1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
|
# mypy: ignore-errors
import math
from copy import copy
from dataclasses import dataclass
from functools import partial
from typing import List, Optional, Tuple
import torch
from torch.fx.experimental.symbolic_shapes import is_nested_int
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.opinfo.core import (
BinaryUfuncInfo,
ReductionOpInfo,
SampleInput,
UnaryUfuncInfo,
)
from torch.utils._pytree import tree_flatten, tree_map
@dataclass
class ExtraOpData:
"""
Contains info on top of the typical OpInfo data that is useful for NJT test generation.
The process that converts the standard op_db -> an NJT-compatible op_db will attach this
data onto each associated OpInfo entry.
"""
# Indicates whether the associated op is a view op
is_view: bool = False
# Specifies the names of any dim-related args that the op takes in. This is useful
# for NJT tests because there is often asymmetry across the supported set of dims for
# an op; it may make sense to operate over the batch dim but not the ragged dim, for
# example. The length of this list should match the number of relevant overloads.
# Each list item of the outer list should specify dim argnames. Ellipses should be used
# to indicate multi-dim support for a given overload.
#
# For example, squeeze() has both a dim and multi-dim overload, where the argname for
# each is simply "dim". Its entry should be: [["dim"], ["dim..."]].
#
# If no overload of the op accepts dim-related args, this should be None.
dim_args: List[List[str]] = None
# Helper function to extract names of dim-related args.
# Returns: tuple of (single dim argname if available, dim list argname if available)
# If the op doesn't support dim-related args at all OR this op only has overloads
# with multiple dim args (e.g. transpose()), then this returns (None, None).
def get_dim_argnames(self) -> Tuple[Optional[str], Optional[str]]:
if self.dim_args is None:
return (None, None)
# name for the dim arg that supports a single dim
single_dim_argname = None
# name for the dim arg that supports a list of dims
dimlist_argname = None
for overload in self.dim_args:
# only consider overloads with a single dim-related arg
if len(overload) != 1:
continue
if overload[0].endswith("..."):
dimlist_argname = overload[0].replace("...", "")
if single_dim_argname is None:
single_dim_argname = dimlist_argname
else:
single_dim_argname = overload[0]
return (single_dim_argname, dimlist_argname)
# Mapping of OpInfo full names -> extra data to tack onto the OpInfo entry for use
# in test generation.
extra_op_data = {
"_segment_reduce.lengths": ExtraOpData(dim_args=[["axis0"]]),
"_segment_reduce.offsets": ExtraOpData(dim_args=[["axis0"]]),
"all": ExtraOpData(dim_args=[["dim"], ["dim..."]]),
"argmax": ExtraOpData(dim_args=[["dim"]]),
"argmin": ExtraOpData(dim_args=[["dim"]]),
"amax": ExtraOpData(dim_args=[["dim..."]]),
"amin": ExtraOpData(dim_args=[["dim..."]]),
"any": ExtraOpData(dim_args=[["dim"], ["dim..."]]),
"argsort": ExtraOpData(dim_args=[["dim"]]),
"broadcast_to": ExtraOpData(is_view=True),
"cat": ExtraOpData(dim_args=[["dim"]]),
"chunk": ExtraOpData(is_view=True, dim_args=[["dim"]]),
"conj": ExtraOpData(is_view=True),
"contiguous": ExtraOpData(is_view=True),
"count_nonzero": ExtraOpData(dim_args=[["dim"], ["dim..."]]),
"cummax": ExtraOpData(dim_args=[["dim"]]),
"cummin": ExtraOpData(dim_args=[["dim"]]),
