which row of dense needs to get loaded
            # for multiplication with values_block.
            dense_row_idx = tl.load(col_index_nnz_ptr)
            dense_block = tl.load(
                dense_block_ptrs + dense_tiled_row_stride * dense_row_idx
            )

            # do block mm
            output_acc_block += tl.dot(
                values_block, dense_block, allow_tf32=allow_tf32, out_dtype=acc_dtype
            )

            # move val/col_index ptrs to the next block in the row
            values_block_ptrs += values_nnz_stride
            col_index_nnz_ptr += col_indices_stride

        # write back the result
        tl.store(output_ptrs, output_acc_block.to(output_ptr.dtype.element_ty))

    def _run_sampled_addmm_kernel(
        alpha,
        beta,
        is_beta_zero,
        blocksize,
        k,
        tile_k,
        values,
        crow_indices,
        col_indices,
        mat1,
        mat2,
        max_grid,
    ):
        n_batches = values.size(0)
        n_block_rows = crow_indices.size(-1) - 1

        full_grid = (n_batches, n_block_rows)
        if max_grid is not None:
            grid_blocks = tuple(max_grid[:2][::-1]) + (None,) * (2 - len(max_grid[:2]))
        else:
            grid_blocks = None
        tensor_dims_map = {
            values: (0, None),
            crow_indices: (0, -1),
            col_indices: (0, None),
            mat1: (0, -4),
            mat2: (0, None),
        }
        if values.dtype in (torch.half, torch.bfloat16):
            acc_dtype = tl.float32
            allow_tf32 = True
        else:
            acc_dtype = tl.float64
            allow_tf32 = False

        def kernel(grid, *sliced_tensors):
            _sampled_addmm_kernel[grid](
                alpha,
                beta,
                is_beta_zero,
                *blocksize,
                k,
                tile_k,
                *ptr_stride_extractor(*sliced_tensors),
                acc_dtype=acc_dtype,
                allow_tf32=allow_tf32,
                num_stages=1,
                num_warps=4,
            )

        launch_kernel(kernel, tensor_dims_map, full_grid, grid_blocks)

    def sampled_addmm(
        input: torch.Tensor,
        mat1: torch.Tensor,
        mat2: torch.Tensor,
        *,
        beta=1.0,
        alpha=1.0,
        out: Optional[torch.Tensor] = None,
        skip_checks: bool = False,
        max_grid: Optional[Tuple[Optional[int], Optional[int], Optional[int]]] = None,
    ):
        f_name = "sampled_addmm"

        check_bsr_layout(f_name, input)
        input_broadcasted = broadcast_batch_dims_bsr(f_name, input, mat1, mat2)

        if not skip_checks:
            check_device(f_name, mat1, input.device)
            check_device(f_name, mat2, input.device)
            if beta != 0.0 and input.dtype is torch.bool:
                check(
                    False,
                    f"{f_name}(): having beta == {beta} not equal to 0.0 with boolean mask is not allowed.",
                )
            if input.dtype is not torch.bool:
                check_dtype(f_name, mat1, input.dtype)
                check_dtype(f_name, mat2, input.dtype)
            else:
                check_dtype(f_name, mat1, mat2.dtype)
            check_mm_compatible_shapes(f_name, mat1, mat2)
            if out is not None:
                check_bsr_layout(f_name, out)
                check_device(f_name, out, mat1.device)
                check_dtype(f_name, out, input.dtype)
                check(
                    out.shape == input_broadcasted.shape and out._nnz() == input._nnz(),
                    f"{f_name}(): Expects `out` to be of shape {input_broadcasted.shape} "
                    f"and with nnz equal to {input_broadcasted._nnz()} "
                    f"but got out.shape = {out.shape} and out.nnz = {out._nnz()}",
                )

        if out is None:
            out = input_broadcasted.to(mat1.dtype, copy=True)
        else:
            out.copy_(input_broadcasted)

        if out.numel() == 0 or out._nnz() == 0:
            return out

        blocksize = out.values().shape[-2:]
        k = mat1.size(-1)

        # NOTE: (m, 0) @ (0, n) == zeros(m, n)
        if alpha == 0.0 or k == 0:
            out.values().mul_(beta)
            return out

