File: multi_threaded_pg.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (536 lines) | stat: -rw-r--r-- 18,914 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
# mypy: allow-untyped-defs

import sys
import threading
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
from functools import partial, reduce

import torch
import torch.distributed as dist
import weakref
from torch._C._distributed_c10d import (
    _create_work_from_future,
    AllgatherOptions,
    AllreduceOptions,
    AllToAllOptions,
    BarrierOptions,
    BroadcastOptions,
    ReduceScatterOptions,
    ScatterOptions,
    Store,
    ReduceOp,
)
from torch.distributed.distributed_c10d import _CollOp, _store_based_barrier, P2POp
from torch.futures import Future
from torch.utils import _pytree as pytree

"""
TODO:
Lots of missing collectives.
Collectives validation.
Make timeout robust by making collectives respect the test deadline.
Make tests robust by making collectives interruptible.
We need some synchronization around cleanup to ensure that timedout ranks don't cause spurious failures.

"""


def flatten_list(lst):
    return pytree.tree_leaves(lst)


def ret_work(ret):
    fut = Future()
    fut.set_result(ret)
    return _create_work_from_future(fut)

def binop_reduce(tensors, op):
    res = op(torch.stack(tensors), dim=0)
    if isinstance(res, torch.Tensor):
        return res
    # min/max return a namedtuple
    return res.values

def bitwise_reduce(tensors, op):
    return reduce(op, tensors)

_reduce_ops = {
    ReduceOp.SUM: partial(binop_reduce, op=torch.sum),
    ReduceOp.AVG: partial(binop_reduce, op=torch.mean),
    ReduceOp.PRODUCT: partial(binop_reduce, op=torch.prod),
    ReduceOp.MIN: partial(binop_reduce, op=torch.min),
    ReduceOp.MAX: partial(binop_reduce, op=torch.max),
    ReduceOp.BAND: partial(bitwise_reduce, op=torch.bitwise_and),
    ReduceOp.BOR: partial(bitwise_reduce, op=torch.bitwise_or),
    ReduceOp.BXOR: partial(bitwise_reduce, op=torch.bitwise_xor),
}

class AllToAll:
    @torch.no_grad()
    def work(self, data):
        world_size = len(data)
        for dest_rank in range(world_size):
            output_tensor_list, _ = data[dest_rank]
            for src_rank in range(world_size):
                _, input_tensor_list = data[src_rank]
                output_tensor_list[src_rank].copy_(input_tensor_list[dest_rank])

class AllToAllBase:
    @torch.no_grad()
    def work(self, data):
        world_size = len(data)
        for dest_rank in range(world_size):
            output_buffer, _, output_split_sizes, _ = data[dest_rank]

            output_indexes = self._size_cumsum(output_buffer.size(0), output_split_sizes, world_size)

            for src_rank in range(world_size):
                _, input_buffer, _, input_split_sizes = data[src_rank]
                input_indexes = self._size_cumsum(input_buffer.size(0), input_split_sizes, world_size)

                output_buffer[output_indexes[src_rank]:output_indexes[src_rank + 1]].copy_(
                    input_buffer[input_indexes[dest_rank]:input_indexes[dest_rank + 1]]
                )

    def _size_cumsum(self, buf_size: int, sizes: Union[torch.Tensor, List[int], None], world_size: int) -> torch.Tensor:
        if sizes is None or len(sizes) == 0:
            sizes = torch.full(
                (world_size,), buf_size // world_size, dtype=torch.int64
            )
        if not isinstance(sizes, torch.Tensor):
            sizes = torch.tensor(sizes, dtype=torch.int64)
        assert sizes.dtype == torch.int64
        sizes = torch.cumsum(
            torch.cat(
                (
                    torch.tensor([0], dtype=torch.int64, device=sizes.device), sizes
                ),
                dim=0
            ),
            dim=0
        )
        return sizes

class AllReduce:
    def __init__(self, op):
        if op.op not in _reduce_ops:
            raise NotImplementedError(
                f"AllReduce op {op.op} not supported on multithreaded pg for now."
            )
        self.op = op.op

    @torch.no_grad()
    def work(self, data):
        for i in range(len(data[0])):
            # use rank0 as the device for sum
            rank_0_device = data[0][i].device
            # collect all data to the list and make them
            # all on rank 0 device
            tensors = [data[src_rank][i].to(rank_0_device) for src_rank in range(0, len(data))]

