1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
|
# mypy: ignore-errors
r"""Importing this file must **not** initialize CUDA context. test_distributed
relies on this assumption to properly run. This means that when this is imported
no CUDA calls shall be made, including torch.cuda.device_count(), etc.
torch.testing._internal.common_cuda.py can freely initialize CUDA context when imported.
"""
import argparse
import contextlib
import copy
import ctypes
import errno
import functools
import gc
import hashlib
import inspect
import io
import json
import logging
import math
import operator
import os
import pathlib
import platform
import random
import re
import shutil
import signal
import socket
import subprocess
import sys
import tempfile
import threading
import time
import types
import unittest
import warnings
from collections.abc import Mapping, Sequence
from contextlib import closing, contextmanager
from copy import deepcopy
from dataclasses import dataclass
from enum import Enum
from functools import partial, wraps
from itertools import product, chain
from pathlib import Path
from statistics import mean
from typing import (
Any,
Callable,
Dict,
Iterable,
Iterator,
List,
Optional,
Tuple,
Type,
TypeVar,
Union,
)
from unittest.mock import MagicMock
import expecttest
import numpy as np
import __main__ # type: ignore[import]
import torch
import torch.backends.cudnn
import torch.backends.mkl
import torch.backends.mps
import torch.backends.xnnpack
import torch.cuda
from torch import Tensor
from torch._C import ScriptDict, ScriptList # type: ignore[attr-defined]
from torch._dynamo.trace_rules import _as_posix_path
from torch._utils_internal import get_writable_path
from torch._logging.scribe import open_source_signpost
from torch.nn import (
ModuleDict,
ModuleList,
ParameterDict,
ParameterList,
Sequential,
)
from torch.onnx import (
register_custom_op_symbolic,
unregister_custom_op_symbolic,
)
from torch.testing import make_tensor
from torch.testing._comparison import (
BooleanPair,
NonePair,
NumberPair,
Pair,
TensorLikePair,
)
from torch.testing._comparison import not_close_error_metas
from torch.testing._internal.common_dtype import get_all_dtypes
from torch.utils._import_utils import _check_module_exists
import torch.utils._pytree as pytree
from torch.utils import cpp_extension
try:
import pytest
has_pytest = True
except ImportError:
has_pytest = False
MI300_ARCH = ("gfx940", "gfx941", "gfx942")
def freeze_rng_state(*args, **kwargs):
return torch.testing._utils.freeze_rng_state(*args, **kwargs)
# Class to keep track of test flags configurable by environment variables.
# Flags set here are intended to be read-only and should not be modified after
# definition.
# TODO: Expand this class to handle abritrary settings in addition to boolean flags?
class TestEnvironment:
# Set of env vars to set for the repro command that is output on test failure.
# Specifically, this includes env vars that are set to non-default values and
# are not implied. Maps from env var name -> value (int)
repro_env_vars: dict = {}
# Defines a flag usable throughout the test suite, determining its value by querying
# the specified environment variable.
#
# Args:
# name (str): The name of the flag. A global variable with this name will be set
# for convenient access throughout the test suite.
# env_var (str): The name of the primary environment variable from which to
# determine the value of this flag. If this is None or the environment variable
# is unset, the default value will be used unless otherwise implied (see
# implied_by_fn). Default: None
# default (bool): The default value to use for the flag if unset by the environment
# variable and unimplied. Default: False
# include_in_repro (bool): Indicates whether this flag should be included in the
# repro command that is output on test failure (i.e. whether it is possibly
# relevant to reproducing the test failure). Default: True
# enabled_fn (Callable): Callable returning whether the flag should be enabled
# given the environment variable value and the default value. Default: Lambda
# requiring "0" to disable if on by default OR "1" to enable if off by default.
# implied_by_fn (Callable): Thunk returning a bool to imply this flag as enabled
# by something outside of its primary environment variable setting. For example,
# this can be useful if the value of another environment variable implies the flag
# as enabled. Default: Lambda returning False to indicate no implications.
@staticmethod
def def_flag(
name,
env_var=None,
default=False,
include_in_repro=True,
enabled_fn=lambda env_var_val, default: (
(env_var_val != "0") if default else (env_var_val == "1")),
implied_by_fn=lambda: False,
):
enabled = default
if env_var is not None:
env_var_val = os.getenv(env_var)
enabled = enabled_fn(env_var_val, default)
implied = implied_by_fn()
enabled = enabled or implied
if include_in_repro and (env_var is not None) and (enabled != default) and not implied:
TestEnvironment.repro_env_vars[env_var] = env_var_val
# export flag globally for convenience
assert name not in globals(), f"duplicate definition of flag '{name}'"
globals()[name] = enabled
return enabled
# Defines a setting usable throughout the test suite, determining its value by querying
# the specified environment variable. This differs from a flag in that it's not restricted
# to a boolean value.
#
# Args:
# name (str): The name of the setting. A global variable with this name will be set
# for convenient access throughout the test suite.
# env_var (str): The name of the primary environment variable from which to
# determine the value of this setting. If this is None or the environment variable
# is unset, the default value will be used. Default: None
# default (Any): The default value to use for the setting if unset by the environment
# variable. Default: None
# include_in_repro (bool): Indicates whether this setting should be included in the
# repro command that is output on test failure (i.e. whether it is possibly
# relevant to reproducing the test failure). Default: True
# parse_fn (Callable): Callable parsing the env var string. Default value just uses
# the string itself.
@staticmethod
def def_setting(
name,
env_var=None,
default=None,
include_in_repro=True,
parse_fn=lambda maybe_val_str: maybe_val_str,
):
value = default if env_var is None else os.getenv(env_var)
value = parse_fn(value)
if include_in_repro and (value != default):
TestEnvironment.repro_env_vars[env_var] = value
# export setting globally for convenience
assert name not in globals(), f"duplicate definition of setting '{name}'"
globals()[name] = value
return value
# Returns a string prefix usable to set environment variables for any test
# settings that should be explicitly set to match this instantiation of the
# test suite.
# Example: "PYTORCH_TEST_WITH_ASAN=1 PYTORCH_TEST_WITH_ROCM=1"
@staticmethod
def repro_env_var_prefix() -> str:
return " ".join([f"{env_var}={value}"
for env_var, value in TestEnvironment.repro_env_vars.items()])
log = logging.getLogger(__name__)
torch.backends.disable_global_flags()
FILE_SCHEMA = "file://"
if sys.platform == 'win32':
FILE_SCHEMA = "file:///"
# NB: This flag differs semantically from others in that setting the env var to any
# non-empty value will cause it to be true:
# CI=1, CI="true", CI=0, etc. all set the flag to be true.
# CI= and an unset CI set the flag to be false.
# GitHub sets the value to CI="true" to enable it.
IS_CI: bool = TestEnvironment.def_flag(
"IS_CI",
env_var="CI",
include_in_repro=False,
enabled_fn=lambda env_var_value, _: bool(env_var_value),
)
IS_SANDCASTLE: bool = TestEnvironment.def_flag(
"IS_SANDCASTLE",
env_var="SANDCASTLE",
implied_by_fn=lambda: os.getenv("TW_JOB_USER") == "sandcastle",
include_in_repro=False,
)
_is_fbcode_default = (
hasattr(torch._utils_internal, "IS_FBSOURCE") and
torch._utils_internal.IS_FBSOURCE
)
IS_FBCODE: bool = TestEnvironment.def_flag(
"IS_FBCODE",
env_var="PYTORCH_TEST_FBCODE",
default=_is_fbcode_default,
include_in_repro=False,
)
IS_REMOTE_GPU: bool = TestEnvironment.def_flag(
"IS_REMOTE_GPU",
env_var="PYTORCH_TEST_REMOTE_GPU",
include_in_repro=False,
)
DISABLE_RUNNING_SCRIPT_CHK: bool = TestEnvironment.def_flag(
"DISABLE_RUNNING_SCRIPT_CHK",
env_var="PYTORCH_DISABLE_RUNNING_SCRIPT_CHK",
include_in_repro=False,
)
# NB: enabled by default unless in an fbcode context.
PRINT_REPRO_ON_FAILURE: bool = TestEnvironment.def_flag(
"PRINT_REPRO_ON_FAILURE",
env_var="PYTORCH_PRINT_REPRO_ON_FAILURE",
default=(not IS_FBCODE),
include_in_repro=False,
)
# possibly restrict OpInfo tests to a single sample input
OPINFO_SAMPLE_INPUT_INDEX: Optional[int] = TestEnvironment.def_setting(
"OPINFO_SAMPLE_INPUT_INDEX",
env_var="PYTORCH_OPINFO_SAMPLE_INPUT_INDEX",
default=None,
# Don't include the env var value in the repro command because the info will
# be queried from the tracked sample input instead
include_in_repro=False,
parse_fn=lambda val: None if val is None else int(val),
)
DEFAULT_DISABLED_TESTS_FILE = '.pytorch-disabled-tests.json'
DEFAULT_SLOW_TESTS_FILE = 'slow_tests.json'
disabled_tests_dict = {}
slow_tests_dict = {}
def maybe_load_json(filename):
if os.path.isfile(filename):
with open(filename) as fp:
return json.load(fp)
log.warning("Attempted to load json file '%s' but it does not exist.", filename)
return {}
# set them here in case the tests are running in a subprocess that doesn't call run_tests
if os.getenv("SLOW_TESTS_FILE", ""):
slow_tests_dict = maybe_load_json(os.getenv("SLOW_TESTS_FILE", ""))
if os.getenv("DISABLED_TESTS_FILE", ""):
disabled_tests_dict = maybe_load_json(os.getenv("DISABLED_TESTS_FILE", ""))
NATIVE_DEVICES = ('cpu', 'cuda', 'xpu', 'meta', torch._C._get_privateuse1_backend_name())
# used for managing devices testing for torch profiler UTs
# for now cpu, cuda and xpu are added for testing torch profiler UTs
DEVICE_LIST_SUPPORT_PROFILING_TEST = ('cpu', 'cuda', 'xpu')
ALLOW_XPU_PROFILING_TEST = True
check_names = ['orin', 'concord', 'galen', 'xavier', 'nano', 'jetson', 'tegra']
IS_JETSON = any(name in platform.platform() for name in check_names)
def gcIfJetson(fn):
# Irregular Jetson host/device memory setup requires cleanup to avoid tests being killed
@functools.wraps(fn)
def wrapper(*args, **kwargs):
if IS_JETSON:
gc.collect()
torch.cuda.empty_cache()
fn(*args, **kwargs)
return wrapper
# Tries to extract the current test function by crawling the stack.
# If unsuccessful, return None.
def extract_test_fn() -> Optional[Callable]:
try:
stack = inspect.stack()
for frame_info in stack:
frame = frame_info.frame
if "self" not in frame.f_locals:
continue
self_val = frame.f_locals["self"]
if isinstance(self_val, unittest.TestCase):
test_id = self_val.id()
test_name = test_id.split('.')[2]
test_fn = getattr(self_val, test_name).__func__
return test_fn
except Exception:
pass
return None
# Contains tracked input data useful for debugging purposes
@dataclass
class TrackedInput:
index: int
val: Any
type_desc: str
# Attempt to pull out tracked input information from the test function.
# A TrackedInputIter is used to insert this information.
def get_tracked_input() -> Optional[TrackedInput]:
test_fn = extract_test_fn()
if test_fn is None:
return None
if not hasattr(test_fn, "tracked_input"):
return None
return test_fn.tracked_input
def clear_tracked_input():
test_fn = extract_test_fn()
if test_fn is None:
return
if not hasattr(test_fn, "tracked_input"):
return None
test_fn.tracked_input = None
# Wraps an iterator and tracks the most recent value the iterator produces
# for debugging purposes. Tracked values are stored on the test function.
class TrackedInputIter:
def __init__(
self,
child_iter,
input_type_desc,
item_callback=None,
track_callback=None,
set_seed=True,
restrict_to_index=None
):
self.child_iter = enumerate(child_iter)
# Input type describes the things we're tracking (e.g. "sample input", "error input").
self.input_type_desc = input_type_desc
# NB: The two types of callbacks below exist because the thing we want to track isn't
# always the same as the thing we want returned from the iterator. An example of this
# is ErrorInput, which we want returned from the iterator, but which contains a
# SampleInput that we want to track.
# Item callback is run on each (iterated thing, index) to get the thing to return.
self.item_callback = item_callback
if self.item_callback is None:
self.item_callback = lambda x, i: x
# Track callback is run on each iterated thing to get the thing to track.
self.track_callback = track_callback
if self.track_callback is None:
self.track_callback = lambda x: x
self.test_fn = extract_test_fn()
# Indicates whether the random seed should be set before each call to the iterator
self.set_seed = set_seed
# Indicates that iteration should be restricted to only the provided index.
# If None, no restriction is done
self.restrict_to_index = restrict_to_index
def __iter__(self):
return self
def __next__(self):
while True:
if self.set_seed:
# use a test-name-specific hash for the seed if possible
seed = (
int.from_bytes(hashlib.sha256(
self.test_fn.__qualname__.encode("utf-8")).digest()[:4], 'little')
if self.test_fn is not None else SEED
)
set_rng_seed(seed)
# allow StopIteration to bubble up
input_idx, input_val = next(self.child_iter)
if (self.restrict_to_index is None) or (input_idx == self.restrict_to_index):
break
self._set_tracked_input(
TrackedInput(
index=input_idx, val=self.track_callback(input_val), type_desc=self.input_type_desc
)
)
return self.item_callback(input_val, input_idx)
def _set_tracked_input(self, tracked_input: TrackedInput):
if self.test_fn is None:
return
if not hasattr(self.test_fn, "tracked_input"):
return
self.test_fn.tracked_input = tracked_input
class _TestParametrizer:
"""
Decorator class for parametrizing a test function, yielding a set of new tests spawned
from the original generic test, each specialized for a specific set of test inputs. For
example, parametrizing a test across the set of ops will result in a test function per op.
The decision of how to parametrize / what to parametrize over is intended to be implemented
by each derived class.
In the details, the decorator adds a 'parametrize_fn' property to the test function. This function
is intended to be called later by one of:
* Device-specific test instantiation via instantiate_device_type_tests(). Note that for this
case there is no need to explicitly parametrize over device type, as that is handled separately.
* Device-agnostic parametrized test instantiation via instantiate_parametrized_tests().
If the decorator is applied to a test function that already has a 'parametrize_fn' property, a new
composite 'parametrize_fn' will be created that generates tests with the product of the parameters
generated by the old and new parametrize_fns. This allows for convenient composability of decorators.
"""
def _parametrize_test(self, test, generic_cls, device_cls):
"""
Parametrizes the given test function across whatever dimension is specified by the derived class.
Tests can be parametrized over any arbitrary dimension or combination of dimensions, such as all
ops, all modules, or all ops + their associated dtypes.
Args:
test (fn): Test function to parametrize over
generic_cls (class): Generic test class object containing tests (e.g. TestFoo)
device_cls (class): Device-specialized test class object (e.g. TestFooCPU); set to None
if the tests are not part of a device-specific set
Returns:
Generator object returning 4-tuples of:
test (fn): Parametrized test function; must support a device arg and args for any params
test_name (str): Parametrized suffix for the test (e.g. opname_int64); will be appended to
the base name of the test
param_kwargs (dict): Param kwargs to pass to the test (e.g. {'op': 'add', 'dtype': torch.int64})
decorator_fn (callable): Callable[[Dict], List] for list of decorators to apply given param_kwargs
"""
raise NotImplementedError
def __call__(self, fn):
if hasattr(fn, 'parametrize_fn'):
# Do composition with the product of args.
old_parametrize_fn = fn.parametrize_fn
new_parametrize_fn = self._parametrize_test
fn.parametrize_fn = compose_parametrize_fns(old_parametrize_fn, new_parametrize_fn)
else:
fn.parametrize_fn = self._parametrize_test
return fn
def compose_parametrize_fns(old_parametrize_fn, new_parametrize_fn):
"""
Returns a parametrize_fn that parametrizes over the product of the parameters handled
by the given parametrize_fns. Each given parametrize_fn should each have the signature
f(test, generic_cls, device_cls).
The test names will be a combination of the names produced by the parametrize_fns in
"<new_name>_<old_name>" order. This order is done to match intuition for constructed names
when composing multiple decorators; the names will be built in top to bottom order when stacking
parametrization decorators.
Args:
old_parametrize_fn (callable) - First parametrize_fn to compose.
new_parametrize_fn (callable) - Second parametrize_fn to compose.
"""
def composite_fn(test, generic_cls, device_cls,
old_parametrize_fn=old_parametrize_fn,
new_parametrize_fn=new_parametrize_fn):
old_tests = list(old_parametrize_fn(test, generic_cls, device_cls))
for (old_test, old_test_name, old_param_kwargs, old_dec_fn) in old_tests:
for (new_test, new_test_name, new_param_kwargs, new_dec_fn) in \
new_parametrize_fn(old_test, generic_cls, device_cls):
redundant_params = set(old_param_kwargs.keys()).intersection(new_param_kwargs.keys())
if redundant_params:
raise RuntimeError('Parametrization over the same parameter by multiple parametrization '
f'decorators is not supported. For test "{test.__name__}", the following parameters '
f'are handled multiple times: {redundant_params}')
full_param_kwargs = {**old_param_kwargs, **new_param_kwargs}
merged_test_name = '{}{}{}'.format(new_test_name,
'_' if old_test_name != '' and new_test_name != '' else '',
old_test_name)
def merged_decorator_fn(param_kwargs, old_dec_fn=old_dec_fn, new_dec_fn=new_dec_fn):
return list(old_dec_fn(param_kwargs)) + list(new_dec_fn(param_kwargs))
yield (new_test, merged_test_name, full_param_kwargs, merged_decorator_fn)
return composite_fn
def instantiate_parametrized_tests(generic_cls):
"""
Instantiates tests that have been decorated with a parametrize_fn. This is generally performed by a
decorator subclass of _TestParametrizer. The generic test will be replaced on the test class by
parametrized tests with specialized names. This should be used instead of
instantiate_device_type_tests() if the test class contains device-agnostic tests.
You can also use it as a class decorator. E.g.
```
@instantiate_parametrized_tests
class TestFoo(TestCase):
...
```
Args:
generic_cls (class): Generic test class object containing tests (e.g. TestFoo)
"""
for attr_name in tuple(dir(generic_cls)):
class_attr = getattr(generic_cls, attr_name)
if not hasattr(class_attr, 'parametrize_fn'):
continue
# Remove the generic test from the test class.
delattr(generic_cls, attr_name)
# Add parametrized tests to the test class.
def instantiate_test_helper(cls, name, test, param_kwargs):
@wraps(test)
def instantiated_test(self, param_kwargs=param_kwargs):
test(self, **param_kwargs)
assert not hasattr(generic_cls, name), f"Redefinition of test {name}"
setattr(generic_cls, name, instantiated_test)
for (test, test_suffix, param_kwargs, decorator_fn) in class_attr.parametrize_fn(
class_attr, generic_cls=generic_cls, device_cls=None):
full_name = f'{test.__name__}_{test_suffix}'
# Apply decorators based on full param kwargs.
for decorator in decorator_fn(param_kwargs):
test = decorator(test)
instantiate_test_helper(cls=generic_cls, name=full_name, test=test, param_kwargs=param_kwargs)
return generic_cls
class subtest:
"""
Explicit subtest case for use with test parametrization.
Allows for explicit naming of individual subtest cases as well as applying
decorators to the parametrized test.
Args:
arg_values (iterable): Iterable of arg values (e.g. range(10)) or
tuples of arg values (e.g. [(1, 2), (3, 4)]).
name (str): Optional name to use for the test.
decorators (iterable): Iterable of decorators to apply to the generated test.
"""
__slots__ = ['arg_values', 'name', 'decorators']
def __init__(self, arg_values, name=None, decorators=None):
self.arg_values = arg_values
self.name = name
self.decorators = decorators if decorators else []
class parametrize(_TestParametrizer):
"""
Decorator for applying generic test parametrizations.
The interface for this decorator is modeled after `@pytest.mark.parametrize`.
Basic usage between this decorator and pytest's is identical. The first argument
should be a string containing comma-separated names of parameters for the test, and
the second argument should be an iterable returning values or tuples of values for
the case of multiple parameters.
Beyond this basic usage, the decorator provides some additional functionality that
pytest does not.
1. Parametrized tests end up as generated test functions on unittest test classes.
Since this differs from how pytest works, this decorator takes on the additional
responsibility of naming these test functions. The default test names consists of
the test's base name followed by each parameter name + value (e.g. "test_bar_x_1_y_foo"),
but custom names can be defined using `name_fn` or the `subtest` structure (see below).
2. The decorator specially handles parameter values of type `subtest`, which allows for
more fine-grained control over both test naming and test execution. In particular, it can
be used to tag subtests with explicit test names or apply arbitrary decorators (see examples
below).
Examples::
@parametrize("x", range(5))
def test_foo(self, x):
...
@parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')])
def test_bar(self, x, y):
...
@parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')],
name_fn=lambda x, y: '{}_{}'.format(x, y))
def test_bar_custom_names(self, x, y):
...
@parametrize("x, y", [subtest((1, 2), name='double'),
subtest((1, 3), name='triple', decorators=[unittest.expectedFailure]),
subtest((1, 4), name='quadruple')])
def test_baz(self, x, y):
...
To actually instantiate the parametrized tests, one of instantiate_parametrized_tests() or
instantiate_device_type_tests() should be called. The former is intended for test classes
that contain device-agnostic tests, while the latter should be used for test classes that
contain device-specific tests. Both support arbitrary parametrizations using the decorator.
Args:
arg_str (str): String of arg names separate by commas (e.g. "x,y").
arg_values (iterable): Iterable of arg values (e.g. range(10)) or
tuples of arg values (e.g. [(1, 2), (3, 4)]).
name_fn (Callable): Optional function that takes in parameters and returns subtest name.
"""
def __init__(self, arg_str, arg_values, name_fn=None):
self.arg_names: List[str] = [s.strip() for s in arg_str.split(',') if s != '']
self.arg_values = arg_values
self.name_fn = name_fn
def _formatted_str_repr(self, idx, name, value):
""" Returns a string representation for the given arg that is suitable for use in test function names. """
if isinstance(value, torch.dtype):
return dtype_name(value)
elif isinstance(value, torch.device):
return str(value)
# Can't use isinstance as it would cause a circular import
elif type(value).__name__ in {'OpInfo', 'ModuleInfo'}:
return value.formatted_name
elif isinstance(value, (int, float, str)):
return f"{name}_{str(value).replace('.', '_')}"
else:
return f"{name}{idx}"
def _default_subtest_name(self, idx, values):
return '_'.join([self._formatted_str_repr(idx, a, v) for a, v in zip(self.arg_names, values)])
def _get_subtest_name(self, idx, values, explicit_name=None):
if explicit_name:
subtest_name = explicit_name
elif self.name_fn:
subtest_name = self.name_fn(*values)
else:
subtest_name = self._default_subtest_name(idx, values)
return subtest_name
def _parametrize_test(self, test, generic_cls, device_cls):
if len(self.arg_names) == 0:
# No additional parameters needed for the test.
test_name = ''
yield (test, test_name, {}, lambda _: [])
else:
# Each "values" item is expected to be either:
# * A tuple of values with one for each arg. For a single arg, a single item is expected.
# * A subtest instance with arg_values matching the previous.
values = check_exhausted_iterator = object()
for idx, values in enumerate(self.arg_values):
maybe_name = None
decorators = []
if isinstance(values, subtest):
sub = values
values = sub.arg_values
maybe_name = sub.name
@wraps(test)
def test_wrapper(*args, **kwargs):
return test(*args, **kwargs)
decorators = sub.decorators
gen_test = test_wrapper
else:
gen_test = test
values = list(values) if len(self.arg_names) > 1 else [values]
if len(values) != len(self.arg_names):
raise RuntimeError(f'Expected # values == # arg names, but got: {len(values)} '
f'values and {len(self.arg_names)} names for test "{test.__name__}"')
param_kwargs = dict(zip(self.arg_names, values))
test_name = self._get_subtest_name(idx, values, explicit_name=maybe_name)
def decorator_fn(_, decorators=decorators):
return decorators
yield (gen_test, test_name, param_kwargs, decorator_fn)
if values is check_exhausted_iterator:
raise ValueError(f'{test}: An empty arg_values was passed to @parametrize. '
'Note that this may result from reuse of a generator.')
class reparametrize(_TestParametrizer):
"""
Decorator for adjusting the way an existing parametrizer operates. This class runs
the given adapter_fn on each parametrization produced by the given parametrizer,
allowing for on-the-fly parametrization more flexible than the default,
product-based composition that occurs when stacking parametrization decorators.