        # prepare inputs by reshaping them to be kernel-compatible
        out_backup = out
        crow_indices, col_indices, values, mat1, mat2 = prepare_inputs(out, mat1, mat2)

        mat1 = tile_to_blocksize(mat1, (blocksize[0], k))
        mat2 = tile_to_blocksize(mat2, (k, blocksize[1]))
        tile_k = max(*blocksize)

        _run_sampled_addmm_kernel(
            alpha,
            beta,
            beta == 0.0,
            blocksize,
            k,
            tile_k,
            values,
            crow_indices,
            col_indices,
            mat1,
            mat2,
            max_grid,
        )

        # If nnz x block strides are not the same in out_backup.values and values,
        # it means that out_backup.values and values are not the views of each other,
        # so we have to copy.
        if out_backup.values().stride()[-3:] != values.stride()[-3:]:
            out_backup.values().copy_(values.reshape(out_backup.values().shape))
        return out_backup

    def bsr_dense_mm(
        bsr: torch.Tensor,
        dense: torch.Tensor,
        *,
        out: Optional[torch.Tensor] = None,
        skip_checks: bool = False,
        max_grid: Optional[Tuple[Optional[int], Optional[int], Optional[int]]] = None,
        meta: Optional[dict] = None,
    ):
        f_name = "bsr_dense_mm"
        m, _kl = bsr.shape[-2:]
        if not skip_checks:
            check_bsr_layout(f_name, bsr)
            check_device(f_name, bsr, dense.device)
            check_dtype(f_name, bsr, dense.dtype, (torch.int8,))
            check_mm_compatible_shapes(f_name, bsr, dense)

            n = dense.size(-1)
            row_block, col_block = bsr.values().shape[-2:]
            check_blocksize(f_name, (row_block, col_block))
            check(
                not n % 16,
                f"{f_name}(): dense.size(-1) == {n} should be divisible by 16",
            )
        else:
            _kr, n = dense.shape[-2:]

        original_batch_dims_broadcasted = broadcast_batch_dims(f_name, bsr, dense)

        if out is not None and not skip_checks:
            expected_out_shape = original_batch_dims_broadcasted + (m, n)
            check(
                out.shape == expected_out_shape,
                "bsr_dense_mm(): `out` argument has wrong shape, "
                f"expected {expected_out_shape}, but got {out.shape}.",
            )
            check(
                out.is_contiguous() or out.transpose(-2, -1).is_contiguous(),
                "bsr_dense_mm(): only row-major/col-major `out` arguments are supported, "
                "i.e. (out.is_contiguous() or out.transpose(-2, -1).is_contiguous()) "
                "should be True.",
            )

        # Allocate out
        if out is None:
            out = dense.new_empty(original_batch_dims_broadcasted + (m, n))

        # Short circuit if lhs is zero
        if bsr._nnz() == 0:
            return out.zero_()

        # with beta==0, addmm ignores input content, so we can use out
        # as a placeholder for input because their shapes match:
        return bsr_dense_addmm(out, bsr, dense, alpha=1, beta=0, out=out)

    @triton.jit
    def _bsr_softmax_kernel(
        crow_indices_ptr,
        crow_indices_batch_stride,
        crow_indices_stride,
        values_ptr,
        values_batch_stride,
        values_row_block_stride,
        values_nnz_col_block_stride,
        row_block,
        col_block,
        MAX_ROW_NNZ: tl.constexpr,
        TILE: tl.constexpr,
    ):
        batch_pid = tl.program_id(axis=2)
        row_block_offset_pid = tl.program_id(axis=1)
        row_block_pid = tl.program_id(axis=0)

        crow_indices_offset_ptr = (
            crow_indices_ptr
            + crow_indices_batch_stride * batch_pid
            + crow_indices_stride * row_block_pid
        )
        nnz_offset = tl.load(crow_indices_offset_ptr)
        nnz_offset_next = tl.load(crow_indices_offset_ptr + crow_indices_stride)