            # now mimic reduce across all ranks
            res = _reduce_ops[self.op](tensors)

            # copy all the reduced value to each rank
            for src_rank in range(len(data)):
                data[src_rank][i].copy_(res.to(data[src_rank][i].device))


class AllGather:
    @torch.no_grad()
    def work(self, data):
        for src_rank in range(len(data)):
            in_tensor_list = data[src_rank][1]
            # Can't handle all_gather with multiple tensors
            assert len(in_tensor_list) == 1
            src_tensor = in_tensor_list[0]

            for dest in data:
                dest_tensor = dest[0][0][src_rank]
                dest_tensor.copy_(src_tensor)


class Scatter:
    def __init__(self, src):
        self.src = src

    @torch.no_grad()
    def work(self, data):
        src_in_tensor_list = data[self.src][1]
        # Can't handle scatter with multiple input tensor list
        assert len(src_in_tensor_list) == 1
        src_in_tensors = src_in_tensor_list[0]

        for rank, each_rank_data in enumerate(data):
            out_tensor_list = each_rank_data[0]
            # Can't handle scatter with multiple output tensor
            assert len(out_tensor_list) == 1
            dest_tensor = out_tensor_list[0]
            dest_tensor.copy_(src_in_tensors[rank])


class Gather:
    def __init__(self, dst):
        self.dst = dst

    @torch.no_grad()
    def work(self, data):
        # Can't handle gather with multiple tensor lists
        assert len(data[self.dst][0]) == 1
        out_tensor_list = data[self.dst][0][0]
        for rank, each_rank_data in enumerate(data):
            src_in_tensor_list = each_rank_data[1]
            # Can't handle gather with multiple tensor lists
            assert len(src_in_tensor_list) == 1
            dest_tensor = out_tensor_list[rank]
            dest_tensor.copy_(src_in_tensor_list[0])

class ReduceScatter:
    def __init__(self, op):
        if op != dist.ReduceOp.SUM and op != dist.ReduceOp.AVG:
            raise NotImplementedError(f"ReduceScatter does not support {op}")
        self.op = op

    @torch.no_grad()
    def work(self, data):
        start_reduction = [False for _ in range(len(data))]
        for each_rank_data in data:
            # Can't handle reduce_scatter with multiple scatter list
            assert len(each_rank_data[1]) == 1
            to_scatter = each_rank_data[1][0]
            for i in range(len(to_scatter)):
                dest_tensor_on_rank_i = data[i][0]
                # Can't handle reduce_scatter with multiple output tensor
                assert len(dest_tensor_on_rank_i) == 1
                dst_tensor_device = dest_tensor_on_rank_i[0].device
                if not start_reduction[i]:
                    dest_tensor_on_rank_i[0].copy_(to_scatter[i].to(dst_tensor_device))
                    start_reduction[i] = True
                else:
                    dest_tensor_on_rank_i[0].add_(to_scatter[i].to(dst_tensor_device))
        if self.op == dist.ReduceOp.AVG:
            num_ranks = len(data)
            for each_rank_data in data:
                each_rank_data[0][0] /= num_ranks


class Broadcast:
    def __init__(self, src):
        self.src = src

    @torch.no_grad()
    def work(self, data):
        in_tensor_list = flatten_list(data[self.src])
        for i in range(len(data)):
            out_tensor_list = flatten_list(data[i])
            for j in range(len(in_tensor_list)):
                out_tensor_list[j].copy_(in_tensor_list[j])


class Collective:
    def __init__(self, world_size, collective, pg):
        self._world_size = world_size
        self._collective = collective

        self._start_cond = threading.Condition()
        self._done_cond = threading.Condition()

        self._data = [None] * world_size
        self._count = 0
        self._done = False

        self._pg = pg

    def join(self, rank, data):
        with self._start_cond:
            self._data[rank] = data
            self._count += 1

            # notify rank 0
            if self._count == self._world_size:
                if rank > 0:
                    self._start_cond.notify()

            if rank == 0:
                self._start_cond.wait_for(
                    lambda: self._count == self._world_size or self._pg._terminate.is_set()
                )
                # SystemExit is not a subclass of Exception but BaseException
                # and can be distinguished from normal exception raised from program errors
                # so that we can hide it from the exception queue
                if self._pg._terminate.is_set():
                    sys.exit("Test termination event occurs.")

        with self._done_cond:
            # wait for rank 0 to finish
            if rank > 0:
                self._done_cond.wait_for(lambda: self._done or self._pg._terminate.is_set())
                if self._pg._terminate.is_set():
                    sys.exit("Test termination event occurs.")
            else:
                # copy data around
                self._collective.work(self._data)
                self._done = True
                self._done_cond.notify_all()
        return ret_work(data)


class ProcessLocalGroup(dist.ProcessGroup):
    _coll_lock = threading.Lock()
    _cur_coll_on_pgs = {}

    _terminate = threading.Event()