If the adapter_fn returns None for a given test parametrization, that parametrization
will be excluded. Otherwise, it's expected that the adapter_fn returns an iterable of
modified parametrizations, with tweaked test names and parameter kwargs.
Examples::
def include_is_even_arg(test_name, param_kwargs):
x = param_kwargs["x"]
is_even = x % 2 == 0
new_param_kwargs = dict(param_kwargs)
new_param_kwargs["is_even"] = is_even
is_even_suffix = "_even" if is_even else "_odd"
new_test_name = f"{test_name}{is_even_suffix}"
yield (new_test_name, new_param_kwargs)
...
@reparametrize(parametrize("x", range(5)), include_is_even_arg)
def test_foo(self, x, is_even):
...
def exclude_odds(test_name, param_kwargs):
x = param_kwargs["x"]
is_even = x % 2 == 0
yield None if not is_even else (test_name, param_kwargs)
...
@reparametrize(parametrize("x", range(5)), exclude_odds)
def test_bar(self, x):
...
"""
def __init__(self, parametrizer, adapter_fn):
self.parametrizer = parametrizer
self.adapter_fn = adapter_fn
def _parametrize_test(self, test, generic_cls, device_cls):
for (gen_test, test_name, param_kwargs, decorator_fn) in \
self.parametrizer._parametrize_test(test, generic_cls, device_cls):
adapted = self.adapter_fn(test_name, param_kwargs)
if adapted is not None:
for adapted_item in adapted:
if adapted_item is not None:
new_test_name, new_param_kwargs = adapted_item
yield (gen_test, new_test_name, new_param_kwargs, decorator_fn)
class decorateIf(_TestParametrizer):
"""
Decorator for applying parameter-specific conditional decoration.
Composes with other test parametrizers (e.g. @modules, @ops, @parametrize, etc.).
Examples::
@decorateIf(unittest.skip, lambda params: params["x"] == 2)
@parametrize("x", range(5))
def test_foo(self, x):
...
@parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')])
@decorateIf(
unittest.expectedFailure,
lambda params: params["x"] == 3 and params["y"] == "baz"
)
def test_bar(self, x, y):
...
@decorateIf(
unittest.expectedFailure,
lambda params: params["op"].name == "add" and params["dtype"] == torch.float16
)
@ops(op_db)
def test_op_foo(self, device, dtype, op):
...
@decorateIf(
unittest.skip,
lambda params: params["module_info"].module_cls is torch.nn.Linear and \
params["device"] == "cpu"
)
@modules(module_db)
def test_module_foo(self, device, dtype, module_info):
...
Args:
decorator: Test decorator to apply if the predicate is satisfied.
predicate_fn (Callable): Function taking in a dict of params and returning a boolean
indicating whether the decorator should be applied or not.
"""
def __init__(self, decorator, predicate_fn):
self.decorator = decorator
self.predicate_fn = predicate_fn
def _parametrize_test(self, test, generic_cls, device_cls):
# Leave test as-is and return the appropriate decorator_fn.
def decorator_fn(params, decorator=self.decorator, predicate_fn=self.predicate_fn):
if predicate_fn(params):
return [decorator]
else:
return []
@wraps(test)
def test_wrapper(*args, **kwargs):
return test(*args, **kwargs)
test_name = ''
yield (test_wrapper, test_name, {}, decorator_fn)
class ProfilingMode(Enum):
LEGACY = 1
SIMPLE = 2
PROFILING = 3
def cppProfilingFlagsToProfilingMode():
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
old_prof_mode_state = torch._C._get_graph_executor_optimize(True)
torch._C._jit_set_profiling_executor(old_prof_exec_state)
torch._C._get_graph_executor_optimize(old_prof_mode_state)
if old_prof_exec_state:
if old_prof_mode_state:
return ProfilingMode.PROFILING
else:
return ProfilingMode.SIMPLE
else:
return ProfilingMode.LEGACY
@contextmanager
def enable_profiling_mode_for_profiling_tests():
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
old_prof_mode_state = torch._C._get_graph_executor_optimize(True)
try:
yield
finally:
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
torch._C._jit_set_profiling_executor(old_prof_exec_state)
torch._C._get_graph_executor_optimize(old_prof_mode_state)
@contextmanager
def enable_profiling_mode():
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
old_prof_mode_state = torch._C._get_graph_executor_optimize(True)
try:
yield
finally:
torch._C._jit_set_profiling_executor(old_prof_exec_state)
torch._C._get_graph_executor_optimize(old_prof_mode_state)
@contextmanager
def num_profiled_runs(num_runs):
old_num_runs = torch._C._jit_set_num_profiled_runs(num_runs)
try:
yield
finally:
torch._C._jit_set_num_profiled_runs(old_num_runs)
func_call = torch._C.ScriptFunction.__call__
meth_call = torch._C.ScriptMethod.__call__
def prof_callable(callable, *args, **kwargs):
if 'profile_and_replay' in kwargs:
del kwargs['profile_and_replay']
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
with enable_profiling_mode_for_profiling_tests():
callable(*args, **kwargs)
return callable(*args, **kwargs)
return callable(*args, **kwargs)
def prof_func_call(*args, **kwargs):
return prof_callable(func_call, *args, **kwargs)
def prof_meth_call(*args, **kwargs):
return prof_callable(meth_call, *args, **kwargs)
torch._C.ScriptFunction.__call__ = prof_func_call # type: ignore[method-assign]
torch._C.ScriptMethod.__call__ = prof_meth_call # type: ignore[method-assign]
def _get_test_report_path():
# allow users to override the test file location. We need this
# because the distributed tests run the same test file multiple
# times with different configurations.
override = os.environ.get('TEST_REPORT_SOURCE_OVERRIDE')
test_source = override if override is not None else 'python-unittest'
return os.path.join('test-reports', test_source)
is_running_via_run_test = "run_test.py" in getattr(__main__, "__file__", "")
parser = argparse.ArgumentParser(add_help=not is_running_via_run_test, allow_abbrev=False)
parser.add_argument('--subprocess', action='store_true',
help='whether to run each test in a subprocess')
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--accept', action='store_true')
parser.add_argument('--jit-executor', '--jit_executor', type=str)
parser.add_argument('--repeat', type=int, default=1)
parser.add_argument('--test-bailouts', '--test_bailouts', action='store_true')
parser.add_argument('--use-pytest', action='store_true')
parser.add_argument('--save-xml', nargs='?', type=str,
const=_get_test_report_path(),
default=_get_test_report_path() if IS_CI else None)
parser.add_argument('--discover-tests', action='store_true')
parser.add_argument('--log-suffix', type=str, default="")
parser.add_argument('--run-parallel', type=int, default=1)
parser.add_argument('--import-slow-tests', type=str, nargs='?', const=DEFAULT_SLOW_TESTS_FILE)
parser.add_argument('--import-disabled-tests', type=str, nargs='?', const=DEFAULT_DISABLED_TESTS_FILE)
parser.add_argument('--rerun-disabled-tests', action='store_true')
parser.add_argument('--pytest-single-test', type=str, nargs=1)
if sys.version_info >= (3, 9):
parser.add_argument('--showlocals', action=argparse.BooleanOptionalAction, default=False)
else:
parser.add_argument('--showlocals', action='store_true', default=False)
parser.add_argument('--no-showlocals', dest='showlocals', action='store_false')
# Only run when -h or --help flag is active to display both unittest and parser help messages.
def run_unittest_help(argv):
unittest.main(argv=argv)
if '-h' in sys.argv or '--help' in sys.argv:
help_thread = threading.Thread(target=run_unittest_help, args=(sys.argv,))
help_thread.start()
help_thread.join()
args, remaining = parser.parse_known_args()
if args.jit_executor == 'legacy':
GRAPH_EXECUTOR = ProfilingMode.LEGACY
elif args.jit_executor == 'profiling':
GRAPH_EXECUTOR = ProfilingMode.PROFILING
elif args.jit_executor == 'simple':
GRAPH_EXECUTOR = ProfilingMode.SIMPLE
else:
# infer flags based on the default settings
GRAPH_EXECUTOR = cppProfilingFlagsToProfilingMode()
RERUN_DISABLED_TESTS = args.rerun_disabled_tests
SLOW_TESTS_FILE = args.import_slow_tests
DISABLED_TESTS_FILE = args.import_disabled_tests
LOG_SUFFIX = args.log_suffix
RUN_PARALLEL = args.run_parallel
TEST_BAILOUTS = args.test_bailouts
USE_PYTEST = args.use_pytest
PYTEST_SINGLE_TEST = args.pytest_single_test
TEST_DISCOVER = args.discover_tests
TEST_IN_SUBPROCESS = args.subprocess
TEST_SAVE_XML = args.save_xml
REPEAT_COUNT = args.repeat
SEED = args.seed
SHOWLOCALS = args.showlocals
if not getattr(expecttest, "ACCEPT", False):
expecttest.ACCEPT = args.accept
UNITTEST_ARGS = [sys.argv[0]] + remaining
torch.manual_seed(SEED)
# CI Prefix path used only on CI environment
CI_TEST_PREFIX = str(Path(os.getcwd()))
CI_PT_ROOT = str(Path(os.getcwd()).parent)
CI_FUNCTORCH_ROOT = str(os.path.join(Path(os.getcwd()).parent, "functorch"))
def wait_for_process(p, timeout=None):
try:
return p.wait(timeout=timeout)
except KeyboardInterrupt:
# Give `p` a chance to handle KeyboardInterrupt. Without this,
# `pytest` can't print errors it collected so far upon KeyboardInterrupt.
exit_status = p.wait(timeout=5)
if exit_status is not None:
return exit_status
else:
p.kill()
raise
except subprocess.TimeoutExpired:
# send SIGINT to give pytest a chance to make xml
p.send_signal(signal.SIGINT)
exit_status = None
try:
exit_status = p.wait(timeout=5)
# try to handle the case where p.wait(timeout=5) times out as well as
# otherwise the wait() call in the finally block can potentially hang
except subprocess.TimeoutExpired:
pass
if exit_status is not None:
return exit_status
else:
p.kill()
raise
except: # noqa: B001,E722, copied from python core library
p.kill()
raise
finally:
# Always call p.wait() to ensure exit
p.wait()
def shell(command, cwd=None, env=None, stdout=None, stderr=None, timeout=None):
sys.stdout.flush()
sys.stderr.flush()
# The following cool snippet is copied from Py3 core library subprocess.call
# only the with
# 1. `except KeyboardInterrupt` block added for SIGINT handling.
# 2. In Py2, subprocess.Popen doesn't return a context manager, so we do
# `p.wait()` in a `final` block for the code to be portable.
#
# https://github.com/python/cpython/blob/71b6c1af727fbe13525fb734568057d78cea33f3/Lib/subprocess.py#L309-L323
assert not isinstance(command, str), "Command to shell should be a list or tuple of tokens"
p = subprocess.Popen(command, universal_newlines=True, cwd=cwd, env=env, stdout=stdout, stderr=stderr)
return wait_for_process(p, timeout=timeout)
def retry_shell(
command,
cwd=None,
env=None,
stdout=None,
stderr=None,
timeout=None,
retries=1,
was_rerun=False,
) -> Tuple[int, bool]:
# Returns exicode + whether it was rerun
assert (
retries >= 0
), f"Expecting non negative number for number of retries, got {retries}"
try:
exit_code = shell(
command, cwd=cwd, env=env, stdout=stdout, stderr=stderr, timeout=timeout
)
if exit_code == 0 or retries == 0:
return exit_code, was_rerun
print(
f"Got exit code {exit_code}, retrying (retries left={retries})",
file=stdout,
flush=True,
)
except subprocess.TimeoutExpired:
if retries == 0:
print(
f"Command took >{timeout // 60}min, returning 124",
file=stdout,
flush=True,
)
return 124, was_rerun
print(
f"Command took >{timeout // 60}min, retrying (retries left={retries})",
file=stdout,
flush=True,
)
return retry_shell(
command,
cwd=cwd,
env=env,
stdout=stdout,
stderr=stderr,
timeout=timeout,
retries=retries - 1,
was_rerun=True,
)
def discover_test_cases_recursively(suite_or_case):
if isinstance(suite_or_case, unittest.TestCase):
return [suite_or_case]
rc = []
for element in suite_or_case:
print(element)
rc.extend(discover_test_cases_recursively(element))
return rc
def get_test_names(test_cases):
return ['.'.join(case.id().split('.')[-2:]) for case in test_cases]
def _print_test_names():
suite = unittest.TestLoader().loadTestsFromModule(__main__)
test_cases = discover_test_cases_recursively(suite)
for name in get_test_names(test_cases):
print(name)
def chunk_list(lst, nchunks):
return [lst[i::nchunks] for i in range(nchunks)]
# sanitize filename e.g., distributed/pipeline/sync/skip/test_api.py -> distributed.pipeline.sync.skip.test_api
def sanitize_test_filename(filename):
# inspect.getfile returns absolute path in some CI jobs, converting it to relative path if needed
if filename.startswith(CI_TEST_PREFIX):
filename = filename[len(CI_TEST_PREFIX) + 1:]
strip_py = re.sub(r'.py$', '', filename)
return re.sub('/', r'.', strip_py)
def lint_test_case_extension(suite):
succeed = True
for test_case_or_suite in suite:
test_case = test_case_or_suite
if isinstance(test_case_or_suite, unittest.TestSuite):
first_test = test_case_or_suite._tests[0] if len(test_case_or_suite._tests) > 0 else None
if first_test is not None and isinstance(first_test, unittest.TestSuite):
return succeed and lint_test_case_extension(test_case_or_suite)
test_case = first_test
if test_case is not None:
test_class = test_case.id().split('.', 1)[1].split('.')[0]
if not isinstance(test_case, TestCase):
err = "This test class should extend from torch.testing._internal.common_utils.TestCase but it doesn't."
print(f"{test_class} - failed. {err}")
succeed = False
return succeed
def get_report_path(argv=UNITTEST_ARGS, pytest=False):
test_filename = sanitize_test_filename(argv[0])
test_report_path = TEST_SAVE_XML + LOG_SUFFIX
test_report_path = os.path.join(test_report_path, test_filename)
if pytest:
test_report_path = test_report_path.replace('python-unittest', 'python-pytest')
os.makedirs(test_report_path, exist_ok=True)
test_report_path = os.path.join(test_report_path, f"{test_filename}-{os.urandom(8).hex()}.xml")
return test_report_path
os.makedirs(test_report_path, exist_ok=True)
return test_report_path
def sanitize_pytest_xml(xml_file: str):
# pytext xml is different from unittext xml, this function makes pytest xml more similar to unittest xml
# consider somehow modifying the XML logger in conftest to do this instead
import xml.etree.ElementTree as ET
tree = ET.parse(xml_file)
for testcase in tree.iter('testcase'):
full_classname = testcase.attrib.get("classname")
if full_classname is None:
continue
# The test prefix is optional
regex_result = re.search(r"^(test\.)?(?P<file>.*)\.(?P<classname>[^\.]*)$", full_classname)
if regex_result is None:
continue
classname = regex_result.group("classname")
file = regex_result.group("file").replace(".", "/")
testcase.set("classname", classname)
testcase.set("file", f"{file}.py")
tree.write(xml_file)
def get_pytest_test_cases(argv: List[str]) -> List[str]:
class TestCollectorPlugin:
def __init__(self) -> None:
self.tests = []
def pytest_collection_finish(self, session):
for item in session.items:
self.tests.append(session.config.cwd_relative_nodeid(item.nodeid))
test_collector_plugin = TestCollectorPlugin()
import pytest
pytest.main(
[arg for arg in argv if arg != '-vv'] + ['--collect-only', '-qq', '--use-main-module'],
plugins=[test_collector_plugin]
)
return test_collector_plugin.tests
def run_tests(argv=UNITTEST_ARGS):
# import test files.
if SLOW_TESTS_FILE:
if os.path.exists(SLOW_TESTS_FILE):
with open(SLOW_TESTS_FILE) as fp:
global slow_tests_dict
slow_tests_dict = json.load(fp)
# use env vars so pytest-xdist subprocesses can still access them
os.environ['SLOW_TESTS_FILE'] = SLOW_TESTS_FILE
else:
warnings.warn(f'slow test file provided but not found: {SLOW_TESTS_FILE}')
if DISABLED_TESTS_FILE:
if os.path.exists(DISABLED_TESTS_FILE):
with open(DISABLED_TESTS_FILE) as fp:
global disabled_tests_dict
disabled_tests_dict = json.load(fp)
os.environ['DISABLED_TESTS_FILE'] = DISABLED_TESTS_FILE
else:
warnings.warn(f'disabled test file provided but not found: {DISABLED_TESTS_FILE}')
# Determine the test launch mechanism
if TEST_DISCOVER:
_print_test_names()
return
# Before running the tests, lint to check that every test class extends from TestCase
suite = unittest.TestLoader().loadTestsFromModule(__main__)
if not lint_test_case_extension(suite):
sys.exit(1)
if SHOWLOCALS:
argv = [
argv[0],
*(["--showlocals", "--tb=long", "--color=yes"] if USE_PYTEST else ["--locals"]),
*argv[1:],
]
if TEST_IN_SUBPROCESS:
other_args = []
if DISABLED_TESTS_FILE:
other_args.append("--import-disabled-tests")
if SLOW_TESTS_FILE:
other_args.append("--import-slow-tests")
if USE_PYTEST:
other_args.append("--use-pytest")
if RERUN_DISABLED_TESTS:
other_args.append("--rerun-disabled-tests")
if TEST_SAVE_XML:
other_args += ['--save-xml', args.save_xml]
test_cases = (
get_pytest_test_cases(argv) if USE_PYTEST else
[case.id().split('.', 1)[1] for case in discover_test_cases_recursively(suite)]
)
failed_tests = []
for test_case_full_name in test_cases:
cmd = (
[sys.executable] + [argv[0]] + other_args + argv[1:] +
(["--pytest-single-test"] if USE_PYTEST else []) +
[test_case_full_name]
)
string_cmd = " ".join(cmd)
timeout = None if RERUN_DISABLED_TESTS else 15 * 60
exitcode, _ = retry_shell(cmd, timeout=timeout, retries=0 if RERUN_DISABLED_TESTS else 1)
if exitcode != 0:
# This is sort of hacky, but add on relevant env variables for distributed tests.
if 'TestDistBackendWithSpawn' in test_case_full_name:
backend = os.environ.get("BACKEND", "")
world_size = os.environ.get("WORLD_SIZE", "")
env_prefix = f"BACKEND={backend} WORLD_SIZE={world_size}"
string_cmd = env_prefix + " " + string_cmd
# Log the command to reproduce the failure.
print(f"Test exited with non-zero exitcode {exitcode}. Command to reproduce: {string_cmd}")
failed_tests.append(test_case_full_name)
assert len(failed_tests) == 0, "{} unit test(s) failed:\n\t{}".format(
len(failed_tests), '\n\t'.join(failed_tests))
elif RUN_PARALLEL > 1:
test_cases = discover_test_cases_recursively(suite)
test_batches = chunk_list(get_test_names(test_cases), RUN_PARALLEL)
processes = []
for i in range(RUN_PARALLEL):
command = [sys.executable] + argv + [f'--log-suffix=-shard-{i + 1}'] + test_batches[i]
processes.append(subprocess.Popen(command, universal_newlines=True))
failed = False
for p in processes:
failed |= wait_for_process(p) != 0
assert not failed, "Some test shards have failed"
elif USE_PYTEST:
pytest_args = argv + ["--use-main-module"]
if TEST_SAVE_XML:
test_report_path = get_report_path(pytest=True)
print(f'Test results will be stored in {test_report_path}')
pytest_args.append(f'--junit-xml-reruns={test_report_path}')
if PYTEST_SINGLE_TEST:
pytest_args = PYTEST_SINGLE_TEST + pytest_args[1:]
import pytest
os.environ["NO_COLOR"] = "1"
exit_code = pytest.main(args=pytest_args)
if TEST_SAVE_XML:
sanitize_pytest_xml(test_report_path)
if not RERUN_DISABLED_TESTS:
# exitcode of 5 means no tests were found, which happens since some test configs don't
# run tests from certain files
sys.exit(0 if exit_code == 5 else exit_code)
else:
# Only record the test report and always return a success code when running under rerun
# disabled tests mode
sys.exit(0)
elif TEST_SAVE_XML is not None:
# import here so that non-CI doesn't need xmlrunner installed
import xmlrunner # type: ignore[import]
from xmlrunner.result import _XMLTestResult # type: ignore[import]
class XMLTestResultVerbose(_XMLTestResult):
"""
Adding verbosity to test outputs:
by default test summary prints 'skip',
but we want to also print the skip reason.