        # Compute nnz for the row with number row_block_pid.
        # If it is zero, skip the row.
        row_nnz = nnz_offset_next - nnz_offset
        if row_nnz == 0:
            return

        row_arange = tl.arange(0, TILE)
        mask = row_arange < row_nnz * col_block

        curr_row_values_ptrs = (
            values_ptr
            + values_batch_stride * batch_pid
            + values_row_block_stride * row_block_offset_pid
            + nnz_offset * col_block
        )

        # find max in the row
        row_tile = tl.load(
            curr_row_values_ptrs + row_arange, mask=mask, other=-float("inf")
        ).to(tl.float32)
        max_row_value = tl.max(row_tile, axis=0)
        for _ in range(TILE, MAX_ROW_NNZ, TILE):
            row_arange += TILE
            mask = row_arange < row_nnz * col_block
            row_tile = tl.load(
                curr_row_values_ptrs + row_arange, mask=mask, other=-float("inf")
            ).to(tl.float32)
            curr_max_row_value = tl.max(row_tile, axis=0)
            max_row_value = tl.where(
                max_row_value > curr_max_row_value, max_row_value, curr_max_row_value
            )

        # find denominator for stable softmax
        num = tl.exp(row_tile - max_row_value)
        denom = tl.sum(num, axis=0)
        for _ in range(TILE, MAX_ROW_NNZ, TILE):
            row_arange -= TILE
            mask = row_arange < row_nnz * col_block
            row_tile = tl.load(
                curr_row_values_ptrs + row_arange, mask=mask, other=-float("inf")
            ).to(tl.float32)
            num = tl.exp(row_tile - max_row_value)
            denom += tl.sum(num, axis=0)

        # populate output
        tl.store(
            curr_row_values_ptrs + row_arange,
            (num / denom).to(values_ptr.dtype.element_ty),
            mask=mask,
        )
        for _ in range(TILE, MAX_ROW_NNZ, TILE):
            row_arange += TILE
            mask = row_arange < row_nnz * col_block
            row_tile = tl.load(
                curr_row_values_ptrs + row_arange, mask=mask, other=-float("inf")
            ).to(tl.float32)
            num = tl.exp(row_tile - max_row_value)
            tl.store(
                curr_row_values_ptrs + row_arange,
                (num / denom).to(values_ptr.dtype.element_ty),
                mask=mask,
            )

    def bsr_softmax(input, max_row_nnz=None):
        f_name = "bsr_softmax"

        check_bsr_layout(f_name, input)
        check_dtype(f_name, input, input.dtype)

        if input._nnz() == 0 or input.numel() == 0:
            return input.clone()

        m, n = input.shape[-2:]
        nnz = input._nnz()
        row_block, col_block = input.values().shape[-2:]

        if max_row_nnz is None:
            max_row_nnz = triton.next_power_of_2(n)
        else:
            max_row_nnz = triton.next_power_of_2(max_row_nnz)

        crow_indices = input.crow_indices().unsqueeze(0).flatten(0, -2)
        # reshape values from
        # (b1, ..., bn, nnz, row_block, col_block) to
        # (b1 * ... * bn, row_block, nnz * col_block).
        # This simplifies batch dim manipulation and unlocks
        # the possibility to access all nnzs in any given row.
        if input.values().transpose(-3, -2).is_contiguous():
            # Need to clone to avoid `contiguous` returning a view.
            values = input.values().clone()
        else:
            values = input.values()
        values = (
            values.transpose(-3, -2)
            .contiguous()
            .unsqueeze(0)
            .flatten(0, -4)
            .reshape(-1, row_block, nnz * col_block)
        )
        full_grid = (values.shape[0], row_block, m // row_block)
        grid_blocks = None
        tensor_dims_map = {
            # We span nnz number of blocks, not nnz + 1,
            # hence crow_indices[..., :-1]
            crow_indices[..., :-1]: (0, None, -1),
            values: (0, None, None),
        }

        def kernel(grid, *sliced_tensors):
            _bsr_softmax_kernel[grid](
                *ptr_stride_extractor(*sliced_tensors),
                row_block,
                col_block,
                max_row_nnz,
                # Triton's max numel is bounded by 2 ** 17.
                min(2**17, max_row_nnz),
            )

        launch_kernel(kernel, tensor_dims_map, full_grid, grid_blocks)

