File: common_fsdp.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1582 lines) | stat: -rw-r--r-- 57,857 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
# mypy: allow-untyped-defs
# Owner(s): ["oncall: distributed"]

import contextlib
import os
import re
import sys
import time
import warnings
from abc import ABC, abstractmethod
from contextlib import nullcontext
from copy import deepcopy
from enum import auto, Enum
from functools import wraps
from typing import (
    Any,
    Callable,
    cast,
    Dict,
    List,
    no_type_check,
    Optional,
    Tuple,
    Type,
    Union,
)
from unittest import mock

import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.fsdp import (
    CPUOffload,
    fully_shard,
    FullyShardedDataParallel as FSDP,
)
from torch.distributed.fsdp._common_utils import TrainingState
from torch.distributed.fsdp._fully_shard._fsdp_param_group import (
    FSDPParamGroup,
    RegisterPostBackwardFunction,
)
from torch.distributed.fsdp._init_utils import NO_RESHARD_AFTER_FORWARD_STRATEGIES
from torch.distributed.fsdp.fully_sharded_data_parallel import (
    BackwardPrefetch,
    MixedPrecision,
    ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy, wrap
from torch.distributed.tensor import distribute_tensor, DTensor, Shard
from torch.distributed.tensor.parallel import (
    ColwiseParallel,
    parallelize_module,
    RowwiseParallel,
    SequenceParallel,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import (
    MultiProcessTestCase,
    MultiThreadedTestCase,
    run_subtests,
    TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
    FILE_SCHEMA,
    get_cycles_per_ms,
    TEST_CUDA,
    TEST_HPU,
)
from torch.utils._triton import has_triton


DEVICE_COUNT = 4  # default

if TEST_CUDA:
    DEVICE_TYPE = "cuda"
    DISTRIBUTED_BACKEND = "nccl"
    DEVICE_COUNT = torch.cuda.device_count()
elif TEST_HPU:
    DEVICE_TYPE = "hpu:0"
    DISTRIBUTED_BACKEND = "hccl"
else:
    DEVICE_TYPE = "cpu"
    DISTRIBUTED_BACKEND = "gloo"
    DEVICE_COUNT = 1


class FSDPInitMode(Enum):
    # No FSDP wrapping
    NO_FSDP = auto()
    # FSDP recursive wrapping
    RECURSIVE = auto()
    # TODO: FSDP non-recursive wrapping
    # NONRECURSIVE = auto()


class DEVICEInitMode(Enum):
    # Move model to DEVICE before passing to the FSDP constructor
    DEVICE_BEFORE = auto()
    # Move model to DEVICE after passing to the FSDP constructor
    DEVICE_AFTER = auto()
    # Keep on CPU
    DEVICE_NEVER = auto()


class FSDPTestModel(nn.Module, ABC):
    """This defines the interface expected from all models used commonly for
    FSDP unit tests."""

    @abstractmethod
    def get_input(self, device) -> Tuple[torch.Tensor, ...]:
        """Returns an input for the model as as tuple."""
        ...

    @abstractmethod
    def get_loss(self, input, output) -> torch.Tensor:
        """Returns the loss given the input and output."""
        ...

    @abstractmethod
    def run_backward(self, loss) -> None:
        """Runs the backward pass (e.g. including ``loss.backward()``)."""
        ...

    @staticmethod
    @abstractmethod
    def init(*args: Any, **kwargs: Any) -> nn.Module:
        """Initializes an instance of this model."""
        ...


def _assert_module_states(
    model: nn.Module,
    process_group: dist.ProcessGroup,
    assert_fn: Callable,
):
    """
    All-gathers module states across ranks and calls ``assert_fn`` on each pair
    of corresponding states from rank 0 and a nonzero rank. For example, if
    ``assert_fn`` is ``self.assertEqual()``, then this checks that all module
    states are equal across ranks.
    """
    # Include names for debugging convenience
    named_module_states = [
        (param_name, param.detach().cpu())
        for param_name, param in model.named_parameters()
    ]
    named_module_states += [
        (buffer_name, buffer.detach().cpu())
        for buffer_name, buffer in model.named_buffers()
    ]
    world_size = dist.get_world_size(process_group)
    olist = [None for _ in range(world_size)]
    dist.all_gather_object(olist, named_module_states, group=process_group)
    rank0_states = olist[0]
    assert rank0_states is not None  # mypy
    for state in olist[1:]:
        assert state is not None  # mypy
        for (_, p1), (_, p2) in zip(rank0_states, state):
            assert_fn(p1, p2)


def get_devtype():
    return torch.device(DEVICE_TYPE)


def _zero_model(
    model: nn.Module,
    zero_buffers: bool = False,
    summon_full=True,
):
    """Zeros the parameters and optionally buffers of ``model`` in place."""
    ctx = FSDP.summon_full_params(model) if summon_full else nullcontext()
    with ctx:
        for param in model.parameters():
            with torch.no_grad():
                param.zero_()
        if zero_buffers:
            for buffer in model.buffers():
                with torch.no_grad():
                    buffer.zero_()


def _get_state_dict(model, cpu_offload=False, half=False):
    if not cpu_offload:
        model = model.to(DEVICE_TYPE)
    if half:
        model.half()

    return model.state_dict()


def subtest_name(test_name_mapping, *args):
    return "_".join(
        [test_name_mapping[str(s)] if s is not None else "none" for s in args]
    )


def _broadcast_state_dict(rank, state_dict):
    # For non-FSDP roots, some parts of the model state on rank 0 may
    # not be on CPU, so we move everything to CPU to avoid issues like:
    # https://github.com/pytorch/pytorch/issues/77113.
    for param_name, param in state_dict.items():
        if param.device != torch.device("cpu"):
            state_dict[param_name] = param.cpu()

    olist = [state_dict if rank == 0 else None]
    dist.broadcast_object_list(olist)
    state_dict = cast(Dict[str, torch.Tensor], olist[0])
    # Ensure that the state is on DEVICE
    for param_name in state_dict.keys():
        state_dict[param_name] = state_dict[param_name].to(DEVICE_TYPE)
    return state_dict


def get_full_params(model: nn.Module, recurse: bool = True):
    """
    Returns the full unsharded parameters of ``model``. Any FSDP-managed
    parameters offloaded to CPU are moved to GPU in the returned list.