    @classmethod
    def _start_coll(cls, collective, pg):
        with cls._coll_lock:
            # pg_name is unique, we use that to record the mapping between pg and collective
            if pg.pg_name not in cls._cur_coll_on_pgs:
                cls._cur_coll_on_pgs[pg.pg_name] = Collective(pg.size(), collective, cls)
            return cls._cur_coll_on_pgs[pg.pg_name]

    @classmethod
    def _end_coll(cls, collective, pg):
        # This is racily called by all ranks, so only one will work
        with cls._coll_lock:
            if pg.pg_name in cls._cur_coll_on_pgs and cls._cur_coll_on_pgs[pg.pg_name] == collective:
                cls._cur_coll_on_pgs.pop(pg.pg_name)

    @classmethod
    def exception_handle(cls, exc):
        cls._terminate.set()
        for coll in cls._cur_coll_on_pgs.values():
            with coll._start_cond:
                coll._start_cond.notify()
            with coll._done_cond:
                coll._done_cond.notify_all()

    @classmethod
    def reset(cls):
        with cls._coll_lock:
            cls._cur_coll_on_pgs = {}
            cls._terminate.clear()

    def alltoall_base(
        self,
        output_buffer: torch.Tensor,
        input_buffer: torch.Tensor,
        output_split_sizes: Optional[List[int]],
        input_split_sizes: Optional[List[int]],
        opts=AllToAllOptions()
    ) -> torch.Tensor:
        coll = ProcessLocalGroup._start_coll(AllToAllBase(), self)
        res = coll.join(self._rank, (output_buffer, input_buffer, output_split_sizes, input_split_sizes))
        ProcessLocalGroup._end_coll(coll, self)
        return res

    def alltoall(self, output_tensor_list, input_tensor_list, opts=AllToAllOptions()):
        coll = ProcessLocalGroup._start_coll(AllToAll(), self)
        res = coll.join(self._rank, (output_tensor_list, input_tensor_list))
        ProcessLocalGroup._end_coll(coll, self)
        return res

    def allreduce(self, tensor_list, opts=AllreduceOptions()):
        coll = ProcessLocalGroup._start_coll(AllReduce(opts.reduceOp), self)
        res = coll.join(self._rank, tensor_list)
        ProcessLocalGroup._end_coll(coll, self)
        return res

    def allreduce_coalesced(self, tensor_list, opts=AllreduceOptions()):
        coll = ProcessLocalGroup._start_coll(AllReduce(opts.reduceOp), self)
        res = coll.join(self._rank, tensor_list)
        ProcessLocalGroup._end_coll(coll, self)
        return res

    def barrier(self, opts=BarrierOptions()):
        return self.allreduce(tensor_list=[torch.ones(1)])

    def allgather(self, output_tensors, input_tensor, opts=AllgatherOptions()):
        coll = ProcessLocalGroup._start_coll(AllGather(), self)
        res = coll.join(self._rank, (output_tensors, input_tensor))
        ProcessLocalGroup._end_coll(coll, self)
        return res

    def _allgather_base(self, output_tensor, input_tensor, opts=AllgatherOptions()):
        tensor_list = list(torch.chunk(output_tensor, self._world_size))
        return self.allgather([tensor_list], [input_tensor], opts)

    def broadcast(self, tensor_list, opts=BroadcastOptions()):
        coll = ProcessLocalGroup._start_coll(Broadcast(opts.rootRank), self)
        res = coll.join(self._rank, tensor_list)
        ProcessLocalGroup._end_coll(coll, self)
        return res

    def scatter(self, output_tensors, input_tensors, opts=ScatterOptions()):
        coll = ProcessLocalGroup._start_coll(Scatter(opts.rootRank), self)
        res = coll.join(self._rank, (output_tensors, input_tensors))
        ProcessLocalGroup._end_coll(coll, self)
        return res

    def gather(self, output_tensors, input_tensors, opts=ScatterOptions()):
        coll = ProcessLocalGroup._start_coll(Gather(opts.rootRank), self)
        res = coll.join(self._rank, (output_tensors, input_tensors))
        ProcessLocalGroup._end_coll(coll, self)
        return res

    def reduce_scatter(self, output_tensor, scatter_list, opts=ReduceScatterOptions()):
        coll = ProcessLocalGroup._start_coll(ReduceScatter(opts.reduceOp), self)
        res = coll.join(self._rank, (output_tensor, scatter_list))
        ProcessLocalGroup._end_coll(coll, self)
        return res

    def _reduce_scatter_base(self, output_tensor, input_tensor, opts=ReduceScatterOptions()):
        tensor_list = list(torch.chunk(input_tensor, self._world_size))
        return self.reduce_scatter([output_tensor], [tensor_list], opts)