        values = (
            values.reshape(-1, row_block, nnz, col_block)
            .transpose(-3, -2)
            .reshape(*input.values().shape)
        )

        return torch.sparse_compressed_tensor(
            input.crow_indices().clone(),
            input.col_indices().clone(),
            values,
            size=input.shape,
            layout=input.layout,
        )

    def _scaled_dot_product_attention(
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        attn_mask: Optional[torch.Tensor],
        dropout_p: float = 0.0,
        is_causal: bool = False,
        scale: Optional[float] = None,
    ):
        f_name = "_scaled_dot_product_attention"
        check(not is_causal, f"{f_name}(): is_causal == True is not supported.")
        check(attn_mask is not None, f"{f_name}(): attn_mask == None is not supported.")
        assert attn_mask is not None

        check(
            attn_mask.layout == torch.sparse_bsr,
            f"{f_name}(): "
            f"attn_mask.layout must be {torch.sparse_bsr}, but got "
            f"attn_mask.layout == {attn_mask.layout}.",
        )

        check_device(f_name, key, query.device)
        check_device(f_name, value, query.device)
        check_device(f_name, attn_mask, query.device)

        check_dtype(f_name, key, query.dtype)
        check_dtype(f_name, value, query.dtype)
        if attn_mask.dtype is not torch.bool:
            check_dtype(f_name, attn_mask, query.dtype)

        sdpa = sampled_addmm(
            attn_mask, query, key.transpose(-2, -1), beta=0.0, skip_checks=False
        )
        if scale is None and query.size(-1) == 0 or scale == 0.0:
            check(
                False,
                f"{f_name}(): current value of scale == {scale} "
                "results in division by zero.",
            )
        scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
        sdpa.values().mul_(scale_factor)
        sdpa = bsr_softmax(sdpa)
        torch.nn.functional.dropout(sdpa.values(), p=dropout_p, inplace=True)
        sdpa = bsr_dense_mm(sdpa, value)
        return sdpa

    @triton.jit
    def _scatter_mm2_kernel(
        M: tl.constexpr,
        K: tl.constexpr,
        N: tl.constexpr,
        blocks_ptr,
        blocks_stride_P,
        blocks_stride_M,
        blocks_stride_K,
        others_ptr,
        others_stride_Q,
        others_stride_K,
        others_stride_N,
        accumulators_ptr,
        accumulators_stride_R,
        accumulators_stride_M,
        accumulators_stride_N,
        pq_offsets_ptr,
        pq_offsets_stride,
        pq_ptr,
        pq_stride_T,
        pq_stride_1,
        dot_out_dtype: tl.constexpr,
        TILE_M: tl.constexpr,
        TILE_N: tl.constexpr,
        allow_tf32: tl.constexpr,
    ):
        Ms = M // TILE_M

        pid_t = tl.program_id(axis=0)

        pid = tl.program_id(axis=1)
        pid_m = pid // Ms
        pid_n = pid % Ms

        rm = pid_m * TILE_M + tl.arange(0, TILE_M)
        rn = pid_n * TILE_N + tl.arange(0, TILE_N)
        rk = tl.arange(0, K)

        A_ptr = blocks_ptr + (
            rm[:, None] * blocks_stride_M + rk[None, :] * blocks_stride_K
        )
        B_ptr = others_ptr + (
            rk[:, None] * others_stride_K + rn[None, :] * others_stride_N
        )

        g0 = tl.load(pq_offsets_ptr + pid_t * pq_offsets_stride)
        g1 = tl.load(pq_offsets_ptr + (pid_t + 1) * pq_offsets_stride)

        if g0 == g1:
            return

        acc_block = tl.zeros((TILE_M, TILE_N), dtype=dot_out_dtype)

        for i in range(g0, g1):
            p = tl.load(pq_ptr + i * pq_stride_T)
            q = tl.load(pq_ptr + i * pq_stride_T + pq_stride_1)
            A = tl.load(A_ptr + p * blocks_stride_P)
            B = tl.load(B_ptr + q * others_stride_Q)
            acc_block += tl.dot(A, B, out_dtype=dot_out_dtype, allow_tf32=allow_tf32)