    Args:
        recurse (bool): If ``False``, only unshards the parameters immediate to
            ``model``; if ``True``, recurses through the module hierarchy
            rooted at ``model``.
    """
    with FSDP.summon_full_params(model, recurse=recurse):
        return deepcopy(list(model.parameters()))


def _move_to_device(model: nn.Module, move_to_device: bool):
    return model.to(DEVICE_TYPE) if move_to_device else model


def _maybe_wrap_fsdp(model: nn.Module, wrap_fsdp: bool, *args, **kwargs):
    return model if not wrap_fsdp else FSDP(model, *args, **kwargs)


class DummyProcessGroup:
    def __init__(self, rank: int, size: int):
        self._rank = rank
        self._size = size

    def rank(self) -> int:
        return self._rank

    def size(self) -> int:
        return self._size

    def allreduce(self, *args, **kwargs):
        dist_wait = mock.Mock()

        def get_future():
            future: torch.futures.Future = torch.futures.Future()
            future.set_result(1)
            return future

        dist_wait.get_future = get_future
        return dist_wait


class TransformerWithSharedParams(FSDPTestModel):
    def __init__(
        self,
        group: dist.ProcessGroup,
        device_init_mode: DEVICEInitMode,
        add_bn: bool,
        deterministic: bool,
    ):
        super().__init__()
        self.rank = group.rank()
        self.world_size = group.size()
        if deterministic:
            torch.manual_seed(0)
        d_vocab = 23
        d_model = 16

        self.embed_tokens = nn.Embedding(d_vocab, d_model)
        self.transformer = nn.Transformer(
            d_model=d_model,
            num_encoder_layers=2,
            num_decoder_layers=2,
            dim_feedforward=8,
            dropout=0.1,
        )
        self.output_proj = nn.Linear(d_model, d_vocab)

        # share the embedding and output projection weights
        self.output_proj.weight = self.embed_tokens.weight
        self.register_buffer(
            "vocab_bias", self.embed_tokens.weight.new_ones((d_model,))
        )
        self.register_buffer(
            "long_buffer",
            torch.zeros_like(self.vocab_bias, dtype=torch.long),  # type: ignore[arg-type]
        )  # type: ignore[arg-type]

        self.bs = 2
        self.bn = torch.nn.BatchNorm1d(self.bs) if add_bn else torch.nn.Identity()
        if device_init_mode == DEVICEInitMode.DEVICE_BEFORE:
            self = self.to(DEVICE_TYPE)
        if deterministic:
            self.eval()

    def get_input(self, device):
        torch.manual_seed(1 + self.rank)  # keep everything deterministic
        src = torch.arange(12, device=device).view(6, self.bs)  # T x B
        tgt = torch.arange(self.bs * 4, device=device).view(4, self.bs)  # T x B
        return (src, tgt)

    def forward(self, src_ids, tgt_ids):
        src = self.embed_tokens(src_ids)
        src = src + self.vocab_bias + self.long_buffer.type_as(src)  # type: ignore[operator]
        tgt = self.embed_tokens(tgt_ids)
        tgt = self.bn(tgt)
        x = self.transformer(src, tgt)
        return self.output_proj(x)

    def get_loss(self, input, output):
        _, tgt = input
        return nn.functional.cross_entropy(
            output.view(-1, output.size(-1)), tgt.view(-1), reduction="sum"
        )

    def run_backward(self, loss):
        loss.backward()

    @staticmethod
    def init(
        group: dist.ProcessGroup,
        fsdp_init_mode: FSDPInitMode,
        device_init_mode: DEVICEInitMode,
        fsdp_kwargs: Optional[Dict[str, Any]] = None,
        deterministic: bool = False,
        add_bn: bool = True,
    ) -> Union[nn.Module, FSDP]:
        """
        Initializes a :class:`TransformerWithSharedParams` instance.

        Args:
            fsdp_init_mode (FSDPInitMode): If ``NO_FSDP``, then does not wrap
                any modules with FSDP. If ``RECURSIVE``, then wraps with
                top-level FSDP. By default, the top-level FSDP uses the
                ``ModuleWrapPolicy`` for encoder and decoder layers, but a
                different auto wrap policy may be specified via
                ``fsdp_kwargs``.
            device_init_mode (DEVICEInitMode): Determines model movement to DEVICE.
            fsdp_kwargs (Optional[Dict[str, Any]]): Optional keyword arguments
                forwarded to the FSDP constructor.
            deterministic (bool): Whether to make the model deterministic
                across constructions.
            add_bn (bool): Whether to include batch norm in the model.
        """

        if fsdp_kwargs is None:
            fsdp_kwargs = {}
        if fsdp_init_mode == FSDPInitMode.NO_FSDP:
            if isinstance(group, tuple):
                pg = group[0]
            else:
                pg = group
            return TransformerWithSharedParams(
                pg, device_init_mode, add_bn, deterministic
            )
        elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
            # Default to the `ModuleWrapPolicy`
            if "auto_wrap_policy" not in fsdp_kwargs:
                auto_wrap_policy = ModuleWrapPolicy(
                    {
                        TransformerEncoderLayer,
                        TransformerDecoderLayer,
                    }
                )
            else:
                auto_wrap_policy = fsdp_kwargs.pop("auto_wrap_policy")

            if (
                "sharding_strategy" in fsdp_kwargs
                and fsdp_kwargs["sharding_strategy"]
                in {ShardingStrategy.HYBRID_SHARD, ShardingStrategy._HYBRID_SHARD_ZERO2}
                and not isinstance(group, tuple)
            ):
                fsdp_pg = None
            else:
                fsdp_pg = group

            if isinstance(group, tuple):
                tformer_pg = group[0]
            else:
                tformer_pg = group

            m = TransformerWithSharedParams(
                tformer_pg, device_init_mode, add_bn, deterministic
            )
            fsdp_model = FSDP(
                m,
                fsdp_pg,
                auto_wrap_policy=auto_wrap_policy,
                **fsdp_kwargs,
            )
            if device_init_mode == DEVICEInitMode.DEVICE_AFTER:
                fsdp_model = fsdp_model.to(DEVICE_TYPE)
            return fsdp_model
        raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}")

    def get_ignored_modules(self):
        return [self.transformer]


class NestedWrappedModule(FSDPTestModel):
    def __init__(
        self,
        group: dist.ProcessGroup,
        wrap_fsdp: bool,
        device_init_mode: DEVICEInitMode,
        deterministic: bool,
        **fsdp_kwargs,
    ):
        super().__init__()
        self.rank = group.rank()
        self.world_size = group.size()
        move_to_device = device_init_mode == DEVICEInitMode.DEVICE_BEFORE

        def _maybe_wrap(layer):
            if wrap_fsdp:
                return FSDP(layer, group, **fsdp_kwargs)
            return layer

        if deterministic:
            torch.manual_seed(0)
        self.module = nn.Sequential(
            _move_to_device(nn.Linear(8, 4), move_to_device),
            _maybe_wrap(
                nn.Sequential(
                    _maybe_wrap(_move_to_device(nn.Linear(4, 16), move_to_device)),
                    _move_to_device(nn.Linear(16, 16), move_to_device),
                ),
            ),
            _maybe_wrap(_move_to_device(nn.Linear(16, 4), move_to_device)),
            _move_to_device(nn.Linear(4, 8), move_to_device),
        )

    def get_input(self, device):
        torch.manual_seed(1 + self.rank)  # keep everything deterministic
        return (torch.rand(4, 8, device=device),)

    def forward(self, x):
        return self.module(x)

    def get_loss(self, input, output):
        loss = output.sum()
        return loss

    def run_backward(self, loss):
        loss.backward()

    @staticmethod
    def init(
        group: dist.ProcessGroup,
        fsdp_init_mode: FSDPInitMode,
        device_init_mode: DEVICEInitMode,
        fsdp_kwargs: Optional[Dict[str, Any]] = None,
        deterministic: bool = False,
    ) -> nn.Module:
        """
        Initializes a :class:`NestedWrappedModule` instance.

