1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
# Owner(s): ["module: unknown"]
from typing import Dict, Any, Tuple
from torch.ao.pruning import BaseSparsifier
import torch
import torch.nn.functional as F
from torch import nn
class ImplementedSparsifier(BaseSparsifier):
def __init__(self, **kwargs: Dict[str, Any]) -> None:
super().__init__(defaults=kwargs)
def update_mask(self, module: nn.Module, tensor_name: str, **kwargs: Dict[str, Any]) -> None:
module.parametrizations.weight[0].mask[0] = 0 # type: ignore[index, union-attr]
linear_state = self.state['linear1.weight']
linear_state['step_count'] = linear_state.get('step_count', 0) + 1
class MockSparseLinear(nn.Linear):
"""
This class is a MockSparseLinear class to check convert functionality.
It is the same as a normal Linear layer, except with a different type, as
well as an additional from_dense method.
"""
@classmethod
def from_dense(cls, mod: nn.Linear) -> 'MockSparseLinear':
"""
"""
linear = cls(mod.in_features,
mod.out_features)
return linear
def rows_are_subset(subset_tensor: torch.Tensor, superset_tensor: torch.Tensor) -> bool:
"""
Checks to see if all rows in subset tensor are present in the superset tensor
"""
i = 0
for row in subset_tensor:
while i < len(superset_tensor):
if not torch.equal(row, superset_tensor[i]):
i += 1
else:
break
else:
return False
return True
class SimpleLinear(nn.Module):
r"""Model with only Linear layers without biases, some wrapped in a Sequential,
some following the Sequential. Used to test basic pruned Linear-Linear fusion."""
def __init__(self) -> None:
super().__init__()
self.seq = nn.Sequential(
nn.Linear(7, 5, bias=False),
nn.Linear(5, 6, bias=False),
nn.Linear(6, 4, bias=False),
)
self.linear1 = nn.Linear(4, 4, bias=False)
self.linear2 = nn.Linear(4, 10, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.seq(x)
x = self.linear1(x)
x = self.linear2(x)
return x
class LinearBias(nn.Module):
r"""Model with only Linear layers, alternating layers with biases,
wrapped in a Sequential. Used to test pruned Linear-Bias-Linear fusion."""
def __init__(self) -> None:
super().__init__()
self.seq = nn.Sequential(
nn.Linear(7, 5, bias=True),
nn.Linear(5, 6, bias=False),
nn.Linear(6, 3, bias=True),
nn.Linear(3, 3, bias=True),
nn.Linear(3, 10, bias=False),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.seq(x)
return x
class LinearActivation(nn.Module):
r"""Model with only Linear layers, some with bias, some in a Sequential and some following.
Activation functions modules in between each Linear in the Sequential, and each outside layer.
Used to test pruned Linear(Bias)-Activation-Linear fusion."""
def __init__(self) -> None:
super().__init__()
self.seq = nn.Sequential(
nn.Linear(7, 5, bias=True),
nn.ReLU(),
nn.Linear(5, 6, bias=False),
nn.Tanh(),
nn.Linear(6, 4, bias=True),
)
self.linear1 = nn.Linear(4, 3, bias=True)
self.act1 = nn.ReLU()
self.linear2 = nn.Linear(3, 10, bias=False)
self.act2 = nn.Tanh()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.seq(x)
x = self.linear1(x)
x = self.act1(x)
x = self.linear2(x)
x = self.act2(x)
return x
class LinearActivationFunctional(nn.Module):
r"""Model with only Linear layers, some with bias, some in a Sequential and some following.
Activation functions modules in between each Linear in the Sequential, and functional
activationals are called in between each outside layer.
Used to test pruned Linear(Bias)-Activation-Linear fusion."""
def __init__(self) -> None:
super().__init__()
self.seq = nn.Sequential(
nn.Linear(7, 5, bias=True),
nn.ReLU(),
nn.Linear(5, 6, bias=False),
nn.ReLU(),
nn.Linear(6, 4, bias=True),
)
self.linear1 = nn.Linear(4, 3, bias=True)
self.linear2 = nn.Linear(3, 8, bias=False)
self.linear3 = nn.Linear(8, 10, bias=False)
self.act1 = nn.ReLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.seq(x)
x = self.linear1(x)
x = F.relu(x)
x = self.linear2(x)
x = F.relu(x)
x = self.linear3(x)
x = F.relu(x)
return x
class SimpleConv2d(nn.Module):
r"""Model with only Conv2d layers, all without bias, some in a Sequential and some following.