        C_ptr = (
            accumulators_ptr
            + pid_t * accumulators_stride_R
            + (
                rm[:, None] * accumulators_stride_M
                + rn[None, :] * accumulators_stride_N
            )
        )
        tl.store(C_ptr, acc_block.to(accumulators_ptr.dtype.element_ty))

    def _scatter_mm2(
        blocks: torch.Tensor,
        others: torch.Tensor,
        pq_offsets: torch.Tensor,
        pq_indices: torch.Tensor,
        accumulators: torch.Tensor,
    ):
        _P, M, K = blocks.shape
        _Q, _, N = others.shape

        meta = dict(
            TILE_M=max(16, M // 4), TILE_N=max(16, N // 4), num_stages=1, num_warps=2
        )

        def grid(META):
            return (
                pq_offsets.shape[0] - 1,
                triton.cdiv(M, META["TILE_M"]) * triton.cdiv(N, META["TILE_N"]),
                1,
            )

        dot_out_dtype = {
            torch.float16: tl.float32,
            torch.bfloat16: tl.float32,
            torch.float32: tl.float64,
            torch.float64: tl.float64,
        }[accumulators.dtype]
        if "allow_tf32" not in meta:
            meta.update(allow_tf32=dot_out_dtype == tl.float32)
        _scatter_mm2_kernel[grid](
            M,
            K,
            N,
            blocks,
            blocks.stride(0),
            blocks.stride(1),
            blocks.stride(2),
            others,
            others.stride(0),
            others.stride(1),
            others.stride(2),
            accumulators,
            accumulators.stride(0),
            accumulators.stride(1),
            accumulators.stride(2),
            pq_offsets,
            pq_offsets.stride(0),
            pq_indices,
            pq_indices.stride(0),
            pq_indices.stride(1),
            dot_out_dtype=dot_out_dtype,
            **meta,
        )

    @triton.jit
    def _scatter_mm6_kernel(
        nbatches,
        Ms,
        Ks: tl.constexpr,
        N,
        blocks_ptr,
        blocks_stride_P,
        blocks_stride_M,
        blocks_stride_K,
        others_ptr,
        others_stride_B,
        others_stride_K,
        others_stride_N,
        accumulators_ptr,
        accumulators_stride_B,
        accumulators_stride_M,
        accumulators_stride_N,
        c_indices_ptr,
        r_offsets_ptr,
        p_offsets_ptr,
        q_offsets_ptr,
        is_compressed: tl.constexpr,
        dot_out_dtype: tl.constexpr,
        SPLIT_N: tl.constexpr,
        TILE_M: tl.constexpr,
        TILE_N: tl.constexpr,
        GROUP_SIZE: tl.constexpr,
        allow_tf32: tl.constexpr,
    ):
        Ns = N // SPLIT_N
        BLOCKS_M = Ms // TILE_M
        BLOCKS_N = Ns // TILE_N

        pid_t_ = tl.program_id(axis=0)
        pid = tl.program_id(axis=1)
        pid_b = pid_t_ % nbatches
        pid_t = pid_t_ // nbatches

        num_pid_in_group = GROUP_SIZE * BLOCKS_N
        group_id = pid // num_pid_in_group
        first_pid_m = group_id * GROUP_SIZE
        group_size_m = min(BLOCKS_M - first_pid_m, GROUP_SIZE)
        pid_m = first_pid_m + (pid % group_size_m)
        pid_n = (pid % num_pid_in_group) // group_size_m

        rm = pid_m * TILE_M + tl.arange(0, TILE_M)
        rn = pid_n * TILE_N + tl.arange(0, TILE_N)
        rk = tl.arange(0, Ks)
        A_ptr = blocks_ptr + (
            rm[:, None] * blocks_stride_M + rk[None, :] * blocks_stride_K
        )
        B_ptr = (
            others_ptr
            + pid_b * others_stride_B
            + (rk[:, None] * others_stride_K + rn[None, :] * others_stride_N)
        )