GH issue: https://github.com/pytorch/pytorch/issues/69014
This works with unittest_xml_reporting<=3.2.0,>=2.0.0
(3.2.0 is latest at the moment)
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def addSkip(self, test, reason):
super().addSkip(test, reason)
for c in self.callback.__closure__:
if isinstance(c.cell_contents, str) and c.cell_contents == 'skip':
# this message is printed in test summary;
# it stands for `verbose_str` captured in the closure
c.cell_contents = f"skip: {reason}"
def printErrors(self) -> None:
super().printErrors()
self.printErrorList("XPASS", self.unexpectedSuccesses)
test_report_path = get_report_path()
verbose = '--verbose' in argv or '-v' in argv
if verbose:
print(f'Test results will be stored in {test_report_path}')
unittest.main(argv=argv, testRunner=xmlrunner.XMLTestRunner(
output=test_report_path,
verbosity=2 if verbose else 1,
resultclass=XMLTestResultVerbose))
elif REPEAT_COUNT > 1:
for _ in range(REPEAT_COUNT):
if not unittest.main(exit=False, argv=argv).result.wasSuccessful():
sys.exit(-1)
else:
unittest.main(argv=argv)
IS_LINUX = sys.platform == "linux"
IS_WINDOWS = sys.platform == "win32"
IS_MACOS = sys.platform == "darwin"
IS_PPC = platform.machine() == "ppc64le"
IS_X86 = platform.machine() in ('x86_64', 'i386')
IS_ARM64 = platform.machine() in ('arm64', 'aarch64')
IS_S390X = platform.machine() == "s390x"
def is_avx512_vnni_supported():
if sys.platform != 'linux':
return False
with open("/proc/cpuinfo", encoding="ascii") as f:
lines = f.read()
return "vnni" in lines
IS_AVX512_VNNI_SUPPORTED = is_avx512_vnni_supported()
if IS_WINDOWS:
@contextmanager
def TemporaryFileName(*args, **kwargs):
# Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
# opens the file, and it cannot be opened multiple times in Windows. To support Windows,
# close the file after creation and try to remove it manually
if 'delete' in kwargs:
if kwargs['delete'] is not False:
raise UserWarning("only TemporaryFileName with delete=False is supported on Windows.")
else:
kwargs['delete'] = False
f = tempfile.NamedTemporaryFile(*args, **kwargs)
try:
f.close()
yield f.name
finally:
os.unlink(f.name)
else:
@contextmanager # noqa: T484
def TemporaryFileName(*args, **kwargs):
with tempfile.NamedTemporaryFile(*args, **kwargs) as f:
yield f.name
if IS_WINDOWS:
@contextmanager
def TemporaryDirectoryName(suffix=None):
# On Windows the directory created by TemporaryDirectory is likely to be removed prematurely,
# so we first create the directory using mkdtemp and then remove it manually
try:
dir_name = tempfile.mkdtemp(suffix=suffix)
yield dir_name
finally:
shutil.rmtree(dir_name)
else:
@contextmanager # noqa: T484
def TemporaryDirectoryName(suffix=None):
with tempfile.TemporaryDirectory(suffix=suffix) as d:
yield d
def is_privateuse1_backend_available():
privateuse1_backend_name = torch._C._get_privateuse1_backend_name()
privateuse1_backend_module = getattr(torch, privateuse1_backend_name, None)
return hasattr(privateuse1_backend_module, "is_available") and privateuse1_backend_module.is_available()
IS_FILESYSTEM_UTF8_ENCODING = sys.getfilesystemencoding() == 'utf-8'
TEST_NUMPY = _check_module_exists('numpy')
TEST_FAIRSEQ = _check_module_exists('fairseq')
TEST_SCIPY = _check_module_exists('scipy')
TEST_MKL = torch.backends.mkl.is_available()
TEST_ACL = torch.backends.mkldnn.is_available() and torch.ops.mkldnn._is_mkldnn_acl_supported()
TEST_MPS = torch.backends.mps.is_available()
MACOS_VERSION = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1)
TEST_XPU = torch.xpu.is_available()
TEST_HPU = True if (hasattr(torch, "hpu") and torch.hpu.is_available()) else False
TEST_CUDA = torch.cuda.is_available()
custom_device_mod = getattr(torch, torch._C._get_privateuse1_backend_name(), None)
TEST_PRIVATEUSE1 = is_privateuse1_backend_available()
TEST_PRIVATEUSE1_DEVICE_TYPE = torch._C._get_privateuse1_backend_name()
TEST_NUMBA = _check_module_exists('numba')
TEST_TRANSFORMERS = _check_module_exists('transformers')
TEST_DILL = _check_module_exists('dill')
TEST_LIBROSA = _check_module_exists('librosa') and not IS_ARM64
TEST_OPT_EINSUM = _check_module_exists('opt_einsum')
TEST_Z3 = _check_module_exists('z3')
def split_if_not_empty(x: str):
return x.split(",") if len(x) != 0 else []
NOTEST_CPU = "cpu" in split_if_not_empty(os.getenv('PYTORCH_TESTING_DEVICE_EXCEPT_FOR', ''))
skipIfNoDill = unittest.skipIf(not TEST_DILL, "no dill")
# Python 2.7 doesn't have spawn
NO_MULTIPROCESSING_SPAWN: bool = TestEnvironment.def_flag(
"NO_MULTIPROCESSING_SPAWN",
env_var="NO_MULTIPROCESSING_SPAWN",
)
TEST_WITH_ASAN: bool = TestEnvironment.def_flag(
"TEST_WITH_ASAN",
env_var="PYTORCH_TEST_WITH_ASAN",
)
TEST_WITH_DEV_DBG_ASAN: bool = TestEnvironment.def_flag(
"TEST_WITH_DEV_DBG_ASAN",
env_var="PYTORCH_TEST_WITH_DEV_DBG_ASAN",
)
TEST_WITH_TSAN: bool = TestEnvironment.def_flag(
"TEST_WITH_TSAN",
env_var="PYTORCH_TEST_WITH_TSAN",
)
TEST_WITH_UBSAN: bool = TestEnvironment.def_flag(
"TEST_WITH_UBSAN",
env_var="PYTORCH_TEST_WITH_UBSAN",
)
TEST_WITH_ROCM: bool = TestEnvironment.def_flag(
"TEST_WITH_ROCM",
env_var="PYTORCH_TEST_WITH_ROCM",
)
# TODO: Remove PYTORCH_MIOPEN_SUGGEST_NHWC once ROCm officially supports NHWC in MIOpen
# See #64427
TEST_WITH_MIOPEN_SUGGEST_NHWC = os.getenv('PYTORCH_MIOPEN_SUGGEST_NHWC', '0') == '1'
# Enables tests that are slow to run (disabled by default)
TEST_WITH_SLOW: bool = TestEnvironment.def_flag(
"TEST_WITH_SLOW",
env_var="PYTORCH_TEST_WITH_SLOW",
)
# Disables non-slow tests (these tests enabled by default)
# This is usually used in conjunction with TEST_WITH_SLOW to
# run *only* slow tests. (I could have done an enum, but
# it felt a little awkward.
TEST_SKIP_FAST: bool = TestEnvironment.def_flag(
"TEST_SKIP_FAST",
env_var="PYTORCH_TEST_SKIP_FAST",
)
# Enables crossref tests, in addition to standard tests which
# are being run. crossref tests work by installing a torch
# function mode that runs extra compute alongside the regular
# computation that happens with the test. After both computations
# are done, we cross-reference them (thus the name) to check for
# correction, before throwing out the extra compute and proceeding
# as we had before. By default, we don't run these tests.
TEST_WITH_CROSSREF: bool = TestEnvironment.def_flag(
"TEST_WITH_CROSSREF",
env_var="PYTORCH_TEST_WITH_CROSSREF",
)
TEST_SKIP_CUDAGRAPH: bool = TestEnvironment.def_flag(
"TEST_SKIP_CUDAGRAPH",
env_var="PYTORCH_TEST_SKIP_CUDAGRAPH",
)
TEST_CUDA_GRAPH = TEST_CUDA and (not TEST_SKIP_CUDAGRAPH) and (
(torch.version.cuda and int(torch.version.cuda.split(".")[0]) >= 11) or
(torch.version.hip and float(".".join(torch.version.hip.split(".")[0:2])) >= 5.3)
)
TEST_CUDA_CUDSS = TEST_CUDA and (torch.version.cuda and int(torch.version.cuda.split(".")[0]) >= 12)
def allocator_option_enabled_fn(allocator_config, _, option):
if allocator_config is None:
return False
allocator_config = allocator_config.split(',') if ',' in allocator_config else [allocator_config]
mapping = dict([var.split(':') for var in allocator_config])
if option in mapping and mapping[option] == 'True':
return True
else:
return False
EXPANDABLE_SEGMENTS: bool = TestEnvironment.def_flag(
"EXPANDABLE_SEGMENTS",
env_var="PYTORCH_CUDA_ALLOC_CONF",
enabled_fn=functools.partial(allocator_option_enabled_fn, option='expandable_segments'),
)
if TEST_CUDA and 'NUM_PARALLEL_PROCS' in os.environ:
num_procs = int(os.getenv("NUM_PARALLEL_PROCS", "2"))
gb_available = torch.cuda.mem_get_info()[1] / 2 ** 30
# other libraries take up about a little under 1 GB of space per process
torch.cuda.set_per_process_memory_fraction(round((gb_available - num_procs * .85) / gb_available / num_procs, 2))
requires_cuda = unittest.skipUnless(torch.cuda.is_available(), "Requires CUDA")
def skipIfCrossRef(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_WITH_CROSSREF:
raise unittest.SkipTest("test doesn't currently with crossref")
else:
fn(*args, **kwargs)
return wrapper
class CrossRefMode(torch.overrides.TorchFunctionMode):
def __torch_function__(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
r = func(*args, **kwargs)
return r
# Run PyTorch tests with TorchDynamo
TEST_WITH_TORCHINDUCTOR: bool = TestEnvironment.def_flag(
"TEST_WITH_TORCHINDUCTOR",
env_var="PYTORCH_TEST_WITH_INDUCTOR",
)
# AOT_EAGER not tested in ci, useful for debugging
TEST_WITH_AOT_EAGER: bool = TestEnvironment.def_flag(
"TEST_WITH_AOT_EAGER",
env_var="PYTORCH_TEST_WITH_AOT_EAGER",
)
TEST_WITH_TORCHDYNAMO: bool = TestEnvironment.def_flag(
"TEST_WITH_TORCHDYNAMO",
env_var="PYTORCH_TEST_WITH_DYNAMO",
implied_by_fn=lambda: TEST_WITH_TORCHINDUCTOR or TEST_WITH_AOT_EAGER,
)
if TEST_WITH_TORCHDYNAMO:
import torch._dynamo
# Do not spend time on helper functions that are called with different inputs
torch._dynamo.config.accumulated_cache_size_limit = 64
# Do not log compilation metrics from unit tests
torch._dynamo.config.log_compilation_metrics = False
# Silence 3.13.0 guard performance warnings
torch._dynamo.config.issue_3_13_0_warning = False
if TEST_WITH_TORCHINDUCTOR:
import torch._inductor.config
torch._inductor.config.fallback_random = True
# seems like this is only used in test/torch_np
def xpassIfTorchDynamo_np(func):
# numpy 2.0+ is causing issues
if TEST_WITH_TORCHDYNAMO and np.__version__[0] == '2':
return unittest.skip("skipping numpy 2.0+ dynamo-wrapped test")(func)
return func if TEST_WITH_TORCHDYNAMO else unittest.expectedFailure(func)
def xfailIfACL(func):
return unittest.expectedFailure(func) if TEST_ACL else func
def xfailIfTorchDynamo(func):
return unittest.expectedFailure(func) if TEST_WITH_TORCHDYNAMO else func
def xfailIfLinux(func):
return unittest.expectedFailure(func) if IS_LINUX and not TEST_WITH_ROCM and not IS_FBCODE else func
def skipIfTorchDynamo(msg="test doesn't currently work with dynamo"):
"""
Usage:
@skipIfTorchDynamo(msg)
def test_blah(self):
...
"""
assert isinstance(msg, str), "Are you using skipIfTorchDynamo correctly?"
def decorator(fn):
if not isinstance(fn, type):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_WITH_TORCHDYNAMO:
raise unittest.SkipTest(msg)
else:
fn(*args, **kwargs)
return wrapper
assert isinstance(fn, type)
if TEST_WITH_TORCHDYNAMO:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = msg
return fn
return decorator
def skipIfTorchInductor(msg="test doesn't currently work with torchinductor",
condition=TEST_WITH_TORCHINDUCTOR):
def decorator(fn):
if not isinstance(fn, type):
@wraps(fn)
def wrapper(*args, **kwargs):
if condition:
raise unittest.SkipTest(msg)
else:
fn(*args, **kwargs)
return wrapper
assert isinstance(fn, type)
if condition:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = msg
return fn
return decorator
def serialTest(condition=True):
"""
Decorator for running tests serially. Requires pytest
"""
def decorator(fn):
if has_pytest and condition:
return pytest.mark.serial(fn)
return fn
return decorator
def unMarkDynamoStrictTest(cls=None):
def decorator(cls):
cls.dynamo_strict = False
return cls
if cls is None:
return decorator
else:
return decorator(cls)
def markDynamoStrictTest(cls_or_func=None, nopython=False):
"""
Marks the test as 'strict'. In strict mode, we reset before and after the
test, and run without suppress errors.
Args:
- nopython: if we should run torch._dynamo.optimize with nopython={True/False}.
"""
def decorator(cls_or_func):
if inspect.isclass(cls_or_func):
cls_or_func.dynamo_strict = True
cls_or_func.dynamo_strict_nopython = nopython
return cls_or_func
fn = cls_or_func
@wraps(fn)
def wrapper(*args, **kwargs):
torch._dynamo.reset()
with unittest.mock.patch("torch._dynamo.config.suppress_errors", False):
fn(*args, **kwargs)
torch._dynamo.reset()
return wrapper
if cls_or_func is None:
return decorator
else:
return decorator(cls_or_func)
def skipRocmIfTorchInductor(msg="test doesn't currently work with torchinductor on the ROCm stack"):
return skipIfTorchInductor(msg=msg, condition=TEST_WITH_ROCM and TEST_WITH_TORCHINDUCTOR)
def skipIfLegacyJitExecutor(msg="test doesn't currently work with legacy JIT executor"):
def decorator(fn):
if not isinstance(fn, type):
@wraps(fn)
def wrapper(*args, **kwargs):
if GRAPH_EXECUTOR == ProfilingMode.LEGACY:
raise unittest.SkipTest(msg)
else:
fn(*args, **kwargs)
return wrapper
assert isinstance(fn, type)
if GRAPH_EXECUTOR == ProfilingMode.LEGACY:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = msg
return fn
return decorator
# Run PyTorch tests with translation validation on.
TEST_WITH_TV = os.getenv('PYTORCH_TEST_WITH_TV') == '1'
if TEST_WITH_TV:
torch.fx.experimental._config.translation_validation = True
# Some tests take too long when dynamic_shapes is combined with
# translation_validation. Whenever that happens, we solve that by
# disabling translation_validation.
def disable_translation_validation_if_dynamic_shapes(fn):
@functools.wraps(fn)
def wrapper(*args, **kwargs):
if torch._dynamo.config.dynamic_shapes:
# Turning TV off due to high latency on dynamic shapes.
torch.fx.experimental._config.translation_validation = False
return fn(*args, **kwargs)
return wrapper
# Determine whether to enable cuda memory leak check.
# CUDA mem leak check is expensive and thus we don't want to execute it on every
# test case / configuration.
# If this is True then CUDA memory leak checks are skipped. If this is false
# then CUDA memory leak checks are performed.
# See: https://github.com/pytorch/pytorch/pull/59402#issuecomment-858811135
TEST_CUDA_MEM_LEAK_CHECK: bool = TestEnvironment.def_flag(
"TEST_CUDA_MEM_LEAK_CHECK",
env_var="PYTORCH_TEST_CUDA_MEM_LEAK_CHECK",
)
# Dict of NumPy dtype -> torch dtype (when the correspondence exists)
numpy_to_torch_dtype_dict = {
np.bool_ : torch.bool,
np.uint8 : torch.uint8,
np.uint16 : torch.uint16,
np.uint32 : torch.uint32,
np.uint64 : torch.uint64,
np.int8 : torch.int8,
np.int16 : torch.int16,
np.int32 : torch.int32,
np.int64 : torch.int64,
np.float16 : torch.float16,
np.float32 : torch.float32,
np.float64 : torch.float64,
np.complex64 : torch.complex64,
np.complex128 : torch.complex128
}
# numpy dtypes like np.float64 are not instances, but rather classes. This leads to rather absurd cases like
# np.float64 != np.dtype("float64") but np.float64 == np.dtype("float64").type.
# Especially when checking against a reference we can't be sure which variant we get, so we simply try both.
def numpy_to_torch_dtype(np_dtype):
try:
return numpy_to_torch_dtype_dict[np_dtype]
except KeyError:
return numpy_to_torch_dtype_dict[np_dtype.type]
def has_corresponding_torch_dtype(np_dtype):
try:
numpy_to_torch_dtype(np_dtype)
return True
except KeyError:
return False
if IS_WINDOWS:
# Size of `np.intc` is platform defined.
# It is returned by functions like `bitwise_not`.
# On Windows `int` is 32-bit
# https://docs.microsoft.com/en-us/cpp/cpp/data-type-ranges?view=msvc-160
numpy_to_torch_dtype_dict[np.intc] = torch.int
# Dict of torch dtype -> NumPy dtype
torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()}
torch_to_numpy_dtype_dict.update({
torch.bfloat16: np.float32,
torch.complex32: np.complex64
})
def skipIfNNModuleInlined(
msg="test doesn't currently work with nn module inlining",
condition=torch._dynamo.config.inline_inbuilt_nn_modules,
):
def decorator(fn):
if not isinstance(fn, type):
@wraps(fn)
def wrapper(*args, **kwargs):
if condition:
raise unittest.SkipTest(msg)
else:
fn(*args, **kwargs)
return wrapper
assert isinstance(fn, type)
if condition:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = msg
return fn
return decorator
def skipIfRocm(func=None, *, msg="test doesn't currently work on the ROCm stack"):
def dec_fn(fn):
reason = f"skipIfRocm: {msg}"
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_WITH_ROCM:
raise unittest.SkipTest(reason)
else:
return fn(*args, **kwargs)
return wrapper
if func:
return dec_fn(func)
return dec_fn
def runOnRocm(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_WITH_ROCM:
fn(*args, **kwargs)
else:
raise unittest.SkipTest("test currently only works on the ROCm stack")
return wrapper
def runOnRocmArch(arch: Tuple[str, ...]):
def dec_fn(fn):
@wraps(fn)
def wrap_fn(self, *args, **kwargs):
if TEST_WITH_ROCM:
prop = torch.cuda.get_device_properties(0)
if prop.gcnArchName.split(":")[0] not in arch:
reason = f"skipIfRocm: test only runs on {arch}"
raise unittest.SkipTest(reason)
return fn(self, *args, **kwargs)
return wrap_fn
return dec_fn
def xfailIfS390X(func):
return unittest.expectedFailure(func) if IS_S390X else func
def skipIfXpu(func=None, *, msg="test doesn't currently work on the XPU stack"):
def dec_fn(fn):
reason = f"skipIfXpu: {msg}"
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_XPU:
raise unittest.SkipTest(reason)
else:
return fn(*args, **kwargs)
return wrapper
if func:
return dec_fn(func)
return dec_fn
def skipIfMPS(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_MPS:
raise unittest.SkipTest("test doesn't currently work with MPS")
else:
fn(*args, **kwargs)
return wrapper
def skipIfMPSOnMacOS13(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_MPS and int(MACOS_VERSION) == 13:
raise unittest.SkipTest("Test crashes MPSGraph on MacOS13")
else:
fn(*args, **kwargs)
return wrapper
def skipIfHpu(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_HPU:
raise unittest.SkipTest("test doesn't currently work with HPU")
else:
fn(*args, **kwargs)
return wrapper
# Skips a test on CUDA if ROCm is available and its version is lower than requested.
def skipIfRocmVersionLessThan(version=None):
def dec_fn(fn):
@wraps(fn)
def wrap_fn(self, *args, **kwargs):
if TEST_WITH_ROCM:
rocm_version = str(torch.version.hip)
rocm_version = rocm_version.split("-")[0] # ignore git sha
rocm_version_tuple = tuple(int(x) for x in rocm_version.split("."))
if rocm_version_tuple is None or version is None or rocm_version_tuple < tuple(version):
reason = f"ROCm {rocm_version_tuple} is available but {version} required"
raise unittest.SkipTest(reason)
return fn(self, *args, **kwargs)
return wrap_fn
return dec_fn
def skipIfNotMiopenSuggestNHWC(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not TEST_WITH_MIOPEN_SUGGEST_NHWC:
raise unittest.SkipTest("test doesn't currently work without MIOpen NHWC activation")
else:
fn(*args, **kwargs)
return wrapper
def skipIfWindows(func=None, *, msg="test doesn't currently work on the Windows stack"):
def dec_fn(fn):
reason = f"skipIfWindows: {msg}"
@wraps(fn)
def wrapper(*args, **kwargs):
if IS_WINDOWS: # noqa: F821
raise unittest.SkipTest(reason)
else:
return fn(*args, **kwargs)
return wrapper
if func:
return dec_fn(func)
return dec_fn
# Reverts the linalg backend back to default to make sure potential failures in one
# test do not affect other tests
def setLinalgBackendsToDefaultFinally(fn):
@wraps(fn)
def _fn(*args, **kwargs):
_preferred_backend = torch.backends.cuda.preferred_linalg_library()
try:
fn(*args, **kwargs)
finally:
torch.backends.cuda.preferred_linalg_library(_preferred_backend)
return _fn
# Reverts the blas backend back to default to make sure potential failures in one
# test do not affect other tests
def setBlasBackendsToDefaultFinally(fn):
@wraps(fn)
def _fn(*args, **kwargs):
_preferred_backend = torch.backends.cuda.preferred_blas_library()
try:
fn(*args, **kwargs)
finally:
torch.backends.cuda.preferred_blas_library(_preferred_backend)
return _fn
# Context manager for setting deterministic flag and automatically
# resetting it to its original value
class DeterministicGuard:
def __init__(self, deterministic, *, warn_only=False, fill_uninitialized_memory=True):
self.deterministic = deterministic
self.warn_only = warn_only
self.fill_uninitialized_memory = fill_uninitialized_memory
def __enter__(self):
self.deterministic_restore = torch.are_deterministic_algorithms_enabled()
self.warn_only_restore = torch.is_deterministic_algorithms_warn_only_enabled()
self.fill_uninitialized_memory_restore = torch.utils.deterministic.fill_uninitialized_memory
torch.use_deterministic_algorithms(
self.deterministic,
warn_only=self.warn_only)
torch.utils.deterministic.fill_uninitialized_memory = self.fill_uninitialized_memory
def __exit__(self, exception_type, exception_value, traceback):
torch.use_deterministic_algorithms(
self.deterministic_restore,
warn_only=self.warn_only_restore)
torch.utils.deterministic.fill_uninitialized_memory = self.fill_uninitialized_memory_restore
class AlwaysWarnTypedStorageRemoval:
def __init__(self, always_warn):
assert isinstance(always_warn, bool)
self.always_warn = always_warn
def __enter__(self):
self.always_warn_restore = torch.storage._get_always_warn_typed_storage_removal()
torch.storage._set_always_warn_typed_storage_removal(self.always_warn)
def __exit__(self, exception_type, exception_value, traceback):
torch.storage._set_always_warn_typed_storage_removal(self.always_warn_restore)
# Context manager for setting cuda sync debug mode and reset it
# to original value
# we are not exposing it to the core because sync debug mode is
# global and thus not thread safe
class CudaSyncGuard:
def __init__(self, sync_debug_mode):
self.mode = sync_debug_mode
def __enter__(self):
self.debug_mode_restore = torch.cuda.get_sync_debug_mode()
torch.cuda.set_sync_debug_mode(self.mode)
def __exit__(self, exception_type, exception_value, traceback):
torch.cuda.set_sync_debug_mode(self.debug_mode_restore)
# Context manager for setting torch.__future__.set_swap_module_params_on_conversion
# and automatically resetting it to its original value
class SwapTensorsGuard:
def __init__(self, use_swap_tensors):
self.use_swap_tensors = use_swap_tensors
def __enter__(self):
self.swap_tensors_restore = torch.__future__.get_swap_module_params_on_conversion()
if self.use_swap_tensors is not None:
torch.__future__.set_swap_module_params_on_conversion(self.use_swap_tensors)
def __exit__(self, exception_type, exception_value, traceback):
torch.__future__.set_swap_module_params_on_conversion(self.swap_tensors_restore)
# This decorator can be used for API tests that call
# torch.use_deterministic_algorithms(). When the test is finished, it will
# restore the previous deterministic flag setting.
#
# If CUDA >= 10.2, this will set the environment variable
# CUBLAS_WORKSPACE_CONFIG=:4096:8 so that the error associated with that
# setting is not thrown during the test unless the test changes that variable
# on purpose. The previous CUBLAS_WORKSPACE_CONFIG setting will also be
# restored once the test is finished.
#
# Note that if a test requires CUDA to actually register the changed
# CUBLAS_WORKSPACE_CONFIG variable, a new subprocess must be created, because
# CUDA only checks the variable when the runtime initializes. Tests can be
# run inside a subprocess like so:
#
# import subprocess, sys, os
# script = '''
# # Test code should go here
# '''
# try:
# subprocess.check_output(
# [sys.executable, '-c', script],
# stderr=subprocess.STDOUT,
# cwd=os.path.dirname(os.path.realpath(__file__)),
# env=os.environ.copy())
# except subprocess.CalledProcessError as e:
# error_message = e.output.decode('utf-8')
# # Handle exceptions raised by the subprocess here
#
def wrapDeterministicFlagAPITest(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
with DeterministicGuard(
torch.are_deterministic_algorithms_enabled(),
warn_only=torch.is_deterministic_algorithms_warn_only_enabled()):
class CuBLASConfigGuard:
cublas_var_name = 'CUBLAS_WORKSPACE_CONFIG'
def __enter__(self):
self.is_cuda10_2_or_higher = (
(torch.version.cuda is not None)
and ([int(x) for x in torch.version.cuda.split(".")] >= [10, 2]))
if self.is_cuda10_2_or_higher:
self.cublas_config_restore = os.environ.get(self.cublas_var_name)
os.environ[self.cublas_var_name] = ':4096:8'
def __exit__(self, exception_type, exception_value, traceback):
if self.is_cuda10_2_or_higher:
cur_cublas_config = os.environ.get(self.cublas_var_name)
if self.cublas_config_restore is None:
if cur_cublas_config is not None:
del os.environ[self.cublas_var_name]
else:
os.environ[self.cublas_var_name] = self.cublas_config_restore
with CuBLASConfigGuard():
fn(*args, **kwargs)
return wrapper
# This decorator can be used for API tests that want to safely call
# torch.__future__.set_swap_module_params_on_conversion. `swap` can be set to
# True, False or None where None indicates that the context manager does not
# set the flag. When the test is finished, it will restore the previous swap
# flag setting.
def wrapSwapTensorsTest(swap=None):
def dec_fn(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
with SwapTensorsGuard(swap):
fn(*args, **kwargs)
return wrapper
return dec_fn
# test parametrizer for swapping
class swap(_TestParametrizer):
def __init__(self, swap_values):
super().__init__()
self.swap_values = swap_values
def _parametrize_test(self, test, generic_cls, device_cls):
for swap in self.swap_values:
yield wrapSwapTensorsTest(swap)(test), f'swap_{swap}', {}, lambda _: []
def skipIfCompiledWithoutNumpy(fn):
# Even if the numpy module is present, if `USE_NUMPY=0` is used during the
# build, numpy tests will fail
numpy_support = TEST_NUMPY
if numpy_support:
try:
# The numpy module is present, verify that PyTorch is compiled with
# numpy support
torch.from_numpy(np.array([2, 2]))
except RuntimeError:
numpy_support = False
@wraps(fn)
def wrapper(*args, **kwargs):
if not numpy_support:
raise unittest.SkipTest("PyTorch was compiled without numpy support")
else:
fn(*args, **kwargs)
return wrapper
def _test_function(fn, device):
def run_test_function(self):
return fn(self, device)
return run_test_function
def skipIfNoXNNPACK(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not torch.backends.xnnpack.enabled:
raise unittest.SkipTest('XNNPACK must be enabled for these tests. Please build with USE_XNNPACK=1.')
else:
fn(*args, **kwargs)
return wrapper
def skipIfNoLapack(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not torch._C.has_lapack:
raise unittest.SkipTest('PyTorch compiled without Lapack')
else:
fn(*args, **kwargs)
return wrapper
def skipIfNotRegistered(op_name, message):
"""Wraps the decorator to hide the import of the `core`.