"cumprod": ExtraOpData(dim_args=[["dim"]]),
"cumsum": ExtraOpData(dim_args=[["dim"]]),
"cumulative_trapezoid": ExtraOpData(dim_args=[["dim"]]),
"diag_embed": ExtraOpData(dim_args=[["dim1", "dim2"]]),
"diagonal": ExtraOpData(is_view=True, dim_args=[["dim1", "dim2"]]),
"diagonal_copy": ExtraOpData(dim_args=[["dim1", "dim2"]]),
"diagonal_scatter": ExtraOpData(dim_args=[["dim1", "dim2"]]),
"diff": ExtraOpData(dim_args=[["dim"]]),
"expand": ExtraOpData(is_view=True),
"expand_as": ExtraOpData(is_view=True),
"fft.fft": ExtraOpData(dim_args=[["dim"]]),
"fft.hfft": ExtraOpData(dim_args=[["dim"]]),
"fft.ifft": ExtraOpData(dim_args=[["dim"]]),
"fft.ihfft": ExtraOpData(dim_args=[["dim"]]),
"fft.irfft": ExtraOpData(dim_args=[["dim"]]),
"fft.rfft": ExtraOpData(dim_args=[["dim"]]),
"flatten": ExtraOpData(is_view=True, dim_args=[["start_dim", "end_dim"]]),
"flip": ExtraOpData(dim_args=[["dims..."]]),
"gather": ExtraOpData(dim_args=[["dim"]]),
"imag": ExtraOpData(is_view=True),
"index_add": ExtraOpData(dim_args=[["dim"]]),
"index_copy": ExtraOpData(dim_args=[["dim"]]),
"index_fill": ExtraOpData(dim_args=[["dim"]]),
"index_reduce.amax": ExtraOpData(dim_args=[["dim"]]),
"index_reduce.amin": ExtraOpData(dim_args=[["dim"]]),
"index_reduce.mean": ExtraOpData(dim_args=[["dim"]]),
"index_reduce.prod": ExtraOpData(dim_args=[["dim"]]),
"index_select": ExtraOpData(dim_args=[["dim"]]),
"kthvalue": ExtraOpData(dim_args=[["dim"]]),
"linalg.cross": ExtraOpData(dim_args=[["dim"]]),
"linalg.diagonal": ExtraOpData(is_view=True, dim_args=[["dim1", "dim2"]]),
"linalg.tensorsolve": ExtraOpData(dim_args=[["dims..."]]),
"linalg.vecdot": ExtraOpData(dim_args=[["dim"]]),
"linalg.vector_norm": ExtraOpData(dim_args=[["dim..."]]),
"log_softmax": ExtraOpData(dim_args=[["dim"]]),
"logcumsumexp": ExtraOpData(dim_args=[["dim"]]),
"masked.amax": ExtraOpData(dim_args=[["dim"]]),
"masked.amin": ExtraOpData(dim_args=[["dim"]]),
"masked.argmax": ExtraOpData(dim_args=[["dim"]]),
"masked.argmin": ExtraOpData(dim_args=[["dim"]]),
"masked.logsumexp": ExtraOpData(dim_args=[["dim"]]),
"masked.mean": ExtraOpData(dim_args=[["dim"]]),
"masked.norm": ExtraOpData(dim_args=[["dim"]]),
"masked.prod": ExtraOpData(dim_args=[["dim"]]),
"masked.std": ExtraOpData(dim_args=[["dim"]]),
"masked.sum": ExtraOpData(dim_args=[["dim"]]),
"masked.var": ExtraOpData(dim_args=[["dim"]]),
"max.reduction_with_dim": ExtraOpData(dim_args=[["dim"]]),
"median": ExtraOpData(dim_args=[["dim"]]),
"mean": ExtraOpData(dim_args=[["dim..."]]),
"min.reduction_with_dim": ExtraOpData(dim_args=[["dim"]]),
"mode": ExtraOpData(dim_args=[["dim"]]),
"movedim": ExtraOpData(
dim_args=[["source", "destination"], ["source...", "destination..."]]
),
"nanmean": ExtraOpData(dim_args=[["dim..."]]),
"nanmedian": ExtraOpData(dim_args=[["dim"]]),
"nansum": ExtraOpData(dim_args=[["dim..."]]),
"narrow": ExtraOpData(is_view=True, dim_args=[["dim"]]),
"narrow_copy": ExtraOpData(dim_args=[["dim"]]),
"nn.functional.cosine_similarity": ExtraOpData(dim_args=[["dim"]]),
"nn.functional.glu": ExtraOpData(dim_args=[["dim"]]),
"permute": ExtraOpData(is_view=True, dim_args=[["dims..."]]),
"positive": ExtraOpData(is_view=True),
"prod": ExtraOpData(dim_args=[["dim"]]),
"ravel": ExtraOpData(is_view=True),
"real": ExtraOpData(is_view=True),
"renorm": ExtraOpData(dim_args=[["dim"]]),
"reshape": ExtraOpData(is_view=True),
"reshape_as": ExtraOpData(is_view=True),
"roll": ExtraOpData(