        # When is_compressed is True, r is the only variable that
        # depends on pid_t. This property allows sorting r values
        # before calling the kernel. The sorting of r is equivalent to
        # defining swizzle operator outside of the kernel.
        r = tl.load(r_offsets_ptr + pid_t)

        if is_compressed:
            m = (r // N) // Ms
            n = (r % N) // Ns
            r0 = tl.load(c_indices_ptr + m)
            r1 = tl.load(c_indices_ptr + m + 1)
            g0 = n * r1 + (SPLIT_N - n) * r0
            nnz = r1 - r0
        else:
            g0 = tl.load(c_indices_ptr + pid_t)
            g1 = tl.load(c_indices_ptr + pid_t + 1)
            nnz = g1 - g0

        q_ptr = q_offsets_ptr + g0
        acc_block = tl.zeros((TILE_M, TILE_N), dtype=dot_out_dtype)

        if is_compressed:
            A_ptr += r0 * blocks_stride_P  # type: ignore[possibly-undefined]
            for _ in range(nnz):
                q = tl.load(q_ptr)
                B = tl.load(B_ptr + q)
                A = tl.load(A_ptr)
                acc_block += tl.dot(
                    A, B, out_dtype=dot_out_dtype, allow_tf32=allow_tf32
                )
                A_ptr += blocks_stride_P
                q_ptr += 1
        else:
            p_ptr = p_offsets_ptr + g0
            for _ in range(nnz):
                q = tl.load(q_ptr)
                B = tl.load(B_ptr + q)
                p = tl.load(p_ptr)
                A = tl.load(A_ptr + p * blocks_stride_P)
                p_ptr += 1
                q_ptr += 1
                acc_block += tl.dot(
                    A, B, out_dtype=dot_out_dtype, allow_tf32=allow_tf32
                )

        C_ptr = (
            accumulators_ptr
            + r
            + pid_b * accumulators_stride_B
            + (
                rm[:, None] * accumulators_stride_M
                + rn[None, :] * accumulators_stride_N
            )
        )
        tl.store(C_ptr, acc_block.to(accumulators_ptr.dtype.element_ty))

    def _scatter_mm6(
        blocks: torch.Tensor,
        others: torch.Tensor,
        c_indices: torch.Tensor,
        r_offsets: torch.Tensor,
        p_offsets: torch.Tensor,
        q_offsets: torch.Tensor,
        meta: dict,
        accumulators: torch.Tensor,
        force_contiguous: bool = True,
    ):
        SPLIT_N = meta["SPLIT_N"]
        _P, Ms, Ks = blocks.shape
        B, _K, N = others.shape
        B_, _M, N_ = accumulators.shape
        assert N_ == N
        Ns = N // SPLIT_N
        assert B_ == B

        def grid(META):
            return (
                r_offsets.shape[0] * B,
                triton.cdiv(Ms, META["TILE_M"]) * triton.cdiv(Ns, META["TILE_N"]),
            )

        dot_out_dtype = {
            torch.float16: tl.float32,
            torch.bfloat16: tl.float32,
            torch.float32: tl.float64,
            torch.float64: tl.float64,
        }[accumulators.dtype]
        if "allow_tf32" not in meta:
            meta.update(allow_tf32=dot_out_dtype == tl.float32)

        assert c_indices.stride(0) == 1
        assert r_offsets.stride(0) == 1
        assert p_offsets.stride(0) == 1
        assert q_offsets.stride(0) == 1

        # Re non-contiguous tensor arguments. Sometimes triton kernel
        # launches may fail with
        #
        #   RuntimeError: Triton Error [CUDA]: an illegal memory access was encountered
        #
        # that appears to be case when the size of a non-contiguous
        # tensor argument is larger than a certain threshold. Could
        # this be related to shared memory or L1 cache size of a GPU
        # card? In anycase, ensuring that tensor arguments are
        # contiguous seems to avoid the above exception. So, in the
        # following we'll always convert tensor arguments to
        # C-contiguous tensors.

        if force_contiguous:
            blocks = blocks.contiguous()
            others = others.contiguous()
            if not accumulators.is_contiguous():
                accumulators_ = accumulators.contiguous()
            else:
                accumulators_ = accumulators
        else:
            accumulators_ = accumulators