Used to test pruned Conv2d-Conv2d fusion."""
def __init__(self) -> None:
super().__init__()
self.seq = nn.Sequential(
nn.Conv2d(1, 32, 3, 1, bias=False),
nn.Conv2d(32, 64, 3, 1, bias=False),
)
self.conv2d1 = nn.Conv2d(64, 48, 3, 1, bias=False)
self.conv2d2 = nn.Conv2d(48, 52, 3, 1, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.seq(x)
x = self.conv2d1(x)
x = self.conv2d2(x)
return x
class Conv2dBias(nn.Module):
r"""Model with only Conv2d layers, some with bias, some in a Sequential and some outside.
Used to test pruned Conv2d-Bias-Conv2d fusion."""
def __init__(self) -> None:
super().__init__()
self.seq = nn.Sequential(
nn.Conv2d(1, 32, 3, 1, bias=True),
nn.Conv2d(32, 32, 3, 1, bias=True),
nn.Conv2d(32, 64, 3, 1, bias=False),
)
self.conv2d1 = nn.Conv2d(64, 48, 3, 1, bias=True)
self.conv2d2 = nn.Conv2d(48, 52, 3, 1, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.seq(x)
x = self.conv2d1(x)
x = self.conv2d2(x)
return x
class Conv2dActivation(nn.Module):
r"""Model with only Conv2d layers, some with bias, some in a Sequential and some following.
Activation function modules in between each Sequential layer, functional activations called
in-between each outside layer.
Used to test pruned Conv2d-Bias-Activation-Conv2d fusion."""
def __init__(self) -> None:
super().__init__()
self.seq = nn.Sequential(
nn.Conv2d(1, 32, 3, 1, bias=True),
nn.ReLU(),
nn.Conv2d(32, 64, 3, 1, bias=True),
nn.Tanh(),
nn.Conv2d(64, 64, 3, 1, bias=False),
nn.ReLU(),
)
self.conv2d1 = nn.Conv2d(64, 48, 3, 1, bias=False)
self.conv2d2 = nn.Conv2d(48, 52, 3, 1, bias=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.seq(x)
x = self.conv2d1(x)
x = F.relu(x)
x = self.conv2d2(x)
x = F.hardtanh(x)
return x
class Conv2dPadBias(nn.Module):
r"""Model with only Conv2d layers, all with bias and some with padding > 0,
some in a Sequential and some following. Activation function modules in between each layer.
Used to test that bias is propagated correctly in the special case of
pruned Conv2d-Bias-(Activation)Conv2d fusion, when the second Conv2d layer has padding > 0."""
def __init__(self) -> None:
super().__init__()
self.seq = nn.Sequential(
nn.Conv2d(1, 32, 3, 1, padding=1, bias=True),
nn.ReLU(),
nn.Conv2d(32, 32, 3, 1, bias=False),
nn.ReLU(),
nn.Conv2d(32, 32, 3, 1, padding=1, bias=True),
nn.ReLU(),
nn.Conv2d(32, 32, 3, 1, padding=1, bias=True),
nn.ReLU(),
nn.Conv2d(32, 64, 3, 1, bias=True),
nn.Tanh(),
)
self.conv2d1 = nn.Conv2d(64, 48, 3, 1, padding=1, bias=True)
self.act1 = nn.ReLU()
self.conv2d2 = nn.Conv2d(48, 52, 3, 1, padding=1, bias=True)
self.act2 = nn.Tanh()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.seq(x)
x = self.conv2d1(x)
x = self.act1(x)
x = self.conv2d2(x)
x = self.act2(x)
return x
class Conv2dPool(nn.Module):
r"""Model with only Conv2d layers, all with bias, some in a Sequential and some following.
Activation function modules in between each layer, Pool2d modules in between each layer.