Args:
op_name: Check if this op is registered in `core._REGISTERED_OPERATORS`.
message: message to fail with.
Usage:
@skipIfNotRegistered('MyOp', 'MyOp is not linked!')
This will check if 'MyOp' is in the caffe2.python.core
"""
return unittest.skip("Pytorch is compiled without Caffe2")
def skipIfNoSciPy(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not TEST_SCIPY:
raise unittest.SkipTest("test require SciPy, but SciPy not found")
else:
fn(*args, **kwargs)
return wrapper
def skip_if_pytest(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
if "PYTEST_CURRENT_TEST" in os.environ:
raise unittest.SkipTest("does not work under pytest")
return fn(*args, **kwargs)
return wrapped
def skipIfNoXPU(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not TEST_XPU:
raise unittest.SkipTest("test required PyTorched compiled with XPU")
else:
fn(*args, **kwargs)
return wrapper
def slowTest(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not TEST_WITH_SLOW:
raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test")
else:
fn(*args, **kwargs)
wrapper.__dict__['slow_test'] = True
return wrapper
def slowTestIf(condition):
return slowTest if condition else lambda fn: fn
def skipCUDAMemoryLeakCheckIf(condition):
def dec(fn):
if getattr(fn, '_do_cuda_memory_leak_check', True): # if current True
fn._do_cuda_memory_leak_check = not condition
return fn
return dec
def skipCUDANonDefaultStreamIf(condition):
def dec(fn):
if getattr(fn, '_do_cuda_non_default_stream', True): # if current True
fn._do_cuda_non_default_stream = not condition
return fn
return dec
def suppress_warnings(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
fn(*args, **kwargs)
return wrapper
def to_gpu(obj, type_map=None):
if type_map is None:
type_map = {}
if isinstance(obj, torch.Tensor):
assert obj.is_leaf
t = type_map.get(obj.dtype, obj.dtype)
with torch.no_grad():
res = obj.clone().to(dtype=t, device="cuda")
res.requires_grad = obj.requires_grad
return res
elif torch.is_storage(obj):
return obj.new().resize_(obj.size()).copy_(obj)
elif isinstance(obj, list):
return [to_gpu(o, type_map) for o in obj]
elif isinstance(obj, tuple):
return tuple(to_gpu(o, type_map) for o in obj)
else:
return deepcopy(obj)
def get_function_arglist(func):
return inspect.getfullargspec(func).args
def set_rng_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
if TEST_NUMPY:
np.random.seed(seed)
@contextlib.contextmanager
def set_default_dtype(dtype):
saved_dtype = torch.get_default_dtype()
torch.set_default_dtype(dtype)
try:
yield
finally:
torch.set_default_dtype(saved_dtype)
@contextlib.contextmanager
def set_default_tensor_type(tensor_type):
saved_tensor_type = torch.tensor([]).type()
torch.set_default_tensor_type(tensor_type)
try:
yield
finally:
torch.set_default_tensor_type(saved_tensor_type)
def iter_indices(tensor):
if tensor.dim() == 0:
return range(0)
if tensor.dim() == 1:
return range(tensor.size(0))
return product(*(range(s) for s in tensor.size()))
def is_iterable(obj):
try:
iter(obj)
return True
except TypeError:
return False
def is_iterable_of_tensors(iterable, include_empty=False):
""" Returns True if iterable is an iterable of tensors and False o.w.
If the iterable is empty, the return value is :attr:`include_empty`
"""
# Tensor itself is iterable so we check this first
if isinstance(iterable, torch.Tensor):
return False
try:
if len(iterable) == 0:
return include_empty
for t in iter(iterable):
if not isinstance(t, torch.Tensor):
return False
except TypeError:
return False
return True
class CudaNonDefaultStream:
def __enter__(self):
# Before starting CUDA test save currently active streams on all
# CUDA devices and set new non default streams to all CUDA devices
# to ensure CUDA tests do not use default stream by mistake.
beforeDevice = torch.cuda.current_device()
self.beforeStreams = []
for d in range(torch.cuda.device_count()):
self.beforeStreams.append(torch.cuda.current_stream(d))
deviceStream = torch.cuda.Stream(device=d)
self.beforeStreams[-1].synchronize()
torch._C._cuda_setStream(stream_id=deviceStream.stream_id,
device_index=deviceStream.device_index,
device_type=deviceStream.device_type)
torch._C._cuda_setDevice(beforeDevice)
def __exit__(self, exec_type, exec_value, traceback):
# After completing CUDA test load previously active streams on all
# CUDA devices.
beforeDevice = torch.cuda.current_device()
for d in range(torch.cuda.device_count()):
torch._C._cuda_setStream(stream_id=self.beforeStreams[d].stream_id,
device_index=self.beforeStreams[d].device_index,
device_type=self.beforeStreams[d].device_type)
torch._C._cuda_setDevice(beforeDevice)
class CudaMemoryLeakCheck:
def __init__(self, testcase, name=None):
self.name = testcase.id() if name is None else name
self.testcase = testcase
# initialize context & RNG to prevent false positive detections
# when the test is the first to initialize those
from torch.testing._internal.common_cuda import initialize_cuda_context_rng
initialize_cuda_context_rng()
# Stores CUDA memory data provided by PyTorch's caching allocator and
# the CUDA driver.
#
# NOTE: The undocumented torch.cuda.mem_get_info() returns
# (#free bytes, #total bytes available) on the GPU
def __enter__(self):
self.caching_allocator_befores = []
self.driver_befores = []
# Performs a gc if required (required if any CUDA memory is held)
num_devices = torch.cuda.device_count()
for i in range(num_devices):
caching_allocator_mem_allocated = torch.cuda.memory_allocated(i)
# NOTE: gc is based exclusively on caching allocator memory
# because the driver will always have some bytes in use (context size?)
if caching_allocator_mem_allocated > 0:
gc.collect()
torch._C._cuda_clearCublasWorkspaces()
torch.cuda.empty_cache()
break
# Acquires caching allocator and driver statistics before the test is run
for i in range(num_devices):
self.caching_allocator_befores.append(torch.cuda.memory_allocated(i))
bytes_free, bytes_total = torch.cuda.mem_get_info(i)
driver_mem_allocated = bytes_total - bytes_free
self.driver_befores.append(driver_mem_allocated)
def __exit__(self, exec_type, exec_value, traceback):
# Don't check for leaks if an exception was thrown
if exec_type is not None:
return
# Compares caching allocator before/after statistics
# An increase in allocated memory is a discrepancy indicating a possible
# memory leak
discrepancy_detected = False
num_devices = torch.cuda.device_count()
for i in range(num_devices):
# avoid counting cublasWorkspace allocations
torch._C._cuda_clearCublasWorkspaces()
caching_allocator_mem_allocated = torch.cuda.memory_allocated(i)
if caching_allocator_mem_allocated > self.caching_allocator_befores[i]:
discrepancy_detected = True
break
# Short-circuits if no discrepancy detected
if not discrepancy_detected:
return
# Validates the discrepancy persists after garbage collection and
# is confirmed by the driver API
# NOTE: driver API iscrepancies alone are ignored because with the jiterator
# some tests may permanently increase the CUDA context size and
# that will appear as a driver memory leak but is the expected behavior.
# GCs and clears the cache
gc.collect()
torch.cuda.empty_cache()
for i in range(num_devices):
discrepancy_detected = True
# Query memory multiple items to ensure leak was not transient
for _ in range(3):
caching_allocator_mem_allocated = torch.cuda.memory_allocated(i)
bytes_free, bytes_total = torch.cuda.mem_get_info(i)
driver_mem_allocated = bytes_total - bytes_free
caching_allocator_discrepancy = False
driver_discrepancy = False
if caching_allocator_mem_allocated > self.caching_allocator_befores[i]:
caching_allocator_discrepancy = True
if driver_mem_allocated > self.driver_befores[i]:
driver_discrepancy = True
if not (caching_allocator_discrepancy or driver_discrepancy):
# Leak was false positive, exit loop
discrepancy_detected = False
break
if not discrepancy_detected:
continue
if caching_allocator_discrepancy and not driver_discrepancy:
# Just raises a warning if the leak is not validated by the
# driver API
# NOTE: this may be a problem with how the caching allocator collects its
# statistics or a leak too small to trigger the allocation of an
# additional block of memory by the CUDA driver
msg = ("CUDA caching allocator reports a memory leak not "
f"verified by the driver API in {self.name}! "
f"Caching allocator allocated memory was {self.caching_allocator_befores[i]} "
f"and is now reported as {caching_allocator_mem_allocated} "
f"on device {i}. "
f"CUDA driver allocated memory was {self.driver_befores[i]} and is now {driver_mem_allocated}.")
warnings.warn(msg)
elif caching_allocator_discrepancy and driver_discrepancy:
# A caching allocator discrepancy validated by the driver API is a
# failure (except on ROCm, see below)
msg = (f"CUDA driver API confirmed a leak in {self.name}! "
f"Caching allocator allocated memory was {self.caching_allocator_befores[i]} "
f"and is now reported as {caching_allocator_mem_allocated} "
f"on device {i}. "
f"CUDA driver allocated memory was {self.driver_befores[i]} and is now {driver_mem_allocated}.")
raise RuntimeError(msg)
@contextmanager
def skip_exception_type(exc_type):
try:
yield
except exc_type as e:
raise unittest.SkipTest(f"not implemented: {e}") from e
@contextmanager
def print_repro_on_failure(repro_parts):
try:
yield
except unittest.SkipTest:
raise
except Exception as e:
# Get the index of the sample input that failed the test if possible.
sample_isolation_prefix = ""
tracked_input = getattr(e, "_tracked_input", None)
if tracked_input is not None:
sample_isolation_prefix = f"PYTORCH_OPINFO_SAMPLE_INPUT_INDEX={tracked_input.index}"
repro_str = " ".join(filter(None, (sample_isolation_prefix, *repro_parts)))
open_source_signpost(
subsystem="test_repros",
name="test_failure",
parameters=json.dumps(
{
"repro": " ".join(filter(None, (sample_isolation_prefix, *repro_parts))),
}
),
)
repro_msg = f"""
To execute this test, run the following from the base repo dir:
{repro_str}
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0"""
# NB: Hacking the exception args is the cleanest way I've found to append
# failure reproduction info without poisoning the stack trace.
if len(e.args) >= 1:
e.args = (f"{e.args[0]}\n{repro_msg}", *e.args[1:])
raise
# "min_satisfying_examples" setting has been deprecated in hypothesis
# 3.56.0 and removed in hypothesis 4.x
try:
import hypothesis
def settings(*args, **kwargs):
if 'min_satisfying_examples' in kwargs and hypothesis.version.__version_info__ >= (3, 56, 0):
kwargs.pop('min_satisfying_examples')
return hypothesis.settings(*args, **kwargs)
hypothesis.settings.register_profile(
"pytorch_ci",
settings(
derandomize=True,
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=50,
verbosity=hypothesis.Verbosity.normal))
hypothesis.settings.register_profile(
"dev",
settings(
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=10,
verbosity=hypothesis.Verbosity.normal))
hypothesis.settings.register_profile(
"debug",
settings(
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=1000,
verbosity=hypothesis.Verbosity.verbose))
hypothesis.settings.load_profile(
"pytorch_ci" if IS_CI else os.getenv('PYTORCH_HYPOTHESIS_PROFILE', 'dev')
)
except ImportError:
print('Fail to import hypothesis in common_utils, tests are not derandomized')
# Used in check_if_enable to see if a test method should be disabled by an issue,
# sanitizes a test method name from appended suffixes by @dtypes parametrization.
# e.g., an issue with title "DISABLED test_bitwise_ops (__main__.TestBinaryUfuncs)" should
# disabled ALL parametrized test_bitwise_ops tests, such test_bitwise_ops_cuda_int32
def remove_device_and_dtype_suffixes(test_name: str) -> str:
# import statement is localized to avoid circular dependency issues with common_device_type.py
from torch.testing._internal.common_device_type import get_device_type_test_bases
device_suffixes = [x.device_type for x in get_device_type_test_bases()]
dtype_suffixes = [str(dt)[len("torch."):] for dt in get_all_dtypes()]
test_name_chunks = test_name.split("_")
if len(test_name_chunks) > 0 and test_name_chunks[-1] in dtype_suffixes:
if len(test_name_chunks) > 1 and test_name_chunks[-2] in device_suffixes:
return "_".join(test_name_chunks[0:-2])
return "_".join(test_name_chunks[0:-1])
return test_name
def check_if_enable(test: unittest.TestCase):
classname = str(test.__class__).split("'")[1].split(".")[-1]
sanitized_testname = remove_device_and_dtype_suffixes(test._testMethodName)
def matches_test(target: str):
target_test_parts = target.split()
if len(target_test_parts) < 2:
# poorly formed target test name
return False
target_testname = target_test_parts[0]
target_classname = target_test_parts[1][1:-1].split(".")[-1]
# if test method name or its sanitized version exactly matches the disabled
# test method name AND allow non-parametrized suite names to disable
# parametrized ones (TestSuite disables TestSuiteCPU)
return classname.startswith(target_classname) and (target_testname in (test._testMethodName, sanitized_testname))
if any(matches_test(x) for x in slow_tests_dict.keys()):
getattr(test, test._testMethodName).__dict__['slow_test'] = True
if not TEST_WITH_SLOW:
raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test")
if not IS_SANDCASTLE:
should_skip = False
skip_msg = ""
for disabled_test, (issue_url, platforms) in disabled_tests_dict.items():
if matches_test(disabled_test):
platform_to_conditional: Dict = {
"mac": IS_MACOS,
"macos": IS_MACOS,
"win": IS_WINDOWS,
"windows": IS_WINDOWS,
"linux": IS_LINUX,
"rocm": TEST_WITH_ROCM,
"xpu": TEST_XPU,
"asan": TEST_WITH_ASAN,
"dynamo": TEST_WITH_TORCHDYNAMO,
"dynamo_wrapped": TEST_WITH_TORCHDYNAMO,
"inductor": TEST_WITH_TORCHINDUCTOR,
"slow": TEST_WITH_SLOW,
}
invalid_platforms = list(filter(lambda p: p not in platform_to_conditional, platforms))
if len(invalid_platforms) > 0:
invalid_plats_str = ", ".join(invalid_platforms)
valid_plats = ", ".join(platform_to_conditional.keys())
print(f"Test {disabled_test} is disabled for some unrecognized ",
f"platforms: [{invalid_plats_str}]. Please edit issue {issue_url} to fix the platforms ",
'assigned to this flaky test, changing "Platforms: ..." to a comma separated ',
f"subset of the following (or leave it blank to match all platforms): {valid_plats}")
# Sanitize the platforms list so that we continue to disable the test for any valid platforms given
platforms = list(filter(lambda p: p in platform_to_conditional, platforms))
if platforms == [] or any(platform_to_conditional[platform] for platform in platforms):
should_skip = True
skip_msg = f"Test is disabled because an issue exists disabling it: {issue_url}" \
f" for {'all' if platforms == [] else ''}platform(s) {', '.join(platforms)}. " \
"If you're seeing this on your local machine and would like to enable this test, " \
"please make sure CI is not set and you are not using the flag --import-disabled-tests."
break
if should_skip and not RERUN_DISABLED_TESTS:
# Skip the disabled test when not running under --rerun-disabled-tests verification mode
raise unittest.SkipTest(skip_msg)
if not should_skip and RERUN_DISABLED_TESTS:
skip_msg = "Test is enabled but --rerun-disabled-tests verification mode is set, so only" \
" disabled tests are run"
raise unittest.SkipTest(skip_msg)
if TEST_SKIP_FAST:
if hasattr(test, test._testMethodName) and not getattr(test, test._testMethodName).__dict__.get('slow_test', False):
raise unittest.SkipTest("test is fast; we disabled it with PYTORCH_TEST_SKIP_FAST")
# `TestCase.assertEqual` is very permissive and coerced the inputs into a format that could be compared. This is very
# convenient when writing tests, but not so much while reviewing them. By default, the comparison `Pair` framework of
# `torch.testing._comparison.are_equal`, used for example by the public testing function
# `torch.testing.assert_close`, is more strict. In order to use the same framework and thus reduce the divergence
# between internal and external comparison logic as much as possible, we define some "relaxed" pairs here. They only
# change the supported inputs, but the comparison logic is the same.
# TODO: Revisit the relaxed pairs and check how much work it is to fix the tests that would fail without the relaxation.
class RelaxedBooleanPair(BooleanPair):
"""Pair for boolean-like inputs.
In contrast to the builtin :class:`BooleanPair`, this class also supports one input being a number or a single
element tensor-like.
"""
_supported_number_types = NumberPair(0, 0)._supported_types
def _process_inputs(self, actual, expected, *, id):
# We require only one of the inputs of the inputs to be a boolean and the other can also be a boolean, a
# number, or a single element tensor or array, whereas in default BooleanPair both inputs have to be booleans.
tensor_or_array_types: Tuple[Type, ...] = (torch.Tensor, np.ndarray)
other_supported_types = (*self._supported_types, *self._supported_number_types, *tensor_or_array_types)
if not (
(isinstance(actual, self._supported_types) and isinstance(expected, other_supported_types))
or (isinstance(expected, self._supported_types) and isinstance(actual, other_supported_types))
):
self._inputs_not_supported()
return [self._to_bool(input, id=id) for input in (actual, expected)]
def _to_bool(self, bool_like, *, id):
if isinstance(bool_like, np.number):
return bool(bool_like.item())
elif type(bool_like) in self._supported_number_types:
return bool(bool_like)
elif isinstance(bool_like, (torch.Tensor, np.ndarray)):
numel = bool_like.numel() if isinstance(bool_like, torch.Tensor) else bool_like.size
if numel > 1:
self._fail(
ValueError,
f"Only single element tensor-likes can be compared against a boolean. "
f"Got {numel} elements instead.",
id=id
)
return bool(bool_like.item())
else:
return super()._to_bool(bool_like, id=id)
class RelaxedNumberPair(NumberPair):
"""Pair for number-like inputs.
In contrast to the builtin :class:`NumberPair`, this class also supports one input being a single element
tensor-like or a :class:`enum.Enum`. (D)Type checks are disabled, meaning comparing 1 to 1.0 succeeds even when
``check_dtype=True`` is passed.
In addition, this class uses looser default tolerances for :class:`float` and :class:`complex` inputs. Also
supports overriding the absolute and relative tolerance through the ``@precisionOverride`` and
``@toleranceOverride`` decorators.
"""
_TYPE_TO_DTYPE = {
int: torch.int64,
float: torch.float32,
complex: torch.complex64,
}
def __init__(
self, actual, expected, *, rtol_override=0.0, atol_override=0.0, check_dtype=None, **other_parameters
) -> None:
super().__init__(actual, expected, check_dtype=False, **other_parameters)
self.rtol = max(self.rtol, rtol_override)
self.atol = max(self.atol, atol_override)
def _process_inputs(self, actual, expected, *, id):
# We require only one of the inputs of the inputs to be a number and the other can also be a number or a single
# element tensor or array, whereas in default NumberPair both inputs have to be numbers.
tensor_or_array_types: Tuple[Type, ...] = (torch.Tensor, np.ndarray)
other_supported_types = (*self._supported_types, *tensor_or_array_types)
if not (
(isinstance(actual, self._supported_types) and isinstance(expected, other_supported_types))
or (isinstance(expected, self._supported_types) and isinstance(actual, other_supported_types))
):
self._inputs_not_supported()
return [self._to_number(input, id=id) for input in (actual, expected)]
def _to_number(self, number_like, *, id):
if isinstance(number_like, (torch.Tensor, np.ndarray)):
numel = number_like.numel() if isinstance(number_like, torch.Tensor) else number_like.size
if numel > 1:
self._fail(
ValueError,
f"Only single element tensor-likes can be compared against a number. "
f"Got {numel} elements instead.",
id=id
)
number = number_like.item()
if isinstance(number, bool):
number = int(number)
return number
elif isinstance(number_like, Enum):
return int(number_like) # type: ignore[call-overload]
else:
return super()._to_number(number_like, id=id)
class TensorOrArrayPair(TensorLikePair):
"""Pair for tensor-like inputs.
On the one hand this class is stricter than the builtin :class:`TensorLikePair` since it only allows instances of
:class:`torch.Tensor` and :class:`numpy.ndarray` rather than allowing any tensor-like than can be converted into a
tensor. On the other hand this class is looser since it converts all inputs into tensors with no regard of their
relationship, e.g. comparing a :class:`torch.Tensor` to :class:`numpy.ndarray` is fine.
In addition, this class supports overriding the absolute and relative tolerance through the ``@precisionOverride``
and ``@toleranceOverride`` decorators.
"""
def __init__(self, actual, expected, *, rtol_override=0.0, atol_override=0.0, **other_parameters):
super().__init__(actual, expected, **other_parameters)
self.rtol = max(self.rtol, rtol_override)
self.atol = max(self.atol, atol_override)
def _process_inputs(self, actual, expected, *, id, allow_subclasses):
self._check_inputs_isinstance(actual, expected, cls=(torch.Tensor, np.ndarray))
actual, expected = (self._to_tensor(input) for input in (actual, expected))
for tensor in (actual, expected):
self._check_supported(tensor, id=id)
return actual, expected
class TypedStoragePair(TensorLikePair):
"""Pair for :class:`torch.storage.TypedStorage` inputs."""
def __init__(self, actual, expected, *, rtol_override=0.0, atol_override=0.0, **other_parameters):
self._check_inputs_isinstance(actual, expected, cls=torch.storage.TypedStorage)
super().__init__(actual, expected, **other_parameters)
self.rtol = max(self.rtol, rtol_override)
self.atol = max(self.atol, atol_override)
def _to_tensor(self, typed_storage):
return torch.tensor(
typed_storage._untyped_storage,
dtype={
torch.quint8: torch.uint8,
torch.quint4x2: torch.uint8,
torch.quint2x4: torch.uint8,
torch.qint32: torch.int32,
torch.qint8: torch.int8
}.get(typed_storage.dtype, typed_storage.dtype),
device=typed_storage.device,
)
class UnittestPair(Pair):
"""Fallback ABC pair that handles non-numeric inputs.
To avoid recreating the mismatch messages of :meth:`unittest.TestCase.assertEqual`, this pair simply wraps it in
order to use it with the :class:`Pair` "framework" from :func:`are_equal`.
Define the :attr:`UnittestPair.CLS` in a subclass to indicate which class(es) of the inputs the pair should support.
"""
CLS: Union[Type, Tuple[Type, ...]]