        _scatter_mm6_kernel[grid](
            B,
            Ms,
            Ks,
            N,
            blocks,
            blocks.stride(0),
            blocks.stride(1),
            blocks.stride(2),
            others,
            others.stride(0),
            others.stride(1),
            others.stride(2),
            accumulators_,
            accumulators_.stride(0),
            accumulators_.stride(1),
            accumulators_.stride(2),
            c_indices,
            r_offsets,
            p_offsets,
            q_offsets,
            dot_out_dtype=dot_out_dtype,
            **meta,
        )

        if force_contiguous and not accumulators.is_contiguous():
            accumulators.copy_(accumulators_)

    @triton.jit
    def _bsr_strided_addmm_kernel(
        # values prologue
        values_ptr,
        values_batch_stride,
        values_nnz_stride,
        values_row_block_stride,
        values_col_block_stride,
        # values epilogue
        # crow_indices prologue
        crow_indices_ptr,
        crow_indices_batch_stride,
        crow_indices_stride,
        # crow_indices epilogue
        # col_indices prologue
        col_indices_ptr,
        col_indices_batch_stride,
        col_indices_stride,
        # col_indices epilogue
        # input prologue
        input_ptr,
        input_batch_stride,
        input_tiled_row_stride,
        input_tiled_col_stride,
        input_row_block_stride,
        input_col_block_stride,
        # input epilogue
        # dense prologue
        dense_ptr,
        dense_batch_stride,
        dense_tiled_row_stride,
        dense_tiled_col_stride,
        dense_row_block_stride,
        dense_col_block_stride,
        # dense epilogue
        # left_alpha prologue
        left_alpha_ptr,
        left_alpha_batch_stride,
        left_alpha_tiled_row_stride,
        left_alpha_tiled_col_stride: tl.constexpr,
        left_alpha_row_block_stride,
        left_alpha_col_block_stride: tl.constexpr,
        # left_alpha epilogue
        # right_alpha prologue
        right_alpha_ptr,
        right_alpha_batch_stride,
        right_alpha_tiled_row_stride: tl.constexpr,
        right_alpha_tiled_col_stride,
        right_alpha_row_block_stride: tl.constexpr,
        right_alpha_col_block_stride,
        # right_alpha epilogue
        # output prologue
        output_ptr,
        output_batch_stride,
        output_tiled_row_stride,
        output_tiled_col_stride,
        output_row_block_stride,
        output_col_block_stride,
        # output epilogue
        beta,
        alpha,
        beta_is_one: tl.constexpr,
        beta_is_nonzero: tl.constexpr,
        alpha_is_one: tl.constexpr,
        left_alpha_is_one: tl.constexpr,
        right_alpha_is_one: tl.constexpr,
        BLOCKSIZE_ROW: tl.constexpr,
        BLOCKSIZE_COL: tl.constexpr,
        BLOCKSIZE_INNER: tl.constexpr,
        acc_dtype: tl.constexpr,
        allow_tf32: tl.constexpr,
        GROUP_SIZE_ROW: tl.constexpr,
        SPLIT_N: tl.constexpr,
    ):
        # left/right_alpha tensors are originally (* + 1)-dimensional
        assert left_alpha_tiled_col_stride == 0
        assert left_alpha_col_block_stride == 0
        assert right_alpha_tiled_row_stride == 0
        assert right_alpha_row_block_stride == 0

        batch_pid = tl.program_id(axis=2)
        row_block_pid = tl.program_id(axis=0)
        col_block_pid = tl.program_id(axis=1)
        n_block_rows = tl.num_programs(axis=0)
        n_block_cols = tl.num_programs(axis=1)

        row_block_pid, col_block_pid = tl.swizzle2d(
            row_block_pid, col_block_pid, n_block_rows, n_block_cols, GROUP_SIZE_ROW
        )

        crow_indices_offset_ptr = (
            crow_indices_ptr
            + crow_indices_batch_stride * batch_pid
            + crow_indices_stride * row_block_pid
        )
        nnz_offset = tl.load(crow_indices_offset_ptr)
        nnz_offset_next = tl.load(crow_indices_offset_ptr + crow_indices_stride)

        # Compute nnz for the row with number row_block_pid.
        row_nnz = nnz_offset_next - nnz_offset

        row_block_arange = tl.arange(0, BLOCKSIZE_ROW)
        inner_block_arange = tl.arange(0, BLOCKSIZE_INNER)
        col_block_arange = tl.arange(0, BLOCKSIZE_COL)