    def reduce_scatter_tensor_coalesced(self, output_tensors, input_tensors, opts=ReduceScatterOptions()):
        works = [
            self._reduce_scatter_base(output_tensor, input_tensor, opts)
            for output_tensor, input_tensor
            in zip(output_tensors, input_tensors)
        ]
        for work in works[:-1]:
            work.wait()
        return works[-1]

    def allgather_into_tensor_coalesced(self, output_tensor_list, input_tensor_list, opts=AllgatherOptions()):
        res = None
        for o_t, i_t in zip(output_tensor_list, input_tensor_list):
            res = self._allgather_base(o_t, i_t)
        return res

    def __init__(self, rank, world_size):
        super().__init__(rank, world_size)
        self._rank = rank
        self._world_size = world_size
        world = dist.distributed_c10d._world
        if isinstance(world, ThreadLocalWorld):
            world = world._get_world()
        self._world = weakref.ref(world)
        self._ctx = torch.autograd.set_multithreading_enabled(False)

    def size(self):
        return self._world_size

    @property
    def pg_name(self):
        """
        return the global registered name of the current pg in the world
        """
        return self._world().pg_names[self]

    @property
    def group_name(self):
        return self.pg_name

    def getBackendName(self):
        return "threaded"

    def __repr__(self):
        return f"ThreadedPG world_size:{self._world_size} rank:{self._rank}"


def _create_threaded_pg(prefix_store, rank, world_size, timeout):
    pg = ProcessLocalGroup(rank, world_size)
    # https://github.com/pytorch/pytorch/pull/103033 changed store based barrier to optional
    # When device mesh involves sub groups while store based barrier is not enabled in c10d,
    # even though threaded pg actual collectives are assumed to be single threaded,
    # different threads may be initializing different groups,
    # leading to race conditions.
    # For example, if we have a mesh of [[0, 1], [2, 3]], the sub groups
    # (dim 0 and 1) would be initialized in different threads independently.
    # In this case we can no longer rely on class or global variables
    # but have to rely on store based barrier to make sure each group
    # is ready separately before we can invoke collectives in any of the groups.

    # the prefix store is already per group so we pass an empty name here
    _store_based_barrier(rank, prefix_store, "", world_size, timeout)
    return pg


dist.Backend.register_backend("threaded", _create_threaded_pg, devices=["cpu", "cuda"])


@dataclass
class WorldData:
    default_pg: dist.ProcessGroup
    pg_map: Dict[dist.ProcessGroup, Tuple[str, Optional[Store]]]
    pg_names: Dict[dist.ProcessGroup, str]
    pg_group_ranks: Dict[dist.ProcessGroup, Dict[int, int]]
    pg_backend_config: Dict[dist.ProcessGroup, str]
    group_count: int
    tags_to_pg: Dict[str, List[dist.ProcessGroup]]
    pg_to_tag: Dict[dist.ProcessGroup, str]
    pg_coalesce_state: Dict[dist.ProcessGroup, List[Union[_CollOp, P2POp]]]


class ThreadLocalWorld:
    _world = threading.local()

    def _get_world(self) -> WorldData:
        if not hasattr(ThreadLocalWorld._world, "world"):
            ThreadLocalWorld._world.world = WorldData(None, {}, {}, {}, {}, 0, {}, {}, {})
        return ThreadLocalWorld._world.world

    @property
    def default_pg(self):
        return self._get_world().default_pg

    @default_pg.setter
    def default_pg(self, value):
        self._get_world().default_pg = value

    @property
    def pg_map(self):
        return self._get_world().pg_map

    @property
    def pg_names(self):
        return self._get_world().pg_names

    @property
    def pg_group_ranks(self):
        return self._get_world().pg_group_ranks

    @property
    def pg_backend_config(self):
        return self._get_world().pg_backend_config

    @property
    def group_count(self) -> int:
        return self._get_world().group_count

    @group_count.setter
    def group_count(self, value):
        self._get_world().group_count = value

    @property
    def tags_to_pg(self):
        return self._get_world().tags_to_pg

    @property
    def pg_to_tag(self):
        return self._get_world().pg_to_tag

    @property
    def pg_coalesce_state(self) -> Dict[dist.ProcessGroup, List[Union[_CollOp, P2POp]]]:
        return self._get_world().pg_coalesce_state


_old_pg_world = None
_ctx_manager = None


def _install_threaded_pg():
    global _old_pg_world
    global _ctx_manager
    _old_pg_world = dist.distributed_c10d._world
    dist.distributed_c10d._world = ThreadLocalWorld()
    _ctx_manager = torch.autograd.set_multithreading_enabled(False)

    return dist.distributed_c10d._world


def _uninstall_threaded_pg():
    dist.distributed_c10d._world = _old_pg_world