TYPE_NAME: Optional[str] = None
def __init__(self, actual, expected, **other_parameters):
self._check_inputs_isinstance(actual, expected, cls=self.CLS)
super().__init__(actual, expected, **other_parameters)
def compare(self):
test_case = unittest.TestCase()
try:
return test_case.assertEqual(self.actual, self.expected)
except test_case.failureException as error:
msg = str(error)
type_name = self.TYPE_NAME or (self.CLS if isinstance(self.CLS, type) else self.CLS[0]).__name__
self._fail(AssertionError, f"{type_name.title()} comparison failed: {msg}")
class StringPair(UnittestPair):
CLS = (str, bytes)
TYPE_NAME = "string"
class SetPair(UnittestPair):
CLS = set
class TypePair(UnittestPair):
CLS = type
class ObjectPair(UnittestPair):
CLS = object
# This implements a variant of assertRaises/assertRaisesRegex where we first test
# if the exception is NotImplementedError, and if so just skip the test instead
# of failing it.
#
# This is implemented by inheriting from the (private) implementation of
# assertRaises from unittest.case, and slightly tweaking it for this new
# behavior. The year is 2021: this private class hierarchy hasn't changed since
# 2010, seems low risk to inherit from.
class AssertRaisesContextIgnoreNotImplementedError(unittest.case._AssertRaisesContext):
def __exit__(self, exc_type, exc_value, tb):
if exc_type is not None and issubclass(exc_type, NotImplementedError):
self.test_case.skipTest(f"not_implemented: {exc_value}") # type: ignore[attr-defined]
return super().__exit__(exc_type, exc_value, tb)
@contextmanager
def set_warn_always_context(new_val: bool):
old_val = torch.is_warn_always_enabled()
torch.set_warn_always(new_val)
try:
yield
finally:
torch.set_warn_always(old_val)
class NoTest:
# causes pytest to not recognize this class as a test
__test__ = False
class TestCase(expecttest.TestCase):
# NOTE: "precision" lets classes and generated tests set minimum
# atol values when comparing tensors. Used by @precisionOverride and @toleranceOverride, for
# example.
# NOTE: "rel_tol" lets classes and generated tests set minimum
# rtol values when comparing tensors. Used by @toleranceOverride, for example.
_precision: float = 0
_rel_tol: float = 0
# Toggles whether to assert that `torch.get_default_dtype()` returns
# `torch.float` when `setUp` and `tearDown` are called.
_default_dtype_check_enabled: bool = False
# Always use difflib to print diffs on multi line equality.
# Undocumented feature in unittest
_diffThreshold = sys.maxsize
maxDiff = None
# checker to early terminate test suite if unrecoverable failure occurs.
def _should_stop_test_suite(self):
if torch.cuda.is_initialized():
# CUDA device side error will cause subsequence test cases to fail.
# stop entire test suite if catches RuntimeError during torch.cuda.synchronize().
try:
torch.cuda.synchronize()
except RuntimeError as rte:
print("TEST SUITE EARLY TERMINATION due to torch.cuda.synchronize() failure", file=sys.stderr)
print(str(rte), file=sys.stderr)
return True
return False
else:
return False
@property
def precision(self) -> float:
return self._precision
@precision.setter
def precision(self, prec: float) -> None:
self._precision = prec
@property
def rel_tol(self) -> float:
return self._rel_tol
@rel_tol.setter
def rel_tol(self, prec: float) -> None:
self._rel_tol = prec
_do_cuda_memory_leak_check = False
_do_cuda_non_default_stream = False
# When True, if a test case raises a NotImplementedError, instead of failing
# the test, skip it instead.
_ignore_not_implemented_error = False
def __init__(self, method_name='runTest', methodName='runTest'):
# methodName is the correct naming in unittest and testslide uses keyword arguments.
# So we need to use both to 1) not break BC and, 2) support testslide.
if methodName != "runTest":
method_name = methodName
super().__init__(method_name)
test_method = getattr(self, method_name, None)
if test_method is not None:
# Wraps the tested method if we should do CUDA memory check.
if TEST_CUDA_MEM_LEAK_CHECK:
self._do_cuda_memory_leak_check &= getattr(test_method, '_do_cuda_memory_leak_check', True)
# FIXME: figure out the flaky -1024 anti-leaks on windows. See #8044
if self._do_cuda_memory_leak_check and not IS_WINDOWS:
self.wrap_with_cuda_policy(method_name, self.assertLeaksNoCudaTensors)
# Wraps the tested method if we should enforce non default CUDA stream.
self._do_cuda_non_default_stream &= getattr(test_method, '_do_cuda_non_default_stream', True)
if self._do_cuda_non_default_stream and not IS_WINDOWS:
self.wrap_with_cuda_policy(method_name, self.enforceNonDefaultStream)
if self._ignore_not_implemented_error:
self.wrap_with_policy(method_name, lambda: skip_exception_type(NotImplementedError))
if PRINT_REPRO_ON_FAILURE:
try:
def _get_rel_test_path(abs_test_path):
# Attempt to get relative path based on the "test" dir.
# In CI, the working dir is not guaranteed to be the base repo dir so
# we can't just compute relative path from that.
parts = Path(abs_test_path).parts
for i, part in enumerate(parts):
if part == "test":
base_dir = os.path.join(*parts[:i]) if i > 0 else ''
return os.path.relpath(abs_test_path, start=base_dir)
# Can't determine containing dir; just return the test filename.
# The path isn't strictly correct but it's arguably better than nothing.
return os.path.split(abs_test_path)[1]
# NB: In Python 3.8, the getfile() call will return a path relative
# to the working directory, so convert that to absolute.
abs_test_path = os.path.abspath(inspect.getfile(type(self)))
test_filename = _get_rel_test_path(abs_test_path)
class_name = type(self).__name__
test_run_cmd = f"python {test_filename} {class_name}.{method_name}"
env_var_prefix = TestEnvironment.repro_env_var_prefix()
repro_parts = [env_var_prefix, test_run_cmd]
self.wrap_with_policy(
method_name,
lambda repro_parts=repro_parts: print_repro_on_failure(repro_parts))
except Exception as e:
# Don't fail entirely if we can't get the test filename
log.info("could not print repro string", extra=str(e))
def assertLeaksNoCudaTensors(self, name=None):
name = self.id() if name is None else name
return CudaMemoryLeakCheck(self, name)
def enforceNonDefaultStream(self):
return CudaNonDefaultStream()
def _remove_ansi_escape(self, input):
# 7-bit C1 ANSI sequences
ansi_escape = re.compile(r'''
\x1B # ESC
(?: # 7-bit C1 Fe (except CSI)
[@-Z\\-_]
| # or [ for CSI, followed by a control sequence
\[
[0-?]* # Parameter bytes
[ -/]* # Intermediate bytes
[@-~] # Final byte
)
''', re.VERBOSE)
return ansi_escape.sub('', input)
def remove_comment_lines(self, input_string):
lines = input_string.split('\n')
filtered_lines = [line for line in lines if not line.strip().startswith('#')]
return '\n'.join(filtered_lines)
def remove_empty_lines(self, input_string):
lines = input_string.split('\n')
filtered_lines = [line for line in lines if not line.strip() == '']
return '\n'.join(filtered_lines)
# ignore comments will ignore lines that starts with # after being stripped
def assertExpectedInline(self, actual, expect, skip=0, ignore_comments=False, ignore_empty_lines=False):
actual = actual if isinstance(actual, str) else str(actual)
actual = self._remove_ansi_escape(actual)
expect = self._remove_ansi_escape(expect)
if ignore_comments:
actual = self.remove_comment_lines(actual)
expect = self.remove_comment_lines(expect)
if ignore_empty_lines:
actual = self.remove_empty_lines(actual)
expect = self.remove_empty_lines(expect)
return super().assertExpectedInline(actual if isinstance(actual, str) else str(actual), expect, skip + 1)
# Munges exceptions that internally contain stack traces, using munge_exc
def assertExpectedInlineMunged(
self, exc_type, callable, expect, *, suppress_suffix=True
):
try:
callable()
except exc_type as e:
self.assertExpectedInline(
munge_exc(e, suppress_suffix=suppress_suffix, skip=1), expect, skip=1
)
return
self.fail(msg="Did not raise when expected to")
def assertLogs(self, logger=None, level=None):
if logger is None:
logger = logging.getLogger("torch")
return super().assertLogs(logger, level)
def assertNoLogs(self, logger=None, level=None):
if logger is None:
logger = logging.getLogger("torch")
return super().assertNoLogs(logger, level)
def wrap_with_cuda_policy(self, method_name, policy):
test_method = getattr(self, method_name)
# the import below may initialize CUDA context, so we do it only if
# self._do_cuda_memory_leak_check or self._do_cuda_non_default_stream
# is True.
# TODO: sure looks like we unconditionally initialize the context here
# -- ezyang
from torch.testing._internal.common_cuda import TEST_CUDA
fullname = self.id().lower() # class_name.method_name
if TEST_CUDA and ('gpu' in fullname or 'cuda' in fullname):
setattr(self, method_name, self.wrap_method_with_policy(test_method, policy))
def wrap_with_policy(self, method_name, policy):
test_method = getattr(self, method_name)
setattr(self, method_name, self.wrap_method_with_policy(test_method, policy))
# A policy is a zero-argument function that returns a context manager.
# We don't take the context manager directly as it may be necessary to
# construct it once per test method
def wrap_method_with_policy(self, method, policy):
# Assumes that `method` is the tested function in `self`.
# NOTE: Python Exceptions (e.g., unittest.Skip) keeps objects in scope
# alive, so this cannot be done in setUp and tearDown because
# tearDown is run unconditionally no matter whether the test
# passes or not. For the same reason, we can't wrap the `method`
# call in try-finally and always do the check.
@wraps(method)
def wrapper(self, *args, **kwargs):
with policy():
method(*args, **kwargs)
return types.MethodType(wrapper, self)
def wrap_with_cuda_memory_check(self, method):
return self.wrap_method_with_policy(method, self.assertLeaksNoCudaTensors)
def _run_custom(self, result=None):
using_unittest = isinstance(result, unittest.TestResult)
super_run = super().run
test_cls = super_run.__self__
# Are we compiling?
compiled = TEST_WITH_TORCHDYNAMO or TEST_WITH_AOT_EAGER or TEST_WITH_TORCHINDUCTOR
# Is the class strict and compiling?
strict_default = False
should_reset_dynamo = False
if compiled:
try:
path = inspect.getfile(type(test_cls))
full_path = os.path.abspath(path)
match = re.match(r".*/test/(.*).py", full_path)
if match is not None:
filename = match.group(1)
if TEST_WITH_TORCHINDUCTOR:
from .dynamo_test_failures import FIXME_inductor_non_strict
strict_default = filename not in FIXME_inductor_non_strict
from .dynamo_test_failures import FIXME_inductor_dont_reset_dynamo
should_reset_dynamo = filename not in FIXME_inductor_dont_reset_dynamo
else:
strict_default = True
# inspect.getfile can fail with these
except (OSError, TypeError):
pass
if "STRICT_DEFAULT" in os.environ:
if os.environ["STRICT_DEFAULT"] == "1":
strict_default = True
strict_mode = False
if compiled:
test_method = getattr(self, self._testMethodName)
if hasattr(test_method, "dynamo_strict"):
strict_mode = test_method.dynamo_strict
elif hasattr(test_cls, "dynamo_strict"):
strict_mode = test_cls.dynamo_strict
else:
strict_mode = strict_default
nopython = getattr(test_cls, "dynamo_strict_nopython", False) and compiled
if strict_mode or should_reset_dynamo:
torch._dynamo.reset()
torch.compiler.set_stance("default")
# TODO: Remove this; this is grandfathered in because we suppressed errors
# on test suite previously
# When strict mode is False, suppress_errors is True
if compiled:
suppress_errors = not strict_mode
else:
suppress_errors = torch._dynamo.config.suppress_errors
with unittest.mock.patch("torch._dynamo.config.suppress_errors", suppress_errors):
if TEST_WITH_TORCHINDUCTOR:
super_run = torch._dynamo.optimize("inductor")(super_run)
elif TEST_WITH_AOT_EAGER:
super_run = torch._dynamo.optimize("aot_eager_decomp_partition")(super_run)
elif TEST_WITH_TORCHDYNAMO:
# TorchDynamo optimize annotation
# Assume eager-generated GraphModules will not error out.
# If we do, this is probably a Dynamo bug!
super_run = torch._dynamo.optimize("eager_noexcept", nopython=nopython)(super_run)
key = f"{self.__class__.__name__}.{self._testMethodName}"
from .dynamo_test_failures import dynamo_expected_failures, dynamo_skips
def expect_failure(f, test_name):
@wraps(f)
def wrapper(*args, **kwargs):
try:
f(*args, **kwargs)
except BaseException as e:
self.skipTest(e)
raise RuntimeError(f"Unexpected success, please remove `test/dynamo_expected_failures/{test_name}`")
return wrapper
if key in dynamo_expected_failures:
method = getattr(self, self._testMethodName)
setattr(self, self._testMethodName, expect_failure(method, key))
def ignore_failure(f, test_name):
@wraps(f)
def wrapper(*args, **kwargs):
try:
f(*args, **kwargs)
except BaseException as e:
self.skipTest(e)
method = getattr(self, self._testMethodName)
if getattr(method, "__unittest_expecting_failure__", False):
self.skipTest("unexpected success")
else:
self.skipTest(f"This test passed, maybe we can remove `test/dynamo_skips/{test_name}`")
return wrapper
if key in dynamo_skips:
method = getattr(self, self._testMethodName)
setattr(self, self._testMethodName, ignore_failure(method, key))
super_run(result=result)
if strict_mode or should_reset_dynamo:
torch._dynamo.reset()
# Early terminate test if necessary. If using pytest, use the -x flag instead
if using_unittest and self._should_stop_test_suite():
if result.wasSuccessful():
case = TestCase()
if TEST_SAVE_XML is not None:
# This is a big hacky, XMLRunner modifies expected type from TestCase to TestInfo
# Create dummy TestInfo to record results correctly
from xmlrunner.result import _TestInfo # type: ignore[import]
case = _TestInfo(result, case)
case.output = _TestInfo.ERROR
case.elapsed_time = 0.0
case.test_description = "TestSuiteEarlyFailure"
# This shouldn't really happen, but if does add fake failure
# For more details see https://github.com/pytorch/pytorch/issues/71973
result.failures.append((case, "TestSuite execution was aborted early"))
assert result.wasSuccessful() is False
result.stop()
def run(self, result=None):
with contextlib.ExitStack() as stack:
if TEST_WITH_CROSSREF:
stack.enter_context(CrossRefMode())
self._run_custom(
result=result,
)
def setUp(self):
check_if_enable(self)
set_rng_seed(SEED)
# Save global check sparse tensor invariants state that can be
# restored from tearDown:
self._check_invariants = torch.sparse.check_sparse_tensor_invariants.is_enabled()
# Enable invariant checks for all sparse tensors constructions
# including the unsafe ones. If this is not desired for some
# test case, use check_invariants=False optional argument to
# sparse tensor constructors or
# @torch.sparse.check_sparse_tensor_invariants(False)
# decorator to disable the invariant checks.
torch.sparse.check_sparse_tensor_invariants.enable()
if self._default_dtype_check_enabled:
assert torch.get_default_dtype() == torch.float
# attempt to reset some global state at the end of the test
self._prev_grad_state = torch.is_grad_enabled()
def tearDown(self):
# There exists test cases that override TestCase.setUp
# definition, so we cannot assume that _check_invariants
# attribute is defined in general.
if hasattr(self, '_check_invariants'):
# Restore the global check sparse tensor invariants state
if self._check_invariants:
torch.sparse.check_sparse_tensor_invariants.enable()
else:
torch.sparse.check_sparse_tensor_invariants.disable()
if self._default_dtype_check_enabled:
assert torch.get_default_dtype() == torch.float
# attribute may not be defined, per above
if hasattr(self, '_prev_grad_state'):
torch.set_grad_enabled(self._prev_grad_state)
@staticmethod
def _make_crow_indices(n_rows, n_cols, nnz,
*, device, dtype, random=True):
"""Return crow_indices of a CSR tensor with size (n_rows, n_cols) and
the number of specified elements nnz.
If random is True, the column counts of rows are in random
order. Otherwise, the column counts of rows are defined by the
used sampling method.
Sampling method
---------------
The used sampling method was introduced in
https://pearu.github.io/csr_sampling.html, and here we give
only an overall description of the method.
Notice that crow_indices can be defined as cumsum(counts)
where counts is a sequence of non-negative integers satisfying
the following conditions:
len(counts) == n_rows + 1
counts.max() <= n_cols
while counts[i + 1] is interpreted as the number of specified
elements in the i-th row.
The used sampling method aims at increasing the diversity of
CSR samples, that is, a CSR sample should contain (i) rows
that are all filled, (ii) rows with no elements at all, and
(iii) rows that are partially filled. At the same time and for
the given total number of specified elements (nnz), there
should be minimal preference to rows with a given number of
elements. To achieve this, the sampling method is built-up on
using a sawteeth model for counts. In the simplest case, we
would have
counts = arange(n_rows + 1) % (n_cols + 1)
that has equal number of all possible column counts per row.
This formula can be used only for specific input values of
n_rows, n_cols, and nnz. To generalize this model to any
combinations of inputs, the counts model above is extended
with an incomplete sawtooth, and the right and lower
rectangular parts that will guarantee that
counts.sum() == nnz
for any combination of n_rows, n_cols, and nnz. Basically,
we'll find a maximal window in (n_rows + 1, n_cols + 1)-grid
that is able to hold a sequence of sawteeth and so-called
final correction, while the external part of the window is
filled with counts to meet the nnz constraint exactly.
"""
assert 0 <= nnz <= n_rows * n_cols, (nnz, n_rows, n_cols)
def sawteeth(n, m):
# return the total number of counts in the sequence of
# sawteeth where n and m define a window in (n_rows+1,
# n_cols+1) rectangle where the sequence of sawteeth
# perfectly fit.
M = (n_cols - m) * (n_cols - m + 1) // 2
K = (n_rows - n) % (n_cols - m + 1)
return M * ((n_rows - n) // (n_cols - m + 1)) + K * (K - 1) // 2
# Different from the original method description, here counts
# has leading 0 required by crow_indices:
counts = torch.zeros(n_rows + 1, dtype=dtype, device=torch.device('cpu'))
n = m = 0
N = sawteeth(n, m)
if N and nnz >= max(N, n_cols):
# determine the width of the sawteeth window. We use bisection to solve
# N(n, 0) == 0 or nnz - n * n_cols < max(N(n, 0), n_cols)
# for n
n_left = n
n_right = n_rows - 1
N_right = sawteeth(n_right, m)
while n_right - n_left > 1:
n_middle = (n_left + n_right) // 2
N_middle = sawteeth(n_middle, m)
if N_middle == 0 or nnz - n_middle * n_cols < max(N_middle, n_cols):
n_right, N_right = n_middle, N_middle
else:
n_left = n_middle
n, N = n_right, N_right
# fill the right rectangle with counts:
assert n
counts[-n:].fill_(n_cols)
if N and nnz - n * n_cols >= max(N, n_rows - n):
# determine the height of the sawteeth window. We use bisection to solve
# N(n, m) == 0 or nnz - n * n_cols - m * (n_rows - n) < max(N(n, m), n_rows - n)
# for m.
m_left = m
m_right = n_cols - 1
N_right = sawteeth(n, m_right)
while m_right - m_left > 1:
m_middle = (m_left + m_right) // 2
N_middle = sawteeth(n, m_middle)
if N_middle == 0 or nnz - n * n_cols - m_middle * (n_rows - n) < max(N_middle, n_rows - n):
m_right, N_right = m_middle, N_middle
else:
m_left = m_middle
m, N = m_right, N_right
# fill the bottom rectangle with counts:
assert m
counts[1:n_rows - n + 1].fill_(m)
if N:
# fill the sawteeth window with counts
q, r = divmod(nnz - n * n_cols - m * (n_rows - n),
(n_cols - m) * (n_cols - m + 1) // 2)
p = 1 + q * (n_cols - m + 1)
k = math.isqrt(2 * r)
if k * (k + 1) > 2 * r:
k -= 1
corr = r - k * (k + 1) // 2
assert not ((p > 1) and (m > 0)) # full sawteeth are never on top of a bottom rectangle
# sequence of full sawteeth:
counts[1:p] = torch.arange(p - 1, dtype=dtype, device=counts.device) % (n_cols - m + 1)
# incomplete sawtooth:
counts[p:p + k + 1] += torch.arange(k + 1, dtype=dtype, device=counts.device)
else:
# given input does not support sawteeth
p = 1
corr = nnz - n * n_cols - m * (n_rows - n)
# correction that will guarantee counts.sum() == nnz:
counts[p] += corr
if random:
# randomize crow_indices by shuffling the sawteeth
# sequence:
perm = torch.randperm(n_rows, device=counts.device)
counts[1:] = counts[1:][perm]
# compute crow_indices:
crow_indices = counts
crow_indices.cumsum_(dim=0)
return crow_indices.to(device=device)
def genSparseCompressedTensor(self, size, nnz, *, layout, device, dtype, index_dtype, blocksize=(), dense_dims=0):
from operator import mul
from functools import reduce
sparse_dim = 2
assert all(size[d] > 0 for d in range(len(size))) or nnz == 0, 'invalid arguments'
assert len(size) >= sparse_dim
if blocksize:
assert len(blocksize) == 2, (size, blocksize)
assert size[-2 - dense_dims] % blocksize[0] == 0, (size, blocksize)
assert size[-1 - dense_dims] % blocksize[1] == 0, (size, blocksize)
blocksize0, blocksize1 = blocksize
else:
blocksize0 = blocksize1 = 1
size = tuple(size)
dense_size = size[(len(size) - dense_dims):]
def random_sparse_compressed(n_compressed_dims, n_plain_dims, nnz):
compressed_indices = self._make_crow_indices(n_compressed_dims, n_plain_dims, nnz, device=device, dtype=index_dtype)
plain_indices = torch.zeros(nnz, dtype=index_dtype, device=device)
for i in range(n_compressed_dims):
count = compressed_indices[i + 1] - compressed_indices[i]
plain_indices[compressed_indices[i]:compressed_indices[i + 1]], _ = torch.sort(
torch.randperm(n_plain_dims, dtype=index_dtype, device=device)[:count])
low = -1 if dtype != torch.uint8 else 0
high = 1 if dtype != torch.uint8 else 2
values = make_tensor((nnz,) + blocksize + dense_size, device=device, dtype=dtype, low=low, high=high)
return values, compressed_indices, plain_indices
batch_shape = size[:-2 - dense_dims]
n_batch = reduce(mul, batch_shape, 1)
if layout in {torch.sparse_csr, torch.sparse_bsr}:
n_compressed_dims, n_plain_dims = size[-2 - dense_dims] // blocksize0, size[-1 - dense_dims] // blocksize1
else:
n_compressed_dims, n_plain_dims = size[-1 - dense_dims] // blocksize1, size[-2 - dense_dims] // blocksize0
blocknnz = nnz // (blocksize0 * blocksize1)
sparse_tensors = [random_sparse_compressed(n_compressed_dims, n_plain_dims, blocknnz) for _ in range(n_batch)]
sparse_tensors_it = map(list, zip(*sparse_tensors))
values = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, blocknnz, *blocksize, *dense_size)
compressed_indices = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, -1)
plain_indices = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, -1)
return torch.sparse_compressed_tensor(compressed_indices, plain_indices,
values, size=size, dtype=dtype, layout=layout, device=device)
def genSparseCSRTensor(self, size, nnz, *, device, dtype, index_dtype, dense_dims=0):
return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_csr, device=device,
dtype=dtype, index_dtype=index_dtype, blocksize=(), dense_dims=dense_dims)
def genSparseCSCTensor(self, size, nnz, *, device, dtype, index_dtype, dense_dims=0):
return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_csc, device=device,
dtype=dtype, index_dtype=index_dtype, blocksize=(), dense_dims=0)
def genSparseBSRTensor(self, size, blocksize, nnz, *, device, dtype, index_dtype, dense_dims=0):
assert len(blocksize) == 2
return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_bsr, device=device,
dtype=dtype, index_dtype=index_dtype, blocksize=blocksize, dense_dims=dense_dims)
def genSparseBSCTensor(self, size, blocksize, nnz, *, device, dtype, index_dtype, dense_dims=0):
assert len(blocksize) == 2
return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_bsc, device=device,
dtype=dtype, index_dtype=index_dtype, blocksize=blocksize, dense_dims=dense_dims)
def genSparseTensor(self, size, sparse_dim, nnz, is_uncoalesced, device, dtype):
# Assert not given impossible combination, where the sparse dims have
# empty numel, but nnz > 0 makes the indices containing values.
assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments'
v_size = [nnz] + list(size[sparse_dim:])
v = make_tensor(v_size, device=device, dtype=dtype, low=-1, high=1)
i = torch.rand(sparse_dim, nnz, device=device)
i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i))
i = i.to(torch.long)
if is_uncoalesced:
i1 = i[:, :(nnz // 2), ...]
i2 = i[:, :((nnz + 1) // 2), ...]
i = torch.cat([i1, i2], 1)
x = torch.sparse_coo_tensor(i, v, torch.Size(size), dtype=dtype, device=device)
if not is_uncoalesced:
x = x.coalesce()
else:
# FIXME: `x` is a sparse view of `v`. Currently rebase_history for
# sparse views is not implemented, so this workaround is
# needed for inplace operations done on `x`, e.g., copy_().
# Remove after implementing something equivalent to CopySlice
# for sparse views.
# NOTE: We do clone() after detach() here because we need to be able to change size/storage of x afterwards
x = x.detach().clone()._coalesced_(False)
return x, x._indices().clone(), x._values().clone()
def generate_simple_inputs(self, layout,
device=None,
dtype=None,
index_dtype=None,
pin_memory=None,
members_pin_memory=None,
enable_batch=True,
enable_hybrid=True,
enable_zero_sized=True,
enable_non_contiguous_indices=True,
enable_non_contiguous_values=True,
enable_batch_variable_nse=False,
output_tensor=True,
patterns=None):
"""Generator of simple inputs for tensor constructors of the given layout.