        # Pointers are set to the first block of the current row.
        values_block_ptrs = (
            values_ptr
            + values_batch_stride * batch_pid
            + values_nnz_stride * nnz_offset
            + values_row_block_stride * row_block_arange[:, None]
            + values_col_block_stride * inner_block_arange[None, :]
        )

        # NOTE: dense is advanced into all dimensions but the tiled row one.
        # That will be advanced in the loop according to values in col_indices.
        dense_block_ptrs = (
            dense_ptr
            + dense_batch_stride * batch_pid
            + dense_tiled_col_stride * col_block_pid
            + dense_row_block_stride * inner_block_arange[:, None]
            + dense_col_block_stride * col_block_arange[None, :]
        )

        # Pointers are set to exact write-to locations
        output_ptrs = (
            output_ptr
            + output_batch_stride * batch_pid
            + output_tiled_row_stride * row_block_pid
            + output_tiled_col_stride * col_block_pid
            + output_row_block_stride * row_block_arange[:, None]
            + output_col_block_stride * col_block_arange[None, :]
        )

        # Set pointer to the first nonzero element in the current row
        col_index_nnz_ptr = (
            col_indices_ptr
            + col_indices_batch_stride * batch_pid
            + col_indices_stride * nnz_offset
        )

        output_acc_block = tl.zeros((BLOCKSIZE_ROW, BLOCKSIZE_COL), dtype=acc_dtype)

        for _ in range(row_nnz):
            values_block = tl.load(values_block_ptrs)

            # find which row of dense needs to get loaded
            # for multiplication with values_block.
            dense_row_idx = tl.load(col_index_nnz_ptr)
            dense_block = tl.load(
                dense_block_ptrs + dense_tiled_row_stride * dense_row_idx
            )

            # do block mm
            output_acc_block += tl.dot(
                values_block, dense_block, allow_tf32=allow_tf32, out_dtype=acc_dtype
            )

            # move val/col_index ptrs to the next block in the row
            values_block_ptrs += values_nnz_stride
            col_index_nnz_ptr += col_indices_stride

        if not alpha_is_one:
            output_acc_block *= alpha

        if not left_alpha_is_one:
            left_alpha_ptrs = (
                left_alpha_ptr
                + left_alpha_batch_stride * batch_pid
                + left_alpha_tiled_row_stride * row_block_pid
                + left_alpha_tiled_col_stride * col_block_pid
                + left_alpha_row_block_stride * row_block_arange[:, None]
                + left_alpha_col_block_stride * col_block_arange[None, :]
            )
            output_acc_block *= tl.load(left_alpha_ptrs)

        if not right_alpha_is_one:
            right_alpha_ptrs = (
                right_alpha_ptr
                + right_alpha_batch_stride * batch_pid
                + right_alpha_tiled_row_stride * row_block_pid
                + right_alpha_tiled_col_stride * col_block_pid
                + right_alpha_row_block_stride * row_block_arange[:, None]
                + right_alpha_col_block_stride * col_block_arange[None, :]
            )
            output_acc_block *= tl.load(right_alpha_ptrs)

        if beta_is_nonzero:
            input_ptrs = (
                input_ptr
                + input_batch_stride * batch_pid
                + input_tiled_row_stride * row_block_pid
                + input_tiled_col_stride * col_block_pid
                + input_row_block_stride * row_block_arange[:, None]
                + input_col_block_stride * col_block_arange[None, :]
            )
            if beta_is_one:
                output_acc_block += tl.load(input_ptrs)
            else:
                output_acc_block += beta * tl.load(input_ptrs)

        # write back the result
        tl.store(output_ptrs, output_acc_block.to(output_ptr.dtype.element_ty))

else:
    bsr_softmax = None  # type: ignore[assignment]
    bsr_dense_mm = None  # type: ignore[assignment]
    sampled_addmm = None  # type: ignore[assignment]
    _scaled_dot_product_attention = None  # type: ignore[assignment]
    _scatter_mm2 = None  # type: ignore[assignment]
    _scatter_mm6 = None  # type: ignore[assignment]
    _bsr_strided_addmm_kernel = None  # type: ignore[assignment]