        Args:
            fsdp_init_mode (FSDPInitMode): If ``NO_FSDP``, then does not wrap
                any modules with FSDP. If ``RECURSIVE``, then wraps some nested
                modules with FSDP but not the top-level module. The model may
                later be wrapped with a top-level FSDP external to this method
                if desired.
            device_init_mode (DEVICEInitMode): Determines model movement to DEVICE.
            fsdp_kwargs (Optional[Dict[str, Any]]): Optional keyword arguments
                forwarded to the FSDP constructor.
            deterministic (bool): Whether to make the model deterministic
                across constructions.
        """
        if fsdp_kwargs is None:
            fsdp_kwargs = {}
        if fsdp_init_mode == FSDPInitMode.NO_FSDP:
            return NestedWrappedModule(
                group,
                wrap_fsdp=False,
                device_init_mode=device_init_mode,
                deterministic=deterministic,
            )
        elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
            # Does not wrap with top-level FSDP
            fsdp_model = NestedWrappedModule(
                group,
                wrap_fsdp=True,
                device_init_mode=device_init_mode,
                deterministic=deterministic,
                **fsdp_kwargs,
            )
            if device_init_mode == DEVICEInitMode.DEVICE_AFTER:
                fsdp_model = fsdp_model.to(DEVICE_TYPE)
            return fsdp_model
        raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}")


class AlwaysWrapNestedWrappedModule(NestedWrappedModule):
    @staticmethod
    def init(
        group: dist.ProcessGroup,
        fsdp_init_mode: FSDPInitMode,
        device_init_mode: DEVICEInitMode,
        fsdp_kwargs: Optional[Dict[str, Any]] = None,
        deterministic: bool = False,
    ):
        """
        Initializes a :class:`NestedWrappedModule` instance, but unlike
        :meth:`NestedWrappedModule.init`, for the ``RECURSIVE`` init mode, this
        wraps with top-level FSDP and the ``always_wrap_policy()`` auto wrap
        policy.
        """
        model = super(
            AlwaysWrapNestedWrappedModule, AlwaysWrapNestedWrappedModule
        ).init(
            group=group,
            fsdp_init_mode=FSDPInitMode.NO_FSDP,
            device_init_mode=device_init_mode,
            fsdp_kwargs=fsdp_kwargs,
            deterministic=deterministic,
        )
        if fsdp_init_mode == FSDPInitMode.NO_FSDP:
            return model
        elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
            fsdp_kwargs = fsdp_kwargs or {}
            fsdp_model = FSDP(model, auto_wrap_policy=always_wrap_policy, **fsdp_kwargs)
            if device_init_mode == DEVICEInitMode.DEVICE_AFTER:
                fsdp_model = fsdp_model.to(DEVICE_TYPE)
            return fsdp_model


class NonUniformReqGradNWM(NestedWrappedModule):
    def __init__(
        self,
        group: dist.ProcessGroup,
        wrap_fsdp: bool,
        device_init_mode: DEVICEInitMode,
        deterministic: bool,
        **fsdp_kwargs,
    ):
        super(NestedWrappedModule, self).__init__()
        # This `__init__` only differs from `NestedWrappedModule.__init__` in that
        # the last two `nn.Linear` layers are FSDP wrapped in a `nn.Sequential`
        # container. This arrangement results in all elements of the last two parameters
        # residing on a single rank. Freezing all parameters except those two allows us
        # to verify that `ShardedGradScaler` accommodates situations where some ranks
        # have no (non-zero sized) parameter shards.
        self.rank = group.rank()
        self.world_size = group.size()
        move_to_device = device_init_mode == DEVICEInitMode.DEVICE_BEFORE

        def _maybe_wrap(layer):
            if wrap_fsdp:
                return FSDP(layer, group, **fsdp_kwargs)
            return layer

        if deterministic:
            torch.manual_seed(0)
        self.module = nn.Sequential(
            _move_to_device(nn.Linear(8, 4), move_to_device),
            _maybe_wrap(
                nn.Sequential(
                    _maybe_wrap(_move_to_device(nn.Linear(4, 16), move_to_device)),
                    _move_to_device(nn.Linear(16, 16), move_to_device),
                ),
            ),
            _maybe_wrap(
                nn.Sequential(
                    _move_to_device(nn.Linear(16, 4), move_to_device),
                    _move_to_device(nn.Linear(4, 8), move_to_device),
                ),
            ),
        )

    @staticmethod
    def _set_nonuniform_req_grad(model, req_grad_mask) -> None:
        for n, p in model.named_parameters():
            if not re.match(req_grad_mask, n):
                p.requires_grad_(False)

    @staticmethod
    def init(
        group: dist.ProcessGroup,
        fsdp_init_mode: FSDPInitMode,
        device_init_mode: DEVICEInitMode,
        fsdp_kwargs: Optional[Dict[str, Any]] = None,
        deterministic: bool = False,
    ):
        """
        Initializes a :class:`NestedWrappedModule` instance, but unlike
        :meth:`NestedWrappedModule.init`, it wraps a second :class:`torch.nn.Sequential`
        container to enable the desired non-uniform ``requires_grad``
        ``use_orig_params=True`` tests. For both ``RECURSIVE`` and ``NO_FSDP``
        init modes, freezes all parameters except the last two to validate
        ``ShardedGradScaler`` support for ranks with no (non-zero sized) local shards in
        FSDP ``use_orig_params=True`` mode.
        """
        # The parameters that should remain unfrozen are in `module.2.1`. The regex
        # pattern below matches the relevant parameter names both with and without
        # an interstitial FSDP module indicator (`_fsdp_wrapped_module`) present.
        req_grad_pattern = re.compile(r"module\.2.*\.1.*")
        if fsdp_init_mode == FSDPInitMode.NO_FSDP:
            ddp_model = NonUniformReqGradNWM(
                group,
                wrap_fsdp=False,
                device_init_mode=device_init_mode,
                deterministic=deterministic,
            )
            NonUniformReqGradNWM._set_nonuniform_req_grad(ddp_model, req_grad_pattern)
            return ddp_model
        elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
            if fsdp_kwargs is None:
                fsdp_kwargs = {}
            fsdp_model = NonUniformReqGradNWM(
                group,
                wrap_fsdp=True,
                device_init_mode=device_init_mode,
                deterministic=deterministic,
                **fsdp_kwargs,
            )
            if device_init_mode == DEVICEInitMode.DEVICE_AFTER:
                fsdp_model = fsdp_model.to(DEVICE_TYPE)
            NonUniformReqGradNWM._set_nonuniform_req_grad(fsdp_model, req_grad_pattern)
            return fsdp_model
        raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}")


class ModuleWithDelay(FSDPTestModel):
    """This class wraps a :class:`FSDPTestModel` to optionally add a delay
    after computing the loss and/or before the gradient reduction."""