Used to test pruned Conv2d-Pool2d-Conv2d fusion."""
def __init__(self) -> None:
super().__init__()
self.seq = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, padding=1, bias=True),
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=3, padding=1, bias=True),
nn.Tanh(),
nn.AvgPool2d(kernel_size=2, stride=2, padding=1),
)
self.conv2d1 = nn.Conv2d(64, 48, kernel_size=3, padding=1, bias=True)
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2, padding=1)
self.af1 = nn.ReLU()
self.conv2d2 = nn.Conv2d(48, 52, kernel_size=3, padding=1, bias=True)
self.conv2d3 = nn.Conv2d(52, 52, kernel_size=3, padding=1, bias=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.seq(x)
x = self.conv2d1(x)
x = self.maxpool(x)
x = self.af1(x)
x = self.conv2d2(x)
x = F.avg_pool2d(x, kernel_size=2, stride=2, padding=1)
x = F.relu(x)
x = self.conv2d3(x)
return x
class Conv2dPoolFlattenFunctional(nn.Module):
r"""Model with Conv2d layers, all with bias, some in a Sequential and some following, and then a Pool2d
and a functional Flatten followed by a Linear layer.
Activation functions and Pool2ds in between each layer also.
Used to test pruned Conv2d-Pool2d-Flatten-Linear fusion."""
def __init__(self) -> None:
super().__init__()
self.seq = nn.Sequential(
nn.Conv2d(1, 3, kernel_size=3, padding=1, bias=True),
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(3, 5, kernel_size=3, padding=1, bias=True),
nn.Tanh(),
nn.AvgPool2d(kernel_size=2, stride=2, padding=1),
)
self.conv2d1 = nn.Conv2d(5, 7, kernel_size=3, padding=1, bias=True)
self.af1 = nn.ReLU()
self.conv2d2 = nn.Conv2d(7, 11, kernel_size=3, padding=1, bias=True)
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(11, 13, bias=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.seq(x)
x = self.conv2d1(x)
x = F.max_pool2d(x, kernel_size=2, stride=2, padding=1)
x = self.af1(x)
x = self.conv2d2(x)
x = self.avg_pool(x)
x = torch.flatten(x, 1) # test functional flatten
x = self.fc(x)
return x
class Conv2dPoolFlatten(nn.Module):
r"""Model with Conv2d layers, all with bias, some in a Sequential and some following, and then a Pool2d
and a Flatten module followed by a Linear layer.
Activation functions and Pool2ds in between each layer also.
Used to test pruned Conv2d-Pool2d-Flatten-Linear fusion."""
def __init__(self) -> None:
super().__init__()
self.seq = nn.Sequential(
nn.Conv2d(1, 3, kernel_size=3, padding=1, bias=True),
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(3, 5, kernel_size=3, padding=1, bias=True),
nn.Tanh(),
nn.AvgPool2d(kernel_size=2, stride=2, padding=1),
)
self.conv2d1 = nn.Conv2d(5, 7, kernel_size=3, padding=1, bias=True)
self.af1 = nn.ReLU()
self.conv2d2 = nn.Conv2d(7, 11, kernel_size=3, padding=1, bias=True)
self.avg_pool = nn.AdaptiveAvgPool2d((2, 2))
self.flatten = nn.Flatten()
self.fc = nn.Linear(44, 13, bias=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.seq(x)
x = self.conv2d1(x)
x = F.max_pool2d(x, kernel_size=2, stride=2, padding=1)
x = self.af1(x)
x = self.conv2d2(x)
x = self.avg_pool(x)
x = self.flatten(x)
x = self.fc(x)
return x
class LSTMLinearModel(nn.Module):
"""Container module with an encoder, a recurrent module, and a linear."""
def __init__(
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int
) -> None:
super().__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers)
self.linear = nn.Linear(hidden_dim, output_dim)
def forward(self, input: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
output, _hidden = self.lstm(input)
decoded = self.linear(output)
return decoded, output
class LSTMLayerNormLinearModel(nn.Module):
"""Container module with an LSTM, a LayerNorm, and a linear."""
def __init__(
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int
) -> None:
super().__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers)
self.norm = nn.LayerNorm(hidden_dim)
self.linear = nn.Linear(hidden_dim, output_dim)
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
x, state = self.lstm(x)
x = self.norm(x)
x = self.linear(x)
return x, state
|