The generated tensor inputs have the following properties:
- tensor shapes are minimal but not trivial
- tensor values are sorted sequences for COO and CSR formats, e.g. [1, 2, 3, 4]
- the generated tensors represent the same mathematical tensor for all layouts
- the generated tensors include regular, zero-sized, and optionally, batched or/and hybrid tensors.
- the generated tensors include contiguous or non-contiguous tensors both in indices and values
If output_tensor is True, yield tensors with the given
layout. Otherwise, yield inputs to the corresponding tensor
constructors:
- sparse compressed input is defined as
(compressed_indices, plain_indices, values), dict(size=expected_size_from_shape_inference, device=device, dtype=dtype,
pin_memory=pin_memory)
- sparse COO input is defined as
(indices, values), dict(size=expected_size_from_shape_inference, device=device, dtype=dtype, pin_memory=pin_memory)
- strided input is defined as
(values,), dict(device=device, dtype=dtype)
"""
if index_dtype is None:
index_dtype = torch.int64
is_compressed_sparse_layout = layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}
if output_tensor:
for args, kwargs in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype,
pin_memory=pin_memory,
enable_batch=enable_batch, enable_hybrid=enable_hybrid,
enable_zero_sized=enable_zero_sized,
enable_non_contiguous_indices=enable_non_contiguous_indices,
enable_non_contiguous_values=enable_non_contiguous_values,
enable_batch_variable_nse=enable_batch_variable_nse,
output_tensor=False):
if members_pin_memory:
args = tuple(a.pin_memory() for a in args)
if layout is torch.strided:
assert len(args) == 1
size = kwargs.pop('size', None) # to ensure that a zero-sized tensor has the desired shape
assert size is not None
if pin_memory:
yield args[0].reshape(size).pin_memory()
else:
yield args[0].reshape(size)
elif layout is torch.sparse_coo:
yield torch.sparse_coo_tensor(*args, **kwargs)
elif is_compressed_sparse_layout:
kwargs.update(layout=layout)
yield torch.sparse_compressed_tensor(*args, **kwargs)
else:
assert 0 # unreachable
return
def get_blockpattern(pattern, blocksize):
basesize = pattern.shape
assert basesize[0] % blocksize[0] == 0, (basesize, blocksize)
assert basesize[1] % blocksize[1] == 0, (basesize, blocksize)
blockpattern = pattern.reshape(-1,
blocksize[0],
basesize[1] // blocksize[1],
blocksize[1]).transpose(-3, -2).any(-1).any(-1)
block_ids = torch.arange(1, blockpattern.numel() + 1).reshape(blockpattern.shape)
return (blockpattern != 0) * block_ids
def get_sparse_data(pattern):
basesize = pattern.shape
assert len(basesize) == 2, basesize # pattern is expected to be a matrix
# We cannot use `torch.sparse_xyz_tensor(pattern)` to
# compute the sparse layout indices and values because
# generate_simple_inputs is used to generate the inputs to
# test `torch.sparse_xyz_tensor` factory functions, so
# we'll compute the indices and values independently of
# the factory functions.
indices = torch.where(pattern != 0)
coo_indices = torch.stack(indices)
crow_indices = torch.zeros(basesize[0] + 1, dtype=torch.int64)
crow_indices[1:] = torch.cumsum(coo_indices[0].bincount(minlength=basesize[0]), 0)
col_indices = coo_indices[1]
strided_values = torch.zeros(basesize, dtype=torch.int64)
# the property of `values == range(1, 1+nnz)` is used in
# get_sparse_data_with_block to relate BSR and BSC values,
# so, don't change the following line:
values = torch.arange(1, 1 + len(indices[0]), dtype=torch.int64)
strided_values[indices] = values
indices_T = torch.where(pattern.transpose(0, 1) != 0)
coo_indices_T = torch.stack(indices_T)
ccol_indices = torch.zeros(basesize[1] + 1, dtype=torch.int64)
ccol_indices[1:] = torch.cumsum(coo_indices_T[0].bincount(minlength=basesize[1]), 0)
row_indices = coo_indices_T[1]
csc_values = strided_values.transpose(0, 1)[indices_T]
return {torch.sparse_coo: (coo_indices, values),
torch.sparse_csr: (crow_indices, col_indices, values),
torch.sparse_csc: (ccol_indices, row_indices, csc_values),
torch.strided: (strided_values,)}
def get_sparse_data_with_block(pattern, blocksize):
nonblock_data = get_sparse_data(pattern)
blockpattern = get_blockpattern(pattern, blocksize)
block_data = get_sparse_data(blockpattern)
strided_values = nonblock_data[torch.strided][0]
block_indices = block_data[torch.sparse_coo][0]
bsr_values = torch.stack([strided_values[bi * blocksize[0]:(bi + 1) * blocksize[0],
bj * blocksize[1]:(bj + 1) * blocksize[1]]
for bi, bj in block_indices.transpose(0, 1)])
# here we use the property `values == range(1, 1+nnz)` and
# `values` relation to `csc_values` (see get_sparse_data)
# to get BSC blocks via reordering the BSR blocks:
bsc_values = bsr_values[block_data[torch.sparse_csc][2] - 1]
return {torch.sparse_bsr: (*block_data[torch.sparse_csr][:2], bsr_values),
torch.sparse_bsc: (*block_data[torch.sparse_csc][:2], bsc_values),
**nonblock_data}
def get_batch_sparse_data(pattern, blocksize):
size = pattern.shape
if len(size) <= 2: # non-batch
return get_sparse_data_with_block(pattern, blocksize)
# batch data is created recursively:
batch_data = {}
for i, item in enumerate(pattern):
for layout, d in get_batch_sparse_data(item, blocksize).items():
target = batch_data.get(layout)
if layout is torch.sparse_coo:
# a "batch COO" means a COO with the leading
# sparse dimensions interpreted as batch
# dimensions
ext_coo_indices1 = torch.cat((torch.full((1, len(d[1])), i, dtype=torch.int64), d[0]))
if target is None:
target = batch_data[layout] = (ext_coo_indices1, d[1])
else:
target[0].set_(torch.cat((target[0], ext_coo_indices1), 1))
target[1].set_(torch.cat((target[1], d[1])))
else:
if target is None:
target = batch_data[layout] = tuple(d[j].unsqueeze(0) for j in range(len(d)))
else:
for j in range(len(d)):
target[j].set_(torch.cat((target[j], d[j].unsqueeze(0))))
return batch_data
def generate_values(base, densesize):
"""Generates a tensor of shape densesize with values equal to
base + i_1 * 10^0 + ... + i_d * 10^{d - 1}
at indices i_1, ..., i_d (with 0 <= i_j < densesize[j] for any 1 <= j <=
len(densesize))
This mapping produces unique values as long as
densesize[i] < 10 for all i in range(len(densesize)).
"""
if not densesize:
return base
if not isinstance(base, int) and base.ndim > 0:
return torch.stack([generate_values(b, densesize) for b in base])
if base == 0:
return torch.zeros(densesize, dtype=torch.int64)
r = torch.arange(densesize[0], dtype=torch.int64)
for i, d in enumerate(densesize[1:]):
y = torch.arange(d, dtype=torch.int64) * (10 ** (i + 1))
r = r[..., None] + y[None, ...]
r.add_(base)
return r
if patterns is None:
# A pattern is a 3-tuple with the following items:
#
# - a list of integers with the depth of two or more. The
# integers define the sparsity patterns of the generated
# inputs: zero values correspond to unspecified
# elements/blocks, and non-zero values to the specified
# elements.
#
# For debugging convenience, the elements with the same
# value typically belong to the same block. However, it
# is not a hard requirement: as long as the shape of a
# pattern divides with block sizes, the pattern will be
# a valid one.
#
# If the depth of the list is larger than two, inputs
# with batch dimensions will be generated.
#
# - a list of 2-tuples of block sizes, used to generate
# BSR/BSC tensors with various block size parameters
#
# - a list of tuples of dense dimensions, used to generate
# hybrid tensors with various dense dimensions
#
patterns = [
# a simple 3 x 2 tensor: non-hybrid, hybrid with 1 and 2 dense dimensions
([[1, 2, 0],
[1, 0, 3]], [(2, 1), (1, 3)], [(), (2,), (4, 5)]),
# 2 x 3 batch of 3 x 2 tensors: non-hybrid and hybrid with 2 dense dimensions
([[[[1, 2, 0],
[1, 0, 3]],
[[1, 2, 3],
[1, 0, 0]],
[[1, 0, 0],
[1, 2, 3]]],
[[[0, 2, 0],
[1, 2, 3]],
[[1, 0, 3],
[1, 2, 0]],
[[1, 2, 3],
[0, 2, 0]]]], [(2, 1), (2, 3)], [(), (2,)]),
# tensor with non-trivial blocksize
([[0, 1, 0, 2, 0, 2],
[0, 1, 0, 0, 2, 0],
[3, 3, 3, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 5, 0, 6, 6, 6],
[5, 0, 5, 6, 6, 6],
[0, 0, 0, 0, 8, 8],
[7, 7, 7, 0, 8, 8]], [(2, 3)], [(), (4, 5)]),
# batch tensor with variable NSE
# Requires https://github.com/pytorch/pytorch/pull/84843 or similar.
([[[1, 2],
[3, 4]],
[[1, 0],
[0, 0]]], [(1, 1)], ([()] if enable_batch_variable_nse else []))]
def non_contiguous_copy(t, dim=-1, offset=0):
# return a copy of t that is non-contiguous along the
# given dimension and with the given storage offset
self.assertTrue(t.is_contiguous())
if dim < 0:
dim = dim + t.ndim
assert dim >= 0 and dim < t.ndim
step = max(2, offset + 1)
tmp = torch.zeros((*t.shape[:dim], t.shape[dim] * step, *t.shape[dim + 1:]), dtype=t.dtype, device=t.device)
dim_slices = (*((slice(None),) * dim), slice(offset, None, step))
r = tmp[dim_slices].copy_(t)
self.assertFalse(r.is_contiguous())
self.assertEqual(t, r)
return r
# the main loop of the method:
for pattern, blocksizes, densesizes in patterns:
if not enable_hybrid:
densesizes = [s for s in densesizes if not s]
if not (densesizes and blocksizes):
continue
pattern = torch.tensor(pattern, dtype=torch.int64)
if not enable_batch and pattern.ndim > 2:
continue
for blocksize in blocksizes:
data = get_batch_sparse_data(pattern, blocksize)[layout]
for densesize in densesizes:
indices = [a.to(device=device, dtype=index_dtype) for a in data[:-1]]
values = generate_values(data[-1], densesize).to(device=device, dtype=dtype)
kwargs = dict(device=device, dtype=dtype, size=pattern.shape + densesize)
if pin_memory is not None:
kwargs.update(pin_memory=pin_memory)
yield (*indices, values), kwargs.copy()
if enable_non_contiguous_indices and pattern.ndim > 2:
# sparse compressed indices can be sliced only along batch dimensions
for (dim, offset) in {(0, 1), (-2, 0)}:
indices_copy = [non_contiguous_copy(a, dim=dim, offset=offset) for a in indices]
yield (*indices_copy, values), kwargs.copy()
if enable_non_contiguous_values:
values_copy = non_contiguous_copy(values, dim=-1, offset=1)
yield (*indices_copy, values_copy), kwargs.copy()
if enable_non_contiguous_values:
values_copy = non_contiguous_copy(values, dim=-1, offset=1)
yield (*indices, values_copy), kwargs.copy()
# zero-sized tensor inputs, non-batch, non-hybrid/hybrid
if enable_zero_sized:
for basesize, blocksizes, densesizes in [
((2, 0), [(1, 2)], [(), (2,), (2, 3)] if enable_hybrid else [()]),
((0, 2), [(1, 2), (2, 1), (3, 2)], [()]),
((0, 0), [(1, 2)], [()]),
]:
for blocksize in blocksizes:
for densesize in densesizes:
if layout == torch.strided:
indices = ()
values = torch.empty((basesize + densesize), device=device, dtype=dtype)
elif layout == torch.sparse_coo:
indices = (torch.empty(len(basesize), 0, device=device, dtype=index_dtype),)
values = torch.empty((0, *densesize), device=device, dtype=dtype)
elif layout == torch.sparse_csr:
crow_indices = torch.tensor([0] * (basesize[0] + 1), device=device, dtype=index_dtype)
col_indices = torch.empty(0, device=device, dtype=index_dtype)
indices = (crow_indices, col_indices)
values = torch.empty((0, *densesize), device=device, dtype=dtype)
elif layout == torch.sparse_csc:
ccol_indices = torch.tensor([0] * (basesize[1] + 1), device=device, dtype=index_dtype)
row_indices = torch.empty(0, device=device, dtype=index_dtype)
indices = (ccol_indices, row_indices)
values = torch.empty((0, *densesize), device=device, dtype=dtype)
elif layout == torch.sparse_bsr:
crow_indices = torch.tensor([0] * (basesize[0] // blocksize[0] + 1), device=device, dtype=index_dtype)
col_indices = torch.empty(0, device=device, dtype=index_dtype)
indices = (crow_indices, col_indices)
values = torch.empty((0, *blocksize, *densesize), device=device, dtype=dtype)
elif layout == torch.sparse_bsc:
ccol_indices = torch.tensor([0] * (basesize[1] // blocksize[1] + 1), device=device, dtype=index_dtype)
row_indices = torch.empty(0, device=device, dtype=index_dtype)
indices = (ccol_indices, row_indices)
values = torch.empty((0, *blocksize, *densesize), device=device, dtype=dtype)
else:
assert 0 # unreachable
kwargs = dict(device=device, dtype=dtype, size=basesize + densesize)
if pin_memory is not None:
kwargs.update(pin_memory=pin_memory)
yield (*indices, values), kwargs
def safeToDense(self, t):
# coalesce is only implemented for COO
if t.layout == torch.sparse_coo:
t = t.coalesce()
return t.to_dense()
# Compares a torch function with a reference function for a given sample input (object of SampleInput)
# Note: only values are compared, type comparison is not done here
def compare_with_reference(self, torch_fn, ref_fn, sample_input, **kwargs):
numpy_sample = sample_input.numpy()
n_inp, n_args, n_kwargs = numpy_sample.input, numpy_sample.args, numpy_sample.kwargs
t_inp, t_args, t_kwargs = sample_input.input, sample_input.args, sample_input.kwargs
actual = torch_fn(t_inp, *t_args, **t_kwargs)
expected = ref_fn(n_inp, *n_args, **n_kwargs)
self.assertEqual(actual, expected, exact_device=False, **kwargs)
# Compares the given Torch and NumPy functions on the given tensor-like object.
# NOTE: both torch_fn and np_fn should be functions that take a single
# tensor (array). If the torch and/or NumPy function require additional
# arguments then wrap the function in a lambda or pass a partial function.
# TODO: add args/kwargs for passing to assertEqual (e.g. rtol, atol)
def compare_with_numpy(self, torch_fn, np_fn, tensor_like,
device=None, dtype=None, **kwargs):
assert TEST_NUMPY
if isinstance(tensor_like, torch.Tensor):
assert device is None
assert dtype is None
t_cpu = tensor_like.detach().cpu()
if t_cpu.dtype is torch.bfloat16:
t_cpu = t_cpu.float()
a = t_cpu.numpy()
t = tensor_like
else:
d = copy.copy(torch_to_numpy_dtype_dict)
d[torch.bfloat16] = np.float32
a = np.array(tensor_like, dtype=d[dtype])
t = torch.tensor(tensor_like, device=device, dtype=dtype)
np_result = np_fn(a)
torch_result = torch_fn(t).cpu()
# Converts arrays to tensors
if isinstance(np_result, np.ndarray):
try:
np_result = torch.from_numpy(np_result)
except Exception:
# NOTE: copying an array before conversion is necessary when,
# for example, the array has negative strides.
np_result = torch.from_numpy(np_result.copy())
if t.dtype is torch.bfloat16 and torch_result.dtype is torch.bfloat16 and np_result.dtype is torch.float:
torch_result = torch_result.to(torch.float)
self.assertEqual(np_result, torch_result, **kwargs)
def assertEqualIgnoreType(self, *args, **kwargs) -> None:
# If you are seeing this function used, that means test is written wrongly
# and deserves detailed investigation
return self.assertEqual(*args, exact_dtype=False, **kwargs)
def assertEqualBroadcasting(self, x, y, *args, **kwargs) -> None:
r"""Tests if tensor x equals to y, if y to be broadcast to x.shape.
"""
if not isinstance(y, Iterable):
# int, float, etc. or different shape tensors
y = torch.ones_like(x) * y
if not isinstance(y, torch.Tensor):
# iterable, but not a tensor
y = torch.ones_like(x) * torch.tensor(y)
return self.assertEqual(x, y, *args, **kwargs)
def assertEqual(
self,
x,
y,
msg: Optional[Union[str, Callable[[str], str]]] = None,
*,
atol: Optional[float] = None,
rtol: Optional[float] = None,
equal_nan=True,
exact_dtype=True,
# TODO: default this to True
exact_device=False,
exact_layout=False,
exact_stride=False,
exact_is_coalesced=False
):
# Hide this function from `pytest`'s traceback
__tracebackhide__ = True
# numpy's dtypes are a superset of what PyTorch supports. In case we encounter an unsupported dtype, we fall
# back to an elementwise comparison. Note that this has to happen here and not for example in
# `TensorOrArrayPair`, since at that stage we can no longer split the array into its elements and perform
# multiple comparisons.
if any(
isinstance(input, np.ndarray) and not has_corresponding_torch_dtype(input.dtype) for input in (x, y)
):
def to_list(input):
return input.tolist() if isinstance(input, (torch.Tensor, np.ndarray)) else list(input)
x = to_list(x)
y = to_list(y)
# When comparing a sequence of numbers to a tensor, we need to convert the sequence to a tensor here.
# Otherwise, the pair origination of `are_equal` will fail, because the sequence is recognized as container
# that should be checked elementwise while the tensor is not.
elif isinstance(x, torch.Tensor) and isinstance(y, Sequence):
y = torch.as_tensor(y, dtype=x.dtype, device=x.device)
elif isinstance(x, Sequence) and isinstance(y, torch.Tensor):
x = torch.as_tensor(x, dtype=y.dtype, device=y.device)
# unbind NSTs to compare them; don't do this for NJTs
if isinstance(x, torch.Tensor) and x.is_nested and x.layout == torch.strided:
x = x.unbind()
if isinstance(y, torch.Tensor) and y.is_nested and y.layout == torch.strided:
y = y.unbind()
error_metas = not_close_error_metas(
x,
y,
pair_types=(
NonePair,
RelaxedBooleanPair,
RelaxedNumberPair,
TensorOrArrayPair,
TypedStoragePair,
StringPair,
SetPair,
TypePair,
ObjectPair,
),
sequence_types=(
Sequence,
Sequential,
ModuleList,
ParameterList,
ScriptList,
torch.utils.data.dataset.Subset,
),
mapping_types=(Mapping, ModuleDict, ParameterDict, ScriptDict),
rtol=rtol,
rtol_override=self.rel_tol,
atol=atol,
atol_override=self.precision,
equal_nan=equal_nan,
check_device=exact_device,
check_dtype=exact_dtype,
check_layout=exact_layout,
check_stride=exact_stride,
check_is_coalesced=exact_is_coalesced,
)
if error_metas:
# See [ErrorMeta Cycles]
error_metas = [error_metas]
# TODO: compose all metas into one AssertionError
raise error_metas.pop()[0].to_error(
# This emulates unittest.TestCase's behavior if a custom message passed and
# TestCase.longMessage (https://docs.python.org/3/library/unittest.html#unittest.TestCase.longMessage)
# is True (default)
(lambda generated_msg: f"{generated_msg}\n{msg}") if isinstance(msg, str) and self.longMessage else msg
)
def assertNotEqual(self, x, y, msg: Optional[str] = None, *, # type: ignore[override]
atol: Optional[float] = None, rtol: Optional[float] = None, **kwargs) -> None:
with self.assertRaises(AssertionError, msg=msg):
self.assertEqual(x, y, msg, atol=atol, rtol=rtol, **kwargs)
def assertEqualTypeString(self, x, y) -> None:
# This API is used simulate deprecated x.type() == y.type()
self.assertEqual(x.device, y.device)
self.assertEqual(x.dtype, y.dtype)
self.assertEqual(x.is_sparse, y.is_sparse)
def assertObjectIn(self, obj: Any, iterable: Iterable[Any]) -> None:
for elem in iterable:
if id(obj) == id(elem):
return
raise AssertionError("object not found in iterable")
# Reimplemented to provide special behavior when
# _ignore_not_implemented_error is True
def assertRaises(self, expected_exception, *args, **kwargs):
if self._ignore_not_implemented_error:
context: Optional[AssertRaisesContextIgnoreNotImplementedError] = \
AssertRaisesContextIgnoreNotImplementedError(expected_exception, self) # type: ignore[call-arg]
try:
return context.handle('assertRaises', args, kwargs) # type: ignore[union-attr]
finally:
# see https://bugs.python.org/issue23890
context = None
else:
return super().assertRaises(expected_exception, *args, **kwargs)
# Reimplemented to provide special behavior when
# _ignore_not_implemented_error is True
def assertRaisesRegex(self, expected_exception, expected_regex, *args, **kwargs):
# Verifies that an exception with the type expected_exception and message
# matching the regular expression defined by expected_regex is thrown.
# If the test is instantiated for a non-native device type (like XLA)
# then the message is not validated.
# Checks whether the test is instantiated for a device type by testing
# if the test class has defined the device_type attribute and,
# if so, tests whether the instantiated device type is native or not
if hasattr(self, 'device_type') and self.device_type not in NATIVE_DEVICES and self.device_type != "mps": # type: ignore[attr-defined]
# empty string matches any string
expected_regex = ''
if self._ignore_not_implemented_error:
context = AssertRaisesContextIgnoreNotImplementedError( # type: ignore[call-arg]
expected_exception, self, expected_regex)
return context.handle('assertRaisesRegex', args, kwargs) # type: ignore[attr-defined]
else:
return super().assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
# Verifies that no unraisable exceptions are raised by callable. Unlike regular
# exceptions, these do not actually propagate to the caller and are
# suppressed. We must test for them specially.
def assertNoUnraisable(self, callable, *args, **kwargs):
raised = None
def record_unraisable(unraisable):
nonlocal raised
raised = unraisable
# Disable GC when running the callable to prevent spurious flakiness
# from unlucky GCs inside the callable
prev = gc.isenabled()
gc.disable()
try:
with unittest.mock.patch("sys.unraisablehook", record_unraisable):
callable(*args, **kwargs)
finally:
if prev:
gc.enable()
self.assertIsNone(raised)
# TODO: Support context manager interface
# NB: The kwargs forwarding to callable robs the 'subname' parameter.
# If you need it, manually apply your callable in a lambda instead.
def assertExpectedRaises(self, exc_type, callable, *args, **kwargs):
subname = None
if 'subname' in kwargs:
subname = kwargs['subname']
del kwargs['subname']
try:
callable(*args, **kwargs)
except exc_type as e:
self.assertExpected(str(e), subname)
return
# Don't put this in the try block; the AssertionError will catch it
self.fail(msg="Did not raise when expected to")
def assertNotWarn(self, callable, msg=''):
r"""
Test if :attr:`callable` does not raise a warning.