    def __init__(
        self,
        module: nn.Module,
        delay_after_loss_ms: int,
        delay_before_reduction_ms: int,
    ):
        super().__init__()
        self.delay_after_loss_ms = delay_after_loss_ms
        self.delay_before_reduction_ms = delay_before_reduction_ms
        self.module = module

    def get_input(self, device):
        return self.module.get_input(device)  # type: ignore[operator]

    def forward(self, x):
        return self.module(x)

    def get_loss(self, input, output):
        loss = self.module.get_loss(input, output)  # type: ignore[operator]
        if self.delay_after_loss_ms > 0:
            if TEST_HPU:
                time.sleep(self.delay_after_loss_ms / 1000)
            elif TEST_CUDA:
                torch.cuda._sleep(int(self.delay_after_loss_ms * get_cycles_per_ms()))

        return loss

    def run_backward(self, loss):
        orig_reduce_scatter = torch.distributed.reduce_scatter_tensor

        def _delayed_reduce_scatter(*args, **kwargs):
            if self.delay_before_reduction_ms > 0:
                if TEST_CUDA:
                    torch.cuda._sleep(
                        int(self.delay_before_reduction_ms * get_cycles_per_ms())
                    )
                elif TEST_HPU:
                    time.sleep(self.delay_before_reduction_ms / 1000)
            return orig_reduce_scatter(*args, **kwargs)

        with mock.patch(
            "torch.distributed.reduce_scatter_tensor", _delayed_reduce_scatter
        ):
            self.module.run_backward(loss)  # type: ignore[operator]

    @staticmethod
    def init(
        module_class: Type[FSDPTestModel],
        *model_args: Any,
        delay_after_loss_ms: int,
        delay_before_reduction_ms: int,
        **model_kwargs: Any,
    ):
        """
        Args:
            module_class (Type[FSDPTestModel]): Wrapped module class to which
                to add delays.
            model_args: Positional arguments forwarded to the ``module_class``
                ``init()``.
            delay_after_loss_ms (int): Delay after computing the loss/before
                the optimizer step (in ms).
            delay_before_reduction_ms (int): Delay before reduce-scattering
                gradients (in ms).
            model_kwargs: Keyword arguments forwarded to the ``module_class``
                ``init()``.
        """
        return ModuleWithDelay(
            module_class.init(*model_args, **model_kwargs),
            delay_after_loss_ms,
            delay_before_reduction_ms,
        )


class NestedWrappedModuleWithDelay(ModuleWithDelay):
    @staticmethod
    def init(  # type: ignore[override]
        group: dist.ProcessGroup,
        fsdp_init_mode: FSDPInitMode,
        device_init_mode: DEVICEInitMode = DEVICEInitMode.DEVICE_AFTER,
        fsdp_kwargs: Optional[Dict[str, Any]] = None,
        deterministic: bool = False,
        delay_after_loss_ms: int = 0,
        delay_before_reduction_ms: int = 0,
    ):
        return ModuleWithDelay.init(
            NestedWrappedModule,
            group=group,
            fsdp_init_mode=fsdp_init_mode,
            device_init_mode=device_init_mode,
            fsdp_kwargs=fsdp_kwargs,
            deterministic=deterministic,
            delay_after_loss_ms=delay_after_loss_ms,
            delay_before_reduction_ms=delay_before_reduction_ms,
        )


class DummyDDP(nn.Module):
    def __init__(self, module):
        super().__init__()
        self.module = module

    def forward(self, *args, **kwargs):
        return self.module(*args, **kwargs)


class MixtureOfExperts(NestedWrappedModule):
    def __init__(
        self,
        group: dist.ProcessGroup,
        wrap_fsdp: bool,
        device_init_mode: DEVICEInitMode,
        delay_before_free_ms: int,
        deterministic: bool,
        **fsdp_kwargs,
    ):
        super().__init__(
            group=group,
            wrap_fsdp=wrap_fsdp,
            device_init_mode=device_init_mode,
            deterministic=deterministic,
        )
        self.group = group
        self.delay_before_free_ms = delay_before_free_ms
        self.wrap_fsdp = wrap_fsdp
        self.move_to_device = device_init_mode == DEVICEInitMode.DEVICE_BEFORE
        if deterministic:
            # Give each rank different expert parameters
            torch.manual_seed(42 + self.rank)
        d_expert = 23
        d_shared = 12
        d_input = 8
        expert = _move_to_device(nn.Linear(d_expert, d_shared), self.move_to_device)

        self.num_expert_params = sum(p.numel() for p in expert.parameters())
        for p in expert.parameters():
            p.expert = True  # type: ignore[attr-defined]

        if deterministic:
            # Keep all other parameters the same across ranks
            torch.manual_seed(0)

        shared = _move_to_device(nn.Linear(d_shared, d_expert), self.move_to_device)

        if wrap_fsdp:
            # we create a process group of size 1 for the expert params
            expert_group = torch.distributed.new_group(
                [group.rank()]
            )  # world size 1 means no shard
            expert = FSDP(expert, expert_group, **fsdp_kwargs)  # type: ignore[assignment]
            shared = FSDP(shared, group, **fsdp_kwargs)  # type: ignore[assignment]

        self.module = nn.Sequential(
            _move_to_device(nn.Linear(d_input, d_shared), self.move_to_device),
            shared,
            expert,
            _move_to_device(nn.Linear(d_shared, d_input), self.move_to_device),
        )

    def forward(self, x):
        if self.delay_before_free_ms > 0:
            expert = self.module[2]
            if isinstance(expert, FSDP):
                orig_reshard = torch.distributed.fsdp._runtime_utils._reshard

                def _delayed_reshard(*args, **kwargs):
                    if TEST_CUDA:
                        torch.cuda._sleep(
                            int(self.delay_before_free_ms * get_cycles_per_ms())
                        )
                    elif TEST_HPU:
                        time.sleep(self.delay_before_free_ms / 1000)

                    return orig_reshard(*args, **kwargs)

                # This patch covers any `import torch..._reshard` uses.
                with mock.patch(
                    "torch.distributed.fsdp._runtime_utils._reshard", _delayed_reshard
                ):
                    return self.module(x)

        return self.module(x)

    def run_backward(self, loss):
        loss.backward()
        # Manually reduce gradients if not wrapped in FullyShardedDataParallel
        if not self.wrap_fsdp:
            with torch.no_grad():
                for p in self.parameters():
                    if hasattr(p, "expert"):
                        continue  # these params don't need grad reduction
                    if p.grad is not None:
                        p.grad.div_(self.world_size)
                        torch.distributed.all_reduce(p.grad, group=self.group)

    @staticmethod
    def init(
        group: dist.ProcessGroup,
        fsdp_init_mode: FSDPInitMode,
        device_init_mode: DEVICEInitMode,
        fsdp_kwargs: Optional[Dict[str, Any]] = None,
        deterministic: bool = False,
        delay_before_free_ms: int = 0,
    ):
        """
        Initializes a :class:`MixtureOfExperts` instance.

        Args:
            fsdp_init_mode (FSDPInitMode): If ``NO_FSDP``, then does not wrap
                any modules with FSDP. If ``RECURSIVE``, then wraps some nested
                modules with FSDP, including the expert and shared layers, but
                not the top-level module. The model may later be wrapped with a
                top-level FSDP external to this method if desired.
            device_init_mode (DEVICEInitMode): Determines model movement to DEVICE.
            fsdp_kwargs (Optional[Dict[str, Any]]): Optional keyword arguments
                forwarded to the FSDP constructor.
            deterministic (bool): Whether to make the model deterministic
                across constructions.
            delay_before_free_ms (int): Delay before resharding expert
                parameters in the forward pass (in ms).
        """
        if fsdp_kwargs is None:
            fsdp_kwargs = {}
        if fsdp_init_mode == FSDPInitMode.NO_FSDP:
            return MixtureOfExperts(
                group,
                wrap_fsdp=False,
                device_init_mode=device_init_mode,
                delay_before_free_ms=delay_before_free_ms,
                deterministic=deterministic,
            )
        elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
            # Does not wrap with top-level FSDP
            fsdp_model = MixtureOfExperts(
                group,
                wrap_fsdp=True,
                device_init_mode=device_init_mode,
                delay_before_free_ms=delay_before_free_ms,
                deterministic=deterministic,
                **fsdp_kwargs,
            )
            if device_init_mode == DEVICEInitMode.DEVICE_AFTER:
                fsdp_model = fsdp_model.to(DEVICE_TYPE)
            return fsdp_model
        raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}")


class MLP(nn.Module):
    def __init__(
        self,
        dim: int,
        device: Optional[torch.device] = None,
        *,
        bias: bool = True,
        with_buffer: bool = False,
        dim_multiplier: int = 4,
    ):
        super().__init__()
        self.in_proj = nn.Linear(dim, dim_multiplier * dim, device=device, bias=bias)
        self.out_proj = nn.Linear(dim_multiplier * dim, dim, device=device, bias=bias)
        if with_buffer:
            self.register_buffer("buffer", torch.randn((dim,), device=device))
        else:
            self.buffer = None

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        z = self.in_proj(x)
        z = F.relu(z)
        z = self.out_proj(z)
        z = F.relu(z)
        if self.buffer is not None:
            z = z + self.buffer
        return z

    def reset_parameters(self):
        if self.buffer is not None:
            torch.nn.init.normal_(self.buffer)


class MLPStack(nn.Sequential):
    def __init__(self, mlp_dim: int, *, with_seq_parallel: bool = False):
        modules: List[nn.Module] = [
            # Use multiplier of 3 to exercise uneven case
            MLP(mlp_dim, dim_multiplier=3),
            MLP(mlp_dim),
            MLP(mlp_dim, dim_multiplier=3),
        ]
        if with_seq_parallel:
            modules.append(nn.LayerNorm(mlp_dim, bias=False))
        super().__init__(*modules)
        self.with_seq_parallel = with_seq_parallel

    def parallelize(
        self,
        tp_mesh: DeviceMesh,
        dp_mesh: DeviceMesh,
        use_activation_checkpointing: bool,
        **fsdp_kwargs,
    ) -> "MLPStack":
        parallelize_plan = {
            # Pass `use_local_output=False` to keep as DTensor to preserve
            # uneven activation dims
            "0.in_proj": ColwiseParallel(use_local_output=False),
            "0.out_proj": RowwiseParallel(use_local_output=False),
            "1.in_proj": ColwiseParallel(use_local_output=False),
            "1.out_proj": RowwiseParallel(use_local_output=False),
            "2.in_proj": ColwiseParallel(use_local_output=False),
            "2.out_proj": RowwiseParallel(output_layouts=Shard(1))
            if self.with_seq_parallel
            else RowwiseParallel(),
        }
        if self.with_seq_parallel:
            parallelize_plan["3"] = SequenceParallel(sequence_dim=1)
        parallelize_module(self, device_mesh=tp_mesh, parallelize_plan=parallelize_plan)
        for module in self:
            if isinstance(module, nn.LayerNorm):
                continue
            if use_activation_checkpointing:
                checkpoint(module)
            fully_shard(module, mesh=dp_mesh, **fsdp_kwargs)
        fully_shard(self, mesh=dp_mesh, **fsdp_kwargs)
        return self


class DoubleLinear(nn.Module):
    """
    This can be used for returning multiple outputs from a module
    (``use_second_linear=True``) or for having an unused module (``False``).
    """

    def __init__(self, dim: int, use_second_linear: bool = True):
        super().__init__()
        self.lin1 = nn.Linear(dim, dim)
        self.lin2 = nn.Linear(dim, dim)
        self.relu = nn.ReLU()
        self.use_second_linear = use_second_linear

    def forward(
        self, x: torch.Tensor
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]:
        if self.use_second_linear:
            return self.relu(self.lin1(x)), self.relu(self.lin2(x))
        return self.relu(self.lin1(x))


# NOTE: For these patch methods, if we want safety under multi-threading (e.g.
# when using multi-threaded process group), then we want:
# (1) a barrier immediately after reading the original value to ensure that all
# threads see the same original value
# (2) a barrier immediately before restoring the original value to ensure that
# all threads use the patched value inside the context
@contextlib.contextmanager
def patch_all_gather(new_all_gather_into_tensor: Callable):
    orig_all_gather = dist.all_gather_into_tensor
    dist.barrier()
    dist.all_gather_into_tensor = new_all_gather_into_tensor
    try:
        yield
    finally:
        dist.barrier()
        dist.all_gather_into_tensor = orig_all_gather


@contextlib.contextmanager
def patch_reduce_scatter(new_reduce_scatter_tensor: Callable):
    orig_reduce_scatter = dist.reduce_scatter_tensor
    dist.barrier()
    dist.reduce_scatter_tensor = new_reduce_scatter_tensor
    try:
        yield
    finally:
        dist.barrier()
        dist.reduce_scatter_tensor = orig_reduce_scatter


@contextlib.contextmanager
def patch_all_reduce(new_all_reduce: Callable):
    orig_all_reduce = dist.all_reduce
    dist.barrier()
    dist.all_reduce = new_all_reduce
    try:
        yield
    finally:
        dist.barrier()
        dist.all_reduce = orig_all_reduce