"""
with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter("always") # allow any warning to be raised
with set_warn_always_context(True):
callable()
self.assertTrue(len(ws) == 0, msg)
@contextmanager
def assertWarnsOnceRegex(self, category, regex=''):
"""Context manager for code that *must always* warn
This filters expected warnings from the test and fails if
the expected warning is not caught. It uses set_warn_always() to force
TORCH_WARN_ONCE to behave like TORCH_WARN
"""
pattern = re.compile(regex)
with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter("always") # allow any warning to be raised
with set_warn_always_context(True):
yield
if len(ws) == 0:
self.fail('no warning caught')
self.assertTrue(any(type(w.message) is category for w in ws))
self.assertTrue(
any(re.match(pattern, str(w.message)) for w in ws),
f'{pattern}, {[w.message for w in ws if type(w.message) is category]}')
def assertExpected(self, s, subname=None):
r"""
Test that a string matches the recorded contents of a file
derived from the name of this test and subname. This file
is placed in the 'expect' directory in the same directory
as the test script. You can automatically update the recorded test
output using --accept.
If you call this multiple times in a single function, you must
give a unique subname each time.
"""
if not isinstance(s, str):
raise TypeError("assertExpected is strings only")
def remove_prefix(text, prefix):
if text.startswith(prefix):
return text[len(prefix):]
return text
# NB: we take __file__ from the module that defined the test
# class, so we place the expect directory where the test script
# lives, NOT where test/common_utils.py lives. This doesn't matter in
# PyTorch where all test scripts are in the same directory as
# test/common_utils.py, but it matters in onnx-pytorch
module_id = self.__class__.__module__
munged_id = remove_prefix(self.id(), module_id + ".")
test_file = os.path.realpath(sys.modules[module_id].__file__)
expected_file = os.path.join(os.path.dirname(test_file),
"expect",
munged_id)
subname_output = ""
if subname:
expected_file += "-" + subname
subname_output = f" ({subname})"
expected_file += ".expect"
expected = None
def accept_output(update_type):
print(f"Accepting {update_type} for {munged_id}{subname_output}:\n\n{s}")
with open(expected_file, 'w') as f:
# Adjust for producer_version, leave s unmodified
s_tag = re.sub(r'(producer_version): "[0-9.]*"',
r'\1: "CURRENT_VERSION"', s)
f.write(s_tag)
try:
with open(expected_file) as f:
expected = f.read()
except OSError as e:
if e.errno != errno.ENOENT:
raise
elif expecttest.ACCEPT:
return accept_output("output")
else:
raise RuntimeError(
f"I got this output for {munged_id}{subname_output}:\n\n{s}\n\n"
"No expect file exists; to accept the current output, run:\n"
f"python {__main__.__file__} {munged_id} --accept") from None
# a hack for JIT tests
if IS_WINDOWS:
expected = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', expected)
s = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', s)
# Adjust for producer_version
expected = expected.replace(
'producer_version: "CURRENT_VERSION"',
f'producer_version: "{torch.onnx.producer_version}"'
)
if expecttest.ACCEPT:
if expected != s:
return accept_output("updated output")
else:
if hasattr(self, "assertMultiLineEqual"):
# Python 2.7 only
# NB: Python considers lhs "old" and rhs "new".
self.assertMultiLineEqual(expected, s)
else:
self.assertEqual(s, expected)
def assertExpectedStripMangled(self, s, subname=None):
s = re.sub(r'__torch__[^ ]+', '', s)
self.assertExpected(s, subname)
def assertGreaterAlmostEqual(self, first, second, places=None, msg=None, delta=None):
"""Assert that ``first`` is greater than or almost equal to ``second``.
The equality of ``first`` and ``second`` is determined in a similar way to
the ``assertAlmostEqual`` function of the standard library.
"""
if delta is not None and places is not None:
raise TypeError("specify delta or places not both")
if first >= second:
return
diff = second - first
if delta is not None:
if diff <= delta:
return
standardMsg = f"{first} not greater than or equal to {second} within {delta} delta"
else:
if places is None:
places = 7
if round(diff, places) == 0:
return
standardMsg = f"{first} not greater than or equal to {second} within {places} places"
msg = self._formatMessage(msg, standardMsg)
raise self.failureException(msg)
def assertAtenOp(self, onnx_model, operator, overload_name=""):
all_aten_nodes = [p for p in onnx_model.graph.node
if p.op_type == "ATen" and p.domain == "org.pytorch.aten"]
self.assertTrue(all_aten_nodes)
for op in all_aten_nodes:
attrs = {attr.name: attr.s.decode() for attr in op.attribute}
if attrs.get("operator") == operator:
break
self.assertEqual(attrs["operator"], operator)
self.assertEqual(attrs.get("overload_name", ""), overload_name)
def check_nondeterministic_alert(self, fn, caller_name, should_alert=True):
'''Checks that an operation produces a nondeterministic alert when
expected while `torch.use_deterministic_algorithms(True)` is set.
Args:
fn (callable): Function to check for a nondeterministic alert
caller_name (str): Name of the operation that produces the
nondeterministic alert. This name is expected to appear at the
beginning of the error/warning message.
should_alert (bool, optional): If True, then the check will only pass
if calling `fn` produces a nondeterministic error/warning with the
expected message. If False, then the check will only pass if
calling `fn` does not produce an error. Default: `True`.
'''
alert_message = '^' + caller_name + ' does not have a deterministic implementation, but you set'
# Check that errors are thrown correctly
with DeterministicGuard(True):
if should_alert:
with self.assertRaisesRegex(
RuntimeError,
alert_message,
msg='expected a non-deterministic error, but it was not raised'):
fn()
else:
# If a nondeterministic error is not expected, make sure
# that it is not raised
try:
fn()
except RuntimeError as e:
if 'does not have a deterministic implementation' in str(e):
self.fail(
'did not expect non-deterministic error message, '
+ 'but got one anyway: "' + str(e) + '"')
# Reraise exceptions unrelated to nondeterminism
raise
# Check that warnings are thrown correctly
with DeterministicGuard(True, warn_only=True):
if should_alert:
with self.assertWarnsRegex(
UserWarning,
alert_message):
fn()
else:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
fn()
for warning in w:
if isinstance(warning, UserWarning):
self.assertTrue(re.search(alert_message, str(warning)) is None)
# run code in subprocess and capture exceptions.
@staticmethod
def run_process_no_exception(code, env=None):
import subprocess
popen = subprocess.Popen(
[sys.executable, '-c', code],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=env)
(stdout, stderr) = popen.communicate()
return (stdout, stderr)
# returns captured stderr
@staticmethod
def runWithPytorchAPIUsageStderr(code):
env = os.environ.copy()
env["PYTORCH_API_USAGE_STDERR"] = "1"
# remove CI flag since this is a wrapped test process.
# CI flag should be set in the parent process only.
env.pop("CI", None)
env.pop("TEST_SHOWLOCALS", None)
_stdout, stderr = TestCase.run_process_no_exception(code, env=env)
return stderr.decode('ascii')
def _attempt_load_from_subprocess(
self,
file: pathlib.Path,
import_string: str,
expected_failure_message: Optional[str] = None
) -> None:
"""
Attempts weights_only `torch.load` in a subprocess. This is used to test that
weights_only `torch.load` works as expected without global imports.
Args:
file (pathlib.Path): The path to the checkpoint to load.
import_string (str): import string to add to the script
exected_failure_message (str, optional): The expected failure message if the
checkpoint fails to load. If None, the test will pass
"""
script = f"import torch;{import_string}torch.load(r'{file}', weights_only=True)"
cm = (
self.assertRaisesRegex(RuntimeError, re.escape(expected_failure_message))
if expected_failure_message else contextlib.nullcontext()
)
with cm:
try:
subprocess.check_output(
[sys.executable, "-c", script],
# On Windows, opening the subprocess with the default CWD makes `import torch`
# fail, so just set CWD to this script's directory
cwd=os.path.dirname(os.path.realpath(__file__)),
stderr=subprocess.STDOUT,
)
except subprocess.CalledProcessError as e:
raise RuntimeError(e.output.decode("utf-8")) from None
class TestCaseBase(TestCase):
# Calls to super() in dynamically created classes are a bit odd.
# See https://github.com/pytorch/pytorch/pull/118586 for more info
# Subclassing this class and then calling super(TestCaseBase) will run
# TestCase's setUp, tearDown etc functions
pass
def download_file(url, binary=True):
from urllib.parse import urlsplit
from urllib import request, error
filename = os.path.basename(urlsplit(url)[2])
data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data'))
path = os.path.join(data_dir, filename)
if os.path.exists(path):
return path
try:
data = request.urlopen(url, timeout=15).read()
with open(path, 'wb' if binary else 'w') as f:
f.write(data)
return path
except error.URLError as e:
msg = f"could not download test file '{url}'"
warnings.warn(msg, RuntimeWarning)
raise unittest.SkipTest(msg) from e
def find_free_port():
"""
Finds an available port and returns that port number.
NOTE: If this function is being used to allocate a port to Store (or
indirectly via init_process_group or init_rpc), it should be used
in conjuction with the `retry_on_connect_failures` decorator as there is a potential
race condition where the allocated port may become unavailable before it can be used
"""
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(('localhost', 0))
_, port = sock.getsockname()
return port
# Errors that we can get in c10d initialization for which we should retry tests for.
ADDRESS_IN_USE = "Address already in use"
CONNECT_TIMEOUT = "connect() timed out."
def retry_on_connect_failures(func=None, connect_errors=(ADDRESS_IN_USE)):
"""Reruns a test if the test returns a RuntimeError and the exception
contains one of the strings in connect_errors."""
# This if block is executed when using this function as a decorator with arguments.
if func is None:
return partial(retry_on_connect_failures, connect_errors=connect_errors)
@wraps(func)
def wrapper(*args, **kwargs):
n_retries = 10
tries_remaining = n_retries
while True:
try:
return func(*args, **kwargs)
except RuntimeError as error:
if any(connect_error in str(error) for connect_error in connect_errors):
tries_remaining -= 1
if tries_remaining == 0:
raise RuntimeError(f"Failing after {n_retries} retries with error: {str(error)}") from error
time.sleep(random.random())
continue
raise
return wrapper
# Decorator to retry upon certain Exceptions.
def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False):
def deco_retry(f):
@wraps(f)
def f_retry(*args, **kwargs):
mtries, mdelay = tries, delay
while mtries > 1:
try:
return f(*args, **kwargs)
except ExceptionToCheck as e:
msg = "%s, Retrying in %d seconds..." % (str(e), mdelay)
print(msg)
time.sleep(mdelay)
mtries -= 1
try:
return f(*args, **kwargs)
except ExceptionToCheck as e:
raise unittest.SkipTest(f"Skipping after {tries} consecutive {str(e)}") from e if skip_after_retries else e
return f_retry # true decorator
return deco_retry
# FIXME: modernize these to be consistent with make_tensor
# and review including them in torch.testing
# Methods for matrix generation
def random_square_matrix_of_rank(l, rank, dtype=torch.double, device='cpu'):
assert rank <= l
A = torch.randn(l, l, dtype=dtype, device=device)
u, s, vh = torch.linalg.svd(A, full_matrices=False)
for i in range(l):
if i >= rank:
s[i] = 0
elif s[i] == 0:
s[i] = 1
return (u * s.to(dtype).unsqueeze(-2)) @ vh
def random_well_conditioned_matrix(*shape, dtype, device, mean=1.0, sigma=0.001):
"""
Returns a random rectangular matrix (batch of matrices)
with singular values sampled from a Gaussian with
mean `mean` and standard deviation `sigma`.
The smaller the `sigma`, the better conditioned
the output matrix is.
"""
primitive_dtype = {
torch.float: torch.float,
torch.double: torch.double,
torch.cfloat: torch.float,
torch.cdouble: torch.double
}
x = torch.rand(shape, dtype=dtype, device=device)
m = x.size(-2)
n = x.size(-1)
u, _, vh = torch.linalg.svd(x, full_matrices=False)
s = (torch.randn(*(shape[:-2] + (min(m, n),)), dtype=primitive_dtype[dtype], device=device) * sigma + mean) \
.sort(-1, descending=True).values.to(dtype)
return (u * s.unsqueeze(-2)) @ vh
# Returns a noncontiguous (tensor with the same shape and values as t
# The noncontiguous tensor is constructed such that elements in the innermost
# dimension are separated by zeros or (whenever possible) nans
# TODO: consider more complicated noncontiguity schemes
def noncontiguous_like(t):
# Short-circuits if t is already noncontiguous
if not t.is_contiguous():
return t
# Choose a "weird" value that won't be accessed
if t.dtype.is_floating_point or t.dtype.is_complex:
value = math.nan
elif t.dtype == torch.bool:
value = True
else:
value = 12
result = t.new_empty(t.shape + (2,))
result[..., 0] = value
result[..., 1] = t.detach()
result = result[..., 1]
result.requires_grad_(t.requires_grad)
return result
# TODO: remove this (prefer make_symmetric_matrices below)
def random_symmetric_matrix(l, *batches, **kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
A = (A + A.mT).div_(2)
return A
# Creates a symmetric matrix or batch of symmetric matrices
# Shape must be a square matrix or batch of square matrices
def make_symmetric_matrices(*shape, device, dtype):
assert shape[-1] == shape[-2]
t = make_tensor(shape, device=device, dtype=dtype)
t = (t + t.mT).div_(2)
return t
def random_hermitian_matrix(l, *batches, **kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
A = (A + A.mH).div_(2)
return A
def random_symmetric_psd_matrix(l, *batches, **kwargs):
"""
Returns a batch of random symmetric positive-semi-definite matrices.
The shape of the result is batch_dims + (matrix_size, matrix_size)
The following example creates a tensor of size 2 x 4 x 3 x 3
>>> # xdoctest: +SKIP("undefined variables")
>>> matrices = random_symmetric_psd_matrix(3, 2, 4, dtype=dtype, device=device)
"""
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
return A @ A.mT
def random_hermitian_psd_matrix(matrix_size, *batch_dims, dtype=torch.double, device='cpu'):
"""
Returns a batch of random Hermitian positive-semi-definite matrices.
The shape of the result is batch_dims + (matrix_size, matrix_size)
The following example creates a tensor of size 2 x 4 x 3 x 3
>>> # xdoctest: +SKIP("undefined variables")
>>> matrices = random_hermitian_psd_matrix(3, 2, 4, dtype=dtype, device=device)
"""
A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), dtype=dtype, device=device)
return A @ A.mH
# TODO: remove this (prefer make_symmetric_pd_matrices below)
def random_symmetric_pd_matrix(matrix_size, *batch_dims, **kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batch_dims + (matrix_size, matrix_size)),
dtype=dtype, device=device)
return torch.matmul(A, A.mT) \
+ torch.eye(matrix_size, dtype=dtype, device=device) * 1e-5
# Creates a symmetric positive-definite matrix or batch of
# such matrices
def make_symmetric_pd_matrices(*shape, device, dtype):
assert shape[-1] == shape[-2]
t = make_tensor(shape, device=device, dtype=dtype)
i = torch.eye(shape[-1], device=device, dtype=dtype) * 1e-5
return t @ t.mT + i
def random_hermitian_pd_matrix(matrix_size, *batch_dims, dtype, device):
"""
Returns a batch of random Hermitian positive-definite matrices.
The shape of the result is batch_dims + (matrix_size, matrix_size)
The following example creates a tensor of size 2 x 4 x 3 x 3
>>> # xdoctest: +SKIP("undefined variables")
>>> matrices = random_hermitian_pd_matrix(3, 2, 4, dtype=dtype, device=device)
"""
A = torch.randn(*(batch_dims + (matrix_size, matrix_size)),
dtype=dtype, device=device)
return A @ A.mH + torch.eye(matrix_size, dtype=dtype, device=device)
# Creates a full rank matrix with distinct singular values or
# a batch of such matrices
def make_fullrank_matrices_with_distinct_singular_values(*shape, device, dtype, requires_grad=False):
with torch.no_grad():
t = make_tensor(shape, device=device, dtype=dtype)
u, _, vh = torch.linalg.svd(t, full_matrices=False)
real_dtype = t.real.dtype if t.dtype.is_complex else t.dtype
k = min(shape[-1], shape[-2])
# We choose the singular values to be "around one"
# This is to make the matrix well conditioned
# s = [2, 3, ..., k+1]
s = torch.arange(2, k + 2, dtype=real_dtype, device=device)
# s = [2, -3, 4, ..., (-1)^k k+1]
s[1::2] *= -1.
# 1 + 1/s so that the singular values are in the range [2/3, 3/2]
# This gives a condition number of 9/4, which should be good enough
s.reciprocal_().add_(1.)
# Note that the singular values need not be ordered in an SVD so
# we don't need need to sort S
x = (u * s.to(u.dtype)) @ vh
x.requires_grad_(requires_grad)
return x
def random_matrix(rows, columns, *batch_dims, **kwargs):
"""Return rectangular matrix or batches of rectangular matrices.
Parameters:
dtype - the data type
device - the device kind
singular - when True, the output will be singular
"""
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
silent = kwargs.get("silent", False)
singular = kwargs.get("singular", False)
if silent and not torch._C.has_lapack:
return torch.ones(rows, columns, dtype=dtype, device=device)
A = torch.randn(batch_dims + (rows, columns), dtype=dtype, device=device)
if A.numel() == 0:
return A
u, _, vh = torch.linalg.svd(A, full_matrices=False)
k = min(rows, columns)
s = torch.linspace(1 / (k + 1), 1, k, dtype=dtype, device=device)
if singular:
# make matrix singular
s[k - 1] = 0
if k > 2:
# increase the order of singularity so that the pivoting
# in LU factorization will be non-trivial
s[0] = 0
return (u * s.unsqueeze(-2)) @ vh
def random_lowrank_matrix(rank, rows, columns, *batch_dims, **kwargs):
"""Return rectangular matrix or batches of rectangular matrices with
given rank.
"""
B = random_matrix(rows, rank, *batch_dims, **kwargs)
C = random_matrix(rank, columns, *batch_dims, **kwargs)
return B.matmul(C)
def _generate_indices_prefer_all_rows(rows: int, cols: int, num_indices: int) -> torch.Tensor:
"""Generate indices for a row x cols matrix, preferring at least one index per row if possible."""
indices = []
n_per_row = math.ceil(num_indices / rows)
col_indices = list(range(cols))
for r in range(rows):
# Note that this can yield overlapping indices
indices.extend((r, c) for c in random.choices(col_indices, k=n_per_row))
return torch.tensor(indices[:num_indices])
def random_sparse_matrix(rows, columns, density=0.01, **kwargs):
"""Return rectangular random sparse matrix within given density.
The density of the result approaches to given density as the size
of the matrix is increased and a relatively small value of density
is specified but higher than min(rows, columns)/(rows * columns)
for non-singular matrices.
"""
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
nonzero_elements = max(min(rows, columns), int(rows * columns * density))
indices = _generate_indices_prefer_all_rows(rows, columns, nonzero_elements)
values = torch.randn(nonzero_elements, dtype=dtype, device=device)
# ensure that the diagonal dominates
values *= torch.tensor([-float(i - j)**2 for i, j in indices], dtype=dtype, device=device).exp()
A = torch.sparse_coo_tensor(indices.t(), values, (rows, columns), device=device)
return A.coalesce()
def random_sparse_pd_matrix(matrix_size, density=0.01, **kwargs):
"""Return random sparse positive-definite matrix with given density.
The eigenvalues of the matrix are defined as::
arange(1, matrix_size+1)/matrix_size
Algorithm:
A = diag(arange(1, matrix_size+1)/matrix_size)
while <A density is smaller than required>:
<choose random i, j in range(matrix_size), theta in [0, 2*pi]>
R = <rotation matrix (i,j,theta)>
A = R^T A R
"""
import math
torch = kwargs.get('torch', globals()['torch'])
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
data = {(i, i): float(i + 1) / matrix_size
for i in range(matrix_size)}
def multiply(data, N, i, j, cs, sn, left=True):
for k in range(N):
if left:
ik, jk = (k, i), (k, j)
else:
ik, jk = (i, k), (j, k)
aik, ajk = data.get(ik, 0), data.get(jk, 0)
aik, ajk = cs * aik + sn * ajk, -sn * aik + cs * ajk
if aik:
data[ik] = aik
else:
data.pop(ik, None)
if ajk:
data[jk] = ajk
else:
data.pop(jk, None)
target_nnz = density * matrix_size * matrix_size
while len(data) < target_nnz:
i = random.randint(0, matrix_size - 1)
j = random.randint(0, matrix_size - 1)
if i != j:
theta = random.uniform(0, 2 * math.pi)
cs = math.cos(theta)
sn = math.sin(theta)
multiply(data, matrix_size, i, j, cs, sn, left=True)
multiply(data, matrix_size, i, j, cs, sn, left=False)
icoords, jcoords, values = [], [], []
for (i, j), v in sorted(data.items()):
icoords.append(i)
jcoords.append(j)
values.append(v)
indices_tensor = torch.tensor([icoords, jcoords])
return torch.sparse_coo_tensor(indices_tensor, values, (matrix_size, matrix_size), dtype=dtype, device=device)
# FIXME: remove this by updating test suites using it
def do_test_dtypes(self, dtypes, layout, device):
for dtype in dtypes:
if dtype != torch.float16:
out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device)
self.assertIs(dtype, out.dtype)
self.assertIs(layout, out.layout)
self.assertEqual(device, out.device)
# FIXME: remove this by updating test suites using it
def do_test_empty_full(self, dtypes, layout, device):
shape = torch.Size([2, 3])
def check_value(tensor, dtype, layout, device, value, requires_grad):
self.assertEqual(shape, tensor.shape)
self.assertIs(dtype, tensor.dtype)
self.assertIs(layout, tensor.layout)
self.assertEqual(tensor.requires_grad, requires_grad)
if tensor.is_cuda and device is not None:
self.assertEqual(device, tensor.device)
if value is not None:
fill = tensor.new(shape).fill_(value)
self.assertEqual(tensor, fill)
def get_int64_dtype(dtype):
module = '.'.join(str(dtype).split('.')[1:-1])
if not module:
return torch.int64
return operator.attrgetter(module)(torch).int64
default_dtype = torch.get_default_dtype()
check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False)
check_value(torch.full(shape, -5.), default_dtype, torch.strided, -1, None, False)
for dtype in dtypes:
for rg in {dtype.is_floating_point, False}:
int64_dtype = get_int64_dtype(dtype)
v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg)
check_value(v, dtype, layout, device, None, rg)
out = v.new()
check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg),
dtype, layout, device, None, rg)
check_value(v.new_empty(shape), dtype, layout, device, None, False)
check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False),
int64_dtype, layout, device, None, False)
check_value(torch.empty_like(v), dtype, layout, device, None, False)
check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
int64_dtype, layout, device, None, False)
if dtype is not torch.float16 and layout != torch.sparse_coo:
fv = 3
v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg)
check_value(v, dtype, layout, device, fv, rg)
check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False)
out = v.new()
check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg),
dtype, layout, device, fv + 2, rg)
check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False),
int64_dtype, layout, device, fv + 3, False)
check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False)
check_value(torch.full_like(v, fv + 5,
dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
int64_dtype, layout, device, fv + 5, False)
# FIXME: improve load_tests() documentation here
running_script_path = None
def set_running_script_path():
global running_script_path
try:
running_file = os.path.abspath(os.path.realpath(sys.argv[0]))
if running_file.endswith('.py'): # skip if the running file is not a script
running_script_path = running_file
except Exception:
pass
def check_test_defined_in_running_script(test_case):
if running_script_path is None:
return
test_case_class_file = os.path.abspath(os.path.realpath(inspect.getfile(test_case.__class__)))
assert test_case_class_file == running_script_path, f'Class of loaded TestCase "{test_case.id()}" ' \
f'is not defined in the running script "{running_script_path}", but in "{test_case_class_file}". Did you ' \
"accidentally import a unittest.TestCase from another file?"