@no_type_check
@contextlib.contextmanager
def patch_unshard(new_unshard: Callable):
    orig_unshard = FSDPParamGroup.unshard
    dist.barrier()
    FSDPParamGroup.unshard = new_unshard
    try:
        yield
    finally:
        dist.barrier()
        FSDPParamGroup.unshard = orig_unshard


@no_type_check
@contextlib.contextmanager
def patch_reshard(new_reshard: Callable):
    orig_reshard = FSDPParamGroup.reshard
    dist.barrier()
    FSDPParamGroup.reshard = new_reshard
    try:
        yield
    finally:
        dist.barrier()
        FSDPParamGroup.reshard = orig_reshard


@no_type_check
@contextlib.contextmanager
def patch_post_backward(new_post_backward: Callable):
    orig_post_backward = FSDPParamGroup.post_backward
    dist.barrier()
    FSDPParamGroup.post_backward = new_post_backward
    try:
        yield
    finally:
        dist.barrier()
        FSDPParamGroup.post_backward = orig_post_backward


@no_type_check
@contextlib.contextmanager
def patch_register_post_backward_hook_backward(new_backward: Callable):
    orig_backward = RegisterPostBackwardFunction.backward
    dist.barrier()
    RegisterPostBackwardFunction.backward = new_backward
    try:
        yield
    finally:
        dist.barrier()
        RegisterPostBackwardFunction.backward = orig_backward


def reduce_scatter_with_assert(
    cls,
    orig_reduce_scatter: Callable,
    assert_fn: Callable,  # `assert_fn(output: Tensor)`
    *args: Any,
    **kwargs: Any,
):
    if len(args) > 0:
        output = args[0]
    elif "output" in kwargs:
        output = kwargs["output"]
    else:
        raise AssertionError(
            f"Cannot get reduce-scatter output from\nargs: {args}\nkwargs: {kwargs}"
        )
    assert_fn(output)
    return orig_reduce_scatter(*args, **kwargs)


def check_sharded_parity(
    cls,  # unit test class
    replicated_module: nn.Module,
    sharded_module: nn.Module,
    prefixes_to_ignore: Tuple[str, ...] = (),
):
    for (replicated_name, replicated_param), (sharded_name, sharded_param) in zip(
        replicated_module.named_parameters(), sharded_module.named_parameters()
    ):
        clean_sharded_name = sharded_name
        for prefix in prefixes_to_ignore:
            clean_sharded_name = clean_sharded_name.replace(prefix, "")
        cls.assertEqual(replicated_name, clean_sharded_name)
        cls.assertIsInstance(sharded_param, DTensor)
        assert isinstance(sharded_param, DTensor)  # mypy
        mesh, placements = sharded_param.device_mesh, sharded_param.placements
        if tuple(placements) == (Shard(0), Shard(0)):
            raise AssertionError(
                "FSDP's (Shard(0), Shard(0)) layout differs from distribute_tensor(), "
                "so we cannot check for equality using it"
            )
        sharded_ref_param = distribute_tensor(replicated_param, mesh, placements)
        cls.assertEqual(sharded_param.to_local(), sharded_ref_param.to_local())
        if replicated_param.grad is None:
            cls.assertIsNone(sharded_param.grad)
            continue
        cls.assertIsNotNone(sharded_param.grad)
        sharded_ref_grad = distribute_tensor(replicated_param.grad, mesh, placements)
        cls.assertIsInstance(sharded_param.grad, DTensor)
        assert isinstance(sharded_param.grad, DTensor)  # mypy
        cls.assertEqual(sharded_param.grad.to_local(), sharded_ref_grad.to_local())


class FSDPTestMultiThread(MultiThreadedTestCase):
    @property
    def world_size(self):
        return DEVICE_COUNT

    def setUp(self):
        super().setUp()
        self._spawn_threads()

    def run_subtests(self, *args, **kwargs):
        return run_subtests(self, *args, **kwargs)

    def perThreadSetUp(self):
        torch._dynamo.reset()

    def perThreadTearDown(self):
        torch._dynamo.reset()


class FSDPTest(MultiProcessTestCase):
    def setUp(self):
        super().setUp()
        # Set TORCH_NCCL_DESYNC_DEBUG=0 to disable the NCCL `workCleanupLoop()`,
        # which can cause unit test flakiness:
        # https://github.com/pytorch/pytorch/issues/90848
        os.environ["TORCH_NCCL_DESYNC_DEBUG"] = "0"
        self._spawn_processes()

    @property
    def world_size(self):
        return DEVICE_COUNT

    @property
    def process_group(self):
        return dist.distributed_c10d._get_default_group()

    @property
    def destroy_pg_upon_exit(self) -> bool:
        # Overriding base test class: do not auto destroy PG upon exit.
        return False

    @property
    def init_method(self):
        return f"{FILE_SCHEMA}{self.file_name}"

    def _check_cpu_offload(self, fsdp_model, cpu_offload):
        self.assertEqual(cpu_offload, fsdp_model.cpu_offload)

    def _check_backward_prefetch(self, fsdp_model, backward_prefetch):
        self.assertEqual(backward_prefetch, fsdp_model.backward_prefetch)

    def _check_forward_prefetch(self, fsdp_model, forward_prefetch):
        self.assertEqual(forward_prefetch, fsdp_model.forward_prefetch)

    def run_subtests(self, *args, **kwargs):
        return run_subtests(self, *args, **kwargs)

    @classmethod
    def _run(cls, rank, test_name, file_name, pipe, **kwargs):
        self = cls(test_name)
        self.rank = rank
        self.file_name = file_name
        fake_pg = kwargs.get("fake_pg", False)

        print(f"dist init r={self.rank}, world={self.world_size}")

        # Specify gloo backend to make 'init_process_group()' succeed,
        # Actual tests will be skipped if there is no enough GPUs.
        try:
            if fake_pg:
                store = torch.testing._internal.distributed.fake_pg.FakeStore()
                dist.init_process_group(
                    backend="fake",
                    world_size=self.world_size,
                    rank=rank,
                    store=store,
                )
            else:
                dist.init_process_group(
                    init_method=self.init_method,
                    backend=DISTRIBUTED_BACKEND,
                    world_size=int(self.world_size),
                    rank=self.rank,
                )
        except RuntimeError as e:
            if "recompile" in e.args[0]:
                sys.exit(TEST_SKIPS["backend_unavailable"].exit_code)

            raise

        device_ids = None
        device_id = self.rank % DEVICE_COUNT
        if TEST_CUDA:
            torch.cuda.set_device(device_id)
        device_ids = [device_id]

        # Execute barrier prior to running test to ensure that every process
        # has finished initialization and that the following test
        # immediately exiting due to a skip doesn't cause flakiness.
        dist.barrier(device_ids=device_ids)

        torch._dynamo.reset()
        self.run_test(test_name, pipe)
        torch._dynamo.reset()

        dist.barrier(device_ids=device_ids)

        dist.destroy_process_group()

    def _train_for_several_steps(
        self,
        model: nn.Module,
        num_steps: int,
        autocast: bool,
        lr: float = 0.01,
        fsdp_cpu_offload: Optional[CPUOffload] = None,
        save_model: bool = False,
        mixed_precision: Optional[MixedPrecision] = None,
        enable_sharded_grad_scaler: bool = False,
        use_pure_fp16: bool = False,
        sharded_grad_scaler_kwargs: Optional[Dict[str, Any]] = None,
    ):
        cpu_offload_params = fsdp_cpu_offload and fsdp_cpu_offload.offload_params

        model_device = next(model.parameters()).device
        if sharded_grad_scaler_kwargs is None:
            sharded_grad_scaler_kwargs = {}
        sharded_grad_scaler = ShardedGradScaler(
            enabled=enable_sharded_grad_scaler, **sharded_grad_scaler_kwargs
        )
        # use SGD with momentum instead of Adam, since Adam is scale invariant
        # and this makes it bad for tests
        optim = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)
        for _ in range(num_steps):
            optim.zero_grad()
            with torch.amp.autocast(DEVICE_TYPE, enabled=autocast):
                # Inputs always cuda regardless of cpu offloading, or model.device
                input = model.module.get_input(torch.device(DEVICE_TYPE))  # type: ignore[operator, union-attr]
                if use_pure_fp16 or (mixed_precision and not isinstance(model, FSDP)):
                    if isinstance(input, torch.Tensor):
                        input = input.half()
                    else:
                        input = tuple(x.half() for x in input)
                output = model(*input)
                # Post-forward, if CPU offloading model param should be on CPU.
                if (
                    cpu_offload_params
                    and isinstance(model, FSDP)
                    # If not resharding after forward, the parameters are still
                    # exposed as unsharded views into the GPU flat parameter
                    and model.sharding_strategy
                    not in NO_RESHARD_AFTER_FORWARD_STRATEGIES
                ):
                    for p in model.parameters():
                        # Params should always be on CPU
                        self.assertEqual(p.device, torch.device("cpu"))

                loss = model.module.get_loss(input, output).to(model_device)  # type: ignore[operator, union-attr]
            loss = sharded_grad_scaler.scale(loss)

            if not mixed_precision and not use_pure_fp16:
                assert (
                    loss.dtype == torch.float32
                ), "loss data type should be float32, as the original \
                    parameter data type is float32."
            else:
                if use_pure_fp16:
                    self.assertEqual(loss.dtype, torch.float16)
                # FSDP loss is fp16, DDP AMP loss is fp32
                elif isinstance(model, FSDP):
                    assert mixed_precision is not None  # mypy
                    self.assertEqual(loss.dtype, mixed_precision.param_dtype)
                else:
                    self.assertEqual(loss.dtype, torch.float32)
            model.module.run_backward(loss)  # type: ignore[operator, union-attr]
            # Post-backward, if CPU offloading model params should be on CPU.
            if cpu_offload_params and isinstance(model, FSDP):
                for p in model.parameters():
                    # Params should always be on CPU
                    self.assertEqual(p.device, torch.device("cpu"))
            # Unscale the gradients and step
            sharded_grad_scaler.step(optim)
            # Update the scale factor
            sharded_grad_scaler.update()
            # if save_model, simulate save + load.
            if save_model:
                state_dict = {k: v.clone() for k, v in model.state_dict().items()}
                # Zero params, if save/load state_dict did not work properly, this
                # would break the parity test with DDP.
                _zero_model(model)
                model.load_state_dict(state_dict)

        if isinstance(model, FSDP):
            model._assert_state(TrainingState.IDLE)
        return loss.detach()  # type: ignore[possibly-undefined]

    def _test_fsdp_parity(
        self,
        model_class: Type[FSDPTestModel],
        fsdp_init_mode: FSDPInitMode,
        device_init_mode: DEVICEInitMode,
        ref_init_fn: Optional[Callable] = None,
        num_iters: int = 2,
        save_model: bool = True,
        cpu_offload: CPUOffload = CPUOffload(),
        backward_prefetch: Optional[BackwardPrefetch] = None,
        sharding_strategy: Optional[ShardingStrategy] = None,
        mixed_precision: Optional[MixedPrecision] = None,
        forward_prefetch: bool = False,
        use_orig_params: bool = False,
        enable_sharded_grad_scaler: bool = False,
        use_pure_fp16: bool = False,
        init_kwargs: Optional[Dict[str, Any]] = None,
        sharded_grad_scaler_kwargs: Optional[Dict[str, Any]] = None,
        **fsdp_kwargs,
    ):
        """
        Tests FSDP training against a reference, which defaults to DDP but
        may be customized with ``ref_init_fn``.