def load_tests(loader, tests, pattern):
set_running_script_path()
test_suite = unittest.TestSuite()
for test_group in tests:
if not DISABLE_RUNNING_SCRIPT_CHK:
for test in test_group:
check_test_defined_in_running_script(test)
if test_group._tests:
test_suite.addTest(test_group)
return test_suite
# FIXME: document this and move it to test_serialization
class BytesIOContext(io.BytesIO):
def __enter__(self):
return self
def __exit__(self, *args):
pass
# Tentative value for nondet_tol for gradcheck when backward implementation
# relies on nondeterministic operations, i.e., those listed here:
# https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
#
# For more information see https://github.com/pytorch/pytorch/issues/56202
GRADCHECK_NONDET_TOL = 1e-12
TEST_WITH_SLOW_GRADCHECK: bool = TestEnvironment.def_flag(
"TEST_WITH_SLOW_GRADCHECK",
env_var="PYTORCH_TEST_WITH_SLOW_GRADCHECK",
)
skipIfSlowGradcheckEnv = unittest.skipIf(
TEST_WITH_SLOW_GRADCHECK,
"Tests that don't use gradcheck don't need to run on slow_gradcheck CI",
)
def gradcheck(fn, inputs, **kwargs):
# Wrapper around gradcheck that enables certain keys by default.
# Use this testing-internal gradcheck instead of autograd.gradcheck so that new features like vmap and
# forward-mode AD are tested by default. We create this wrapper because we'd like to keep new checks
# to be disabled to default for the public-facing api to avoid breaking user code.
#
# All PyTorch devs doing testing should use this wrapper instead of autograd.gradcheck.
default_values = {
"check_batched_grad": True,
"fast_mode": True,
}
if TEST_WITH_SLOW_GRADCHECK:
default_values["fast_mode"] = False
for key, value in default_values.items():
# default value override values explicitly set to None
k = kwargs.get(key, None)
kwargs[key] = k if k is not None else value
return torch.autograd.gradcheck(fn, inputs, **kwargs)
def gradgradcheck(fn, inputs, grad_outputs=None, **kwargs):
# Wrapper around gradgradcheck that enables certain keys by default
# See gradcheck above for an explanation of why we need something like this.
#
# All PyTorch devs doing testing should use this wrapper instead of autograd.gradgradcheck
default_values = {
"check_batched_grad": True,
"fast_mode": True,
}
if TEST_WITH_SLOW_GRADCHECK:
default_values["fast_mode"] = False
for key, value in default_values.items():
# default value override values explicitly set to None
k = kwargs.get(key, None)
kwargs[key] = k if k is not None else value
return torch.autograd.gradgradcheck(fn, inputs, grad_outputs, **kwargs)
def _assertGradAndGradgradChecks(test_case, apply_fn, inputs, **kwargs):
# call assert function rather than returning a bool since it's nicer
# if we get whether this failed on the gradcheck or the gradgradcheck.
test_case.assertTrue(gradcheck(apply_fn, inputs, **kwargs))
test_case.assertTrue(gradgradcheck(apply_fn, inputs, **kwargs))
@contextmanager
def set_cwd(path: str) -> Iterator[None]:
old_cwd = os.getcwd()
try:
os.chdir(path)
yield
finally:
os.chdir(old_cwd)
# FIXME: delete this
# Using @toleranceOverride specific to your test is the recommended way
# of doing this. These are just some values that worked for test_nn.
dtype2prec_DONTUSE = {torch.float: 1e-5,
torch.double: 1e-5,
torch.half: 1e-2,
torch.bfloat16: 1e-1}
# FIXME: move to test_sparse or sparse utils
# This is a wrapper that wraps a test to run this test twice, one with
# coalesced=True, another with coalesced=False for coalesced/uncoalesced sparse tensors.
def coalescedonoff(f):
@wraps(f)
def wrapped(self, *args, **kwargs):
f(self, *args, **kwargs, coalesced=True)
f(self, *args, **kwargs, coalesced=False)
return wrapped
def is_coalesced_indices(s):
indices = s._indices()
hash_coeffs = (1,) + s.shape[s.sparse_dim() - 1:0:-1]
hash_indices = torch.tensor(hash_coeffs, device=s.device).cumprod(-1).flip(-1)
if s.sparse_dim() > 1:
hash_indices.unsqueeze_(-1)
hash_indices = (indices * hash_indices).sum(0)
else:
hash_indices = indices * hash_indices
# check if indices are sorted
res = torch.allclose(hash_indices, hash_indices.sort()[0])
# check if there are no repeated indices
res = res and torch.allclose(hash_indices, hash_indices.unique())
return res
@contextlib.contextmanager
def disable_gc():
if gc.isenabled():
try:
gc.disable()
yield
finally:
gc.enable()
else:
yield
def find_library_location(lib_name: str) -> Path:
# return the shared library file in the installed folder if exist,
# else the file in the build folder
torch_root = Path(torch.__file__).resolve().parent
path = torch_root / 'lib' / lib_name
if os.path.exists(path):
return path
torch_root = Path(__file__).resolve().parent.parent.parent
return torch_root / 'build' / 'lib' / lib_name
def skip_but_pass_in_sandcastle(reason):
"""
Similar to unittest.skip, however in the sandcastle environment it just
"passes" the test instead to avoid creating tasks complaining about tests
skipping continuously.
"""
def decorator(func):
if not IS_SANDCASTLE:
func.__unittest_skip__ = True
func.__unittest_skip_why__ = reason
return func
@wraps(func)
def wrapper(*args, **kwargs):
print(f'Skipping {func.__name__} on sandcastle for following reason: {reason}', file=sys.stderr)
return
return wrapper
return decorator
def mock_wrapper(method):
"""
Returns a function that calls the real implementation of a method
in addition to passing args to a mock object.
"""
mock = MagicMock()
@wraps(method)
def wrapper(self, *args, **kwargs):
mock(*args, **kwargs)
return method(self, *args, **kwargs)
wrapper.mock = mock # type: ignore[attr-defined]
return wrapper
def get_tensors_from(args, kwargs):
""" Returns a set of all Tensor objects in the given args and kwargs. """
return set([arg for arg in args if isinstance(arg, Tensor)] +
[v for v in kwargs.values() if isinstance(v, Tensor)])
# Returns scalar tensor representation of a list of integer byte values
def bytes_to_scalar(byte_list: List[int], dtype: torch.dtype, device: torch.device):
dtype_to_ctype: Dict[torch.dtype, Any] = {
torch.int8: ctypes.c_int8,
torch.uint8: ctypes.c_uint8,
torch.uint16: ctypes.c_uint16,
torch.uint32: ctypes.c_uint32,
torch.uint64: ctypes.c_uint64,
torch.int16: ctypes.c_int16,
torch.int32: ctypes.c_int32,
torch.int64: ctypes.c_int64,
torch.bool: ctypes.c_bool,
torch.float32: ctypes.c_float,
torch.complex64: ctypes.c_float,
torch.float64: ctypes.c_double,
torch.complex128: ctypes.c_double,
}
ctype = dtype_to_ctype[dtype]
num_bytes = ctypes.sizeof(ctype)
def check_bytes(byte_list):
for byte in byte_list:
assert 0 <= byte <= 255
if dtype.is_complex:
assert len(byte_list) == (num_bytes * 2)
check_bytes(byte_list)
real = ctype.from_buffer((ctypes.c_byte * num_bytes)(
*byte_list[:num_bytes])).value
imag = ctype.from_buffer((ctypes.c_byte * num_bytes)(
*byte_list[num_bytes:])).value
res = real + 1j * imag
else:
assert len(byte_list) == num_bytes
check_bytes(byte_list)
res = ctype.from_buffer((ctypes.c_byte * num_bytes)(
*byte_list)).value
return torch.tensor(res, device=device, dtype=dtype)
def copy_func(f):
"""Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard)"""
g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__,
argdefs=f.__defaults__,
closure=f.__closure__)
g = functools.update_wrapper(g, f)
g.__kwdefaults__ = f.__kwdefaults__
return g
def xfail_inherited_tests(tests):
"""
Given a list of test names which are defined by a superclass of the
class this decorates, mark them as expected failure. This is useful
if you are doing poor man's parameterized tests by subclassing a generic
test class.
"""
def deco(cls):
for t in tests:
# NB: expectedFailure operates by mutating the method in question,
# which is why you have to copy the function first
setattr(cls, t, unittest.expectedFailure(copy_func(getattr(cls, t))))
return cls
return deco
def skip_but_pass_in_sandcastle_if(condition, reason):
"""
Similar to unittest.skipIf, however in the sandcastle environment it just
"passes" the test instead to avoid creating tasks complaining about tests
skipping continuously.
"""
def decorator(func):
if condition:
if IS_SANDCASTLE:
@wraps(func)
def wrapper(*args, **kwargs):
print(f'Skipping {func.__name__} on sandcastle for following reason: {reason}', file=sys.stderr)
return wrapper
else:
func.__unittest_skip__ = True
func.__unittest_skip_why__ = reason
return func
return decorator
def dtype_name(dtype):
""" Returns the pretty name of the dtype (e.g. torch.int64 -> int64). """
return str(dtype).split('.')[1]
dtype_abbrs = {
torch.bfloat16: 'bf16',
torch.float64: 'f64',
torch.float32: 'f32',
torch.float16: 'f16',
torch.complex32: 'c32',
torch.complex64: 'c64',
torch.complex128: 'c128',
torch.int8: 'i8',
torch.int16: 'i16',
torch.int32: 'i32',
torch.int64: 'i64',
torch.bool: 'b8',
torch.uint8: 'u8',
}
@functools.lru_cache
def get_cycles_per_ms() -> float:
"""Measure and return approximate number of cycles per millisecond for torch.cuda._sleep
"""
def measure() -> float:
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
torch.cuda._sleep(1000000)
end.record()
end.synchronize()
cycles_per_ms = 1000000 / start.elapsed_time(end)
return cycles_per_ms
# Get 10 values and remove the 2 max and 2 min and return the avg.
# This is to avoid system disturbance that skew the results, e.g.
# the very first cuda call likely does a bunch of init, which takes
# much longer than subsequent calls.
#
# Tested on both Tesla V100, Quadro GP100, Titan RTX, RTX 3090 GPUs
# and seems to return stable values. Therefore, we enable caching
# using lru_cache decorator above.
num = 10
vals = [measure() for _ in range(num)]
vals = sorted(vals)
return mean(vals[2 : num - 2])
# OpInfo utils
T = TypeVar('T')
def first_sample(self: unittest.TestCase, samples: Iterable[T]) -> T:
"""
Returns the first sample from an iterable of samples, like those returned by OpInfo.
The test will be skipped if no samples are available.
"""
try:
return next(iter(samples))
except StopIteration as e:
raise unittest.SkipTest('Skipped! Need at least 1 sample input') from e
# this helper method is to recursively
# clone the tensor-type input of operators tested by OpInfo
def clone_input_helper(input):
if isinstance(input, torch.Tensor):
return torch.clone(input)
if isinstance(input, Sequence):
return tuple(map(clone_input_helper, input))
return input
@contextmanager
def custom_op(opname, symbolic_fn, opset_version):
"""Context manager/decorator to test ONNX export with custom operator"""
try:
register_custom_op_symbolic(opname, symbolic_fn, opset_version)
yield
finally:
unregister_custom_op_symbolic(opname, opset_version)
def outs_and_grads(fn, graph_inps, inps):
outs = fn(*graph_inps)
for out in pytree.tree_leaves(outs):
if isinstance(out, torch.Tensor) and out.requires_grad:
out.sum().backward(retain_graph=True)
grads = [inp.grad for inp in pytree.tree_leaves(inps) if isinstance(inp, torch.Tensor)]
for inp in pytree.tree_leaves(inps):
if isinstance(inp, torch.Tensor):
inp.grad = None
return outs, grads
def compare_equal_outs_and_grads(test, m1, m2, inps):
r1, g1 = outs_and_grads(m1, inps, inps)
r2, g2 = outs_and_grads(m2, inps, inps)
test.assertEqual(r1, r2)
test.assertEqual(g1, g2)
class TestGradients(TestCase):
exact_dtype = True
# Copies inputs to inplace operations to avoid inplace modifications
# to leaves requiring gradient
def _get_safe_inplace(self, inplace_variant):
@wraps(inplace_variant)
def _fn(t, *args, **kwargs):
return inplace_variant(t.clone(), *args, **kwargs)
return _fn
def _check_helper(self, device, dtype, op, variant, check, *, check_forward_ad=False, check_backward_ad=True,
check_batched_grad=None, check_batched_forward_grad=False):
assert check in ('gradcheck', 'bwgrad_bwgrad', 'fwgrad_bwgrad')
# NB: check_backward_ad does not affect gradgradcheck (always True)
if variant is None:
self.skipTest("Skipped! Variant not implemented.")
if not op.supports_dtype(dtype, torch.device(device).type):
self.skipTest(f"Skipped! {op.name} does not support dtype {str(dtype)}")
def is_inplace(variant):
if hasattr(variant, "__wrapped__"):
return variant.__wrapped__ is op.get_inplace()
return variant is op.get_inplace()
include_conjugated_inputs = op.test_conjugated_samples and dtype.is_complex
samples = op.sample_inputs(device, dtype, requires_grad=True, include_conjugated_inputs=include_conjugated_inputs,
small_inputs_only=TEST_WITH_SLOW_GRADCHECK)
for sample in samples:
if sample.broadcasts_input and is_inplace(variant):
continue
# Gradcheck expects tensors as its input, but autograd actually supports tensorlists
# and tensors passed as kwargs. The following creates a function that accepts just
# the tensors that require grad as varargs, and then recomposes them back into the
# original input.
# Creates gradcheck inputs by identifying tensors requiring grad
all_args = None
if is_iterable_of_tensors(sample.input):
all_args = chain(sample.input, sample.args, sample.kwargs.values())
else:
all_args = tuple(chain((sample.input,), sample.args, sample.kwargs.values()))
gradcheck_args = tuple(x for x in all_args if (isinstance(x, torch.Tensor) and x.requires_grad))
# Verifies sample input tensors should have no grad
# This may happen if the same tensor is used in two different SampleInputs
for t in gradcheck_args:
self.assertIsNone(t.grad,
"A sampled input has a gradient before running autograd. "
"This usually means that (at least) one input tensor is reused "
"across different SampleInputs. "
"Please create a new tensor for each SampleInput.")
def _input_recomposition_helper(inputs, inp, input_idx):
if is_iterable_of_tensors(inp):
tensor_list = []
for x in inp:
if isinstance(x, torch.Tensor) and x.requires_grad:
tensor_list.append(inputs[input_idx])
input_idx = input_idx + 1
else:
tensor_list.append(x)
return tensor_list, input_idx
elif isinstance(inp, torch.Tensor) and inp.requires_grad:
return inputs[input_idx], input_idx + 1
else:
return inp, input_idx
def fn(*inputs):
# Puts inputs back into sample properly
positional_args = []
input_idx = 0
inp, input_idx = _input_recomposition_helper(inputs, sample.input, input_idx)
positional_args.append(inp)
for x in sample.args:
inp, input_idx = _input_recomposition_helper(inputs, x, input_idx)
positional_args.append(inp)
# Recreates kwargs
kwargs = {}
for k, v in sample.kwargs.items():
inp, input_idx = _input_recomposition_helper(inputs, v, input_idx)
kwargs[k] = inp
output = op.gradcheck_wrapper(variant, *positional_args, **kwargs)
if sample.output_process_fn_grad is not None:
return sample.output_process_fn_grad(output)
return output
if check == 'gradcheck':
if check_batched_grad is None:
check_batched_grad = op.check_batched_grad
self.assertTrue(gradcheck(fn, gradcheck_args,
check_batched_grad=check_batched_grad,
check_grad_dtypes=True,
nondet_tol=op.gradcheck_nondet_tol,
fast_mode=op.gradcheck_fast_mode,
check_forward_ad=check_forward_ad,
check_backward_ad=check_backward_ad,
check_undefined_grad=True,
check_batched_forward_grad=check_batched_forward_grad))
elif check in ('bwgrad_bwgrad', 'fwgrad_bwgrad'): # gradgrad check
self.assertFalse(check_forward_ad, msg="Cannot run forward AD check for gradgradcheck")
for gen_non_contig_grad_outputs in (False, True):
kwargs = {
"gen_non_contig_grad_outputs": gen_non_contig_grad_outputs,
"check_batched_grad": op.check_batched_gradgrad,
"check_grad_dtypes": True,
"nondet_tol": op.gradcheck_nondet_tol,
"fast_mode": op.gradcheck_fast_mode
}
if check == "fwgrad_bwgrad":
kwargs["check_fwd_over_rev"] = True
kwargs["check_rev_over_rev"] = False
kwargs["check_batched_grad"] = False
kwargs["check_undefined_grad"] = False
self.assertTrue(gradgradcheck(fn, gradcheck_args, **kwargs))
else:
self.assertTrue(False, msg="Unknown check requested!")
def _grad_test_helper(self, device, dtype, op, variant, *, check_forward_ad=False, check_backward_ad=True,
check_batched_grad=None, check_batched_forward_grad=False):
return self._check_helper(device, dtype, op, variant, 'gradcheck', check_forward_ad=check_forward_ad,
check_backward_ad=check_backward_ad, check_batched_grad=check_batched_grad,
check_batched_forward_grad=check_batched_forward_grad)
def _skip_helper(self, op, device, dtype):
if dtype not in op.supported_backward_dtypes(torch.device(device).type):
self.skipTest("Skipped! Op doesn't support autograd for this dtype.")
if not op.supports_autograd and not op.supports_forward_ad:
self.skipTest("Skipped! autograd not supported.")
def make_lazy_class(cls):
def lazy_init(self, cb):
self._cb = cb
self._value = None
cls.__init__ = lazy_init
for basename in [
"add", "sub", "mul", "truediv", "floordiv", "mod", "divmod", "pow",
"lshift", "rshift", "and", "or", "xor", "neg", "pos", "abs", "invert",
"eq", "ne", "lt", "le", "gt", "ge", "bool", "int", "index",
]:
name = f"__{basename}__"
def inner_wrapper(name):
use_operator = basename not in ("bool", "int")
def wrapped(self, *args, **kwargs):
if self._cb is not None:
self._value = self._cb()
self._cb = None
if not use_operator:
return getattr(self._value, name)(*args, **kwargs)
else:
return getattr(operator, name)(self._value, *args, **kwargs)
return wrapped
setattr(cls, name, inner_wrapper(name))
return cls
# Base TestCase for NT tests; used to define common helpers, etc.
class NestedTensorTestCase(TestCase):
def assertEqualIgnoringNestedInts(self, a, b):
# unbinding NJTs allows us to compare them as essentially equal without
# caring about exact nested int comparison
def _unbind_njts(x):
if isinstance(x, torch.Tensor) and x.is_nested and x.layout == torch.jagged:
return x.unbind()
else:
return x
self.assertEqual(pytree.tree_map(_unbind_njts, a), pytree.tree_map(_unbind_njts, b))
def assertEqualNoncontigAware(self, a, b):
# assertEqual() doesn't take into account lengths, so hack around this
# by comparing unbound components and shapes
self.assertEqualIgnoringNestedInts(a, b)
def _get_njt_shapes(x):
return (
x.shape
if isinstance(x, torch.Tensor) and x.is_nested
else None
)
a_shapes = pytree.tree_map(_get_njt_shapes, a)
b_shapes = pytree.tree_map(_get_njt_shapes, b)
self.assertEqual(a_shapes, b_shapes)
@contextlib.contextmanager
def branch_nested_state(self):
"""Context manager to branch and restore the nested tensor state."""
nested_tensor_module = torch.nested._internal.nested_tensor
original_tensor_symint_registry = nested_tensor_module._tensor_symint_registry.copy()
original_tensor_id_counter = nested_tensor_module._tensor_id_counter
try:
yield
finally:
nested_tensor_module._tensor_id_counter = original_tensor_id_counter
nested_tensor_module._tensor_symint_registry = original_tensor_symint_registry
@make_lazy_class
class LazyVal:
pass
def munge_exc(e, *, suppress_suffix=True, suppress_prefix=True, file=None, skip=0):
if file is None:
file = inspect.stack()[1 + skip].filename # skip one frame
file = _as_posix_path(file)
s = _as_posix_path(str(e))
# Remove everything that looks like stack frames in NOT this file
def repl_frame(m):
if m.group(1) != file:
return ""
# Don't accept top-level, even for this script, these will wobble
# depending on how the testing script was invoked
if m.group(2) == "<module>":
return ""
return m.group(0)
s = re.sub(r' File "([^"]+)", line \d+, in (.+)\n( .+\n( +[~^]+ *\n)?)+', repl_frame, s)
s = re.sub(r"line \d+", "line N", s)
s = re.sub(r".py:\d+", ".py:N", s)
s = re.sub(file, _as_posix_path(os.path.basename(file)), s)
s = re.sub(_as_posix_path(os.path.join(os.path.dirname(torch.__file__), "")), "", s)
if suppress_suffix:
s = re.sub(r"\n*Set TORCH_LOGS.+", "", s, flags=re.DOTALL)
s = re.sub(r"\n*You can suppress this exception.+", "", s, flags=re.DOTALL)
if suppress_prefix:
s = re.sub(r"Cannot export model.+\n\n", "", s)
s = re.sub(r" +$", "", s, flags=re.MULTILINE)
return s
@contextmanager
def check_leaked_tensors(limit=1, matched_type=torch.Tensor):
"""Wrap around operations you want to ensure are not leaking tensor memory.
This code intentionally ignores other reference cycles, which can be benign and which we have plenty
of in pytorch code. It focuses on any reference cycles that directly or indirectly result holding a Tensor alive,
since this is likely a more serious leak than typical python refcycles.
limit specifies how many tensors to dump debug graphs for (default=1)
"""
def match_obj(obj):
return isinstance(obj, matched_type)
try:
gc.collect()
gc.set_debug(gc.DEBUG_SAVEALL)
garbage_objs = []
# run the user code, after cleaning any existing refcycles, and then check for new ones
# also allow usercode to check the garbage objs (e.g. for assertion) after exiting ctxmgr
yield garbage_objs
gc.collect()
garbage_objs.extend(filter(match_obj, gc.garbage))
num_garbage_objs = len(garbage_objs)
if num_garbage_objs > 0:
warnings.warn(
f"{num_garbage_objs} tensors were found in the garbage. Did you introduce a reference cycle?"
)
try:
import objgraph
warnings.warn(
f"Dumping first {limit} objgraphs of leaked {matched_type}s rendered to png"
)
for g in garbage_objs[:limit]:
objgraph.show_backrefs([g], max_depth=10)
except ImportError:
warnings.warn("`pip install objgraph` to enable memory leak debugging")
finally:
gc.set_debug(0)
def remove_cpp_extensions_build_root():
"""
Removes the default root folder under which extensions are built.
"""
default_build_root = cpp_extension.get_default_build_root()
if os.path.exists(default_build_root):
if IS_WINDOWS:
# rmtree returns permission error: [WinError 5] Access is denied
# on Windows, this is a workaround
subprocess.run(["rm", "-rf", default_build_root], stdout=subprocess.PIPE)
else:
shutil.rmtree(default_build_root, ignore_errors=True)
# Decorator to provide a helper to load inline extensions to a temp directory
def scoped_load_inline(func):
@wraps(func)
def wrapper(*args, **kwargs):
def load_inline(*args, **kwargs):
if IS_WINDOWS:
# TODO(xmfan): even using TemporaryDirectoryName will result in permission error
return cpp_extension.load_inline(*args, **kwargs)
assert "build_directory" not in kwargs
with TemporaryDirectoryName() as temp_dir_name:
if kwargs.get("verbose", False):
print(f'Using temporary extension directory {temp_dir_name}...', file=sys.stderr)
kwargs["build_directory"] = temp_dir_name
return cpp_extension.load_inline(*args, **kwargs)
return func(*args, load_inline=load_inline, **kwargs)
return wrapper
|