        Args:
            model_class (Type[FSDPTestModel]): A model class that inherits from
                ``FSDPTestModel``, which defines the expected interface.
            fsdp_init_mode (FSDPInitMode): The mode to initialize the
                FSDP-wrapped model. This should not be ``NO_FSDP``.
            ref_init_fn (Optional[Callable]): A callable to invoke that wraps a
                non-wrapped model to construct the reference model, where this
                wrapper should provide data parallel semantics. If ``None``,
                then the callable defaults to the DDP constructor.
        """
        assert (
            fsdp_init_mode != FSDPInitMode.NO_FSDP
        ), "Expects an FSDP init mode that wraps with FSDP"
        if init_kwargs is None:
            init_kwargs = {}
        lr = 1e-2
        rank = self.process_group.rank()
        # Establish reference behavior with DDP
        model = model_class.init(
            self.process_group,
            FSDPInitMode.NO_FSDP,
            DEVICEInitMode.DEVICE_BEFORE,
            deterministic=True,
            **init_kwargs,
        )
        if ref_init_fn is None:
            if TEST_HPU:
                ref_model = DDP(
                    model, device_ids=[DEVICE_TYPE], output_device=DEVICE_TYPE
                )
            else:
                ref_model = DDP(model, device_ids=[rank], output_device=rank)
        else:
            ref_model = ref_init_fn(model)
        if use_pure_fp16:
            ref_model = ref_model.half()
        ref_loss = self._train_for_several_steps(
            ref_model,
            num_iters,
            autocast=mixed_precision is not None,
            lr=lr,
            fsdp_cpu_offload=cpu_offload,
            mixed_precision=mixed_precision,
            enable_sharded_grad_scaler=enable_sharded_grad_scaler,
            use_pure_fp16=use_pure_fp16,
            sharded_grad_scaler_kwargs=sharded_grad_scaler_kwargs,
        )
        ddp_params = list(ref_model.parameters())
        # Check against FSDP behavior
        fsdp_kwargs.update(
            {
                "cpu_offload": cpu_offload,
                "backward_prefetch": backward_prefetch,
                "sharding_strategy": sharding_strategy,
                "mixed_precision": mixed_precision,
                "forward_prefetch": forward_prefetch,
                "use_orig_params": use_orig_params,
            }
        )
        try:
            fsdp_model = model_class.init(
                self.process_group,
                fsdp_init_mode,
                device_init_mode,
                fsdp_kwargs,
                deterministic=True,
                **init_kwargs,
            )
        except Exception as e:
            raise ValueError(f"Initializing {model_class} raised error {str(e)}") from e
        if not isinstance(fsdp_model, FSDP):
            # Enforce that we wrap with top-level FSDP since we are comparing
            # assuming a data parallel reference and some test models may not
            # do so in their `init()` method
            fsdp_model = FSDP(fsdp_model, self.process_group, **fsdp_kwargs)
        if use_pure_fp16:
            # Change the model parameter dtype after FSDP initialization
            fsdp_model = fsdp_model.half()
        if device_init_mode == DEVICEInitMode.DEVICE_AFTER:
            fsdp_model = fsdp_model.to(DEVICE_TYPE)
        offload_params = cpu_offload is not None and cpu_offload.offload_params
        # Offloading parameters with `DEVICE_AFTER` should raise an error during
        # lazy initialization due to the parameter devices not being CPU;
        # otherwise, all parameter devices should be CPU
        expects_device_error = (
            offload_params and device_init_mode == DEVICEInitMode.DEVICE_AFTER
        )
        expects_cpu_device = (
            offload_params and device_init_mode != DEVICEInitMode.DEVICE_AFTER
        )
        if expects_cpu_device:
            cpu_device = torch.device("cpu")
            for param in fsdp_model.parameters():
                self.assertEqual(param.device, cpu_device)
        context = (
            self.assertRaisesRegex(
                RuntimeError,
                "An FSDP-managed module with parameter CPU offloading enabled "
                "has parameters on cuda",
            )
            if expects_device_error
            else nullcontext()
        )
        with context:
            fsdp_loss = self._train_for_several_steps(
                fsdp_model,
                num_iters,
                autocast=False,
                lr=lr,
                fsdp_cpu_offload=cpu_offload,
                save_model=save_model,
                mixed_precision=mixed_precision,
                enable_sharded_grad_scaler=enable_sharded_grad_scaler,
                use_pure_fp16=use_pure_fp16,
                sharded_grad_scaler_kwargs=sharded_grad_scaler_kwargs,
            )
        # No need to check for parameter and loss parity if expecting an error
        if expects_device_error:
            return
        # Check parameter devices are CPU if offloading to CPU before calling
        # `get_full_params()`, which will cast the parameters to FP32
        if offload_params:
            cpu_device = torch.device("cpu")
            for param in fsdp_model.parameters():
                self.assertEqual(param.device, cpu_device)
            fsdp_loss = fsdp_loss.to(DEVICE_TYPE)
        fsdp_unsharded_params = get_full_params(fsdp_model)
        # Do not check dtype since the reference DDP loss may not be the same
        # dtype as the FSDP loss in the case of mixed precision
        torch.testing.assert_close(ref_loss, fsdp_loss, check_dtype=False)
        # Do not check for parameter parity if using mixed precision since (1)
        # the DDP parameters are in FP16 (from `half()`) while the FSDP
        # parameters are in FP32 (from `summon_full_params()`) and (2) DDP runs
        # the optimizer in FP16 while FSDP runs it in FP32
        # TODO: Disable checking the parameters for pure FP16 due to floating
        # point inaccuracy. Note that this means that the backward pass is not
        # checked: https://github.com/pytorch/pytorch/issues/90784
        if mixed_precision is None and not use_pure_fp16:
            self.assertEqual(
                ddp_params,
                fsdp_unsharded_params,
                exact_device=True,
                msg="FSDP did not match DDP",
            )


def test_compiled_fsdp(compile_compute_on_module: Optional[type] = None):
    def fully_shard_with_compiled_compute(*args, **kwargs):
        torch.distributed.fsdp.fully_shard(*args, **kwargs)  # type: ignore[operator]
        if compile_compute_on_module is None or isinstance(
            args[0], compile_compute_on_module
        ):
            args[0].compile()

    class FullyShardMode(Enum):
        EAGER = auto()
        COMPILED_COMPUTE = auto()

    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            original_fully_shard = torch.distributed.fsdp.fully_shard
            for mode in FullyShardMode:
                if mode != FullyShardMode.EAGER and not has_triton():
                    warnings.warn("Inductor on GPU needs Triton and recent GPU arch")
                    continue
                # barrier to ensure thread reading the same value
                original_skip_fsdp_hooks = torch._dynamo.config.skip_fsdp_hooks
                original_compile_threads = torch._inductor.config.compile_threads
                torch.distributed.barrier()

                if mode == FullyShardMode.EAGER:
                    fully_shard_patch = original_fully_shard
                elif mode == FullyShardMode.COMPILED_COMPUTE:
                    torch._dynamo.config.skip_fsdp_hooks = True
                    torch._inductor.config.compile_threads = 1
                    fully_shard_patch = fully_shard_with_compiled_compute  # type: ignore[assignment]
                else:
                    raise NotImplementedError(
                        f"Need to implement FullyShardMode={mode}"
                    )

                # fully_shard is imported as a global
                # through `from ... import fully_shard`
                func.__globals__[original_fully_shard.__name__] = fully_shard_patch
                func(*args, **kwargs)
                # other threads use patched func before this thread restores
                torch.distributed.barrier()
                func.__globals__[original_fully_shard.__name__] = original_fully_shard
                torch._dynamo.config.skip_fsdp_hooks = original_skip_fsdp_hooks
                torch._inductor.config.compile_threads = original_compile_threads

        return wrapper

    return decorator


class SkipModule(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.lin = nn.Linear(10, 10, bias=False)

    def forward(self, x):
        return self.lin(x)


class NestedLinear(nn.Module):
    def __init__(self, fsdp_wrap):
        super().__init__()
        if fsdp_wrap:
            self.nested_linear = wrap(nn.Linear(10, 10, bias=False).to(DEVICE_TYPE))
        else:
            self.nested_linear = nn.Linear(10, 10, bias=False).to(DEVICE_TYPE)

    def forward(self, x):
        return self.nested_linear(x)


class SkipModel(nn.Module):
    def __init__(self, double_nest):
        super().__init__()
        self.linear = nn.Linear(10, 10, bias=False).to(DEVICE_TYPE)
        self.linear_skip = SkipModule().to(DEVICE_TYPE)
        self.nested_linear = wrap(
            NestedLinear(fsdp_wrap=double_nest), device_id=DEVICE_TYPE
        )

    def forward(self, x):
        x = self.linear(x)
        x = self.linear_skip(x)
        x = self.nested_linear(x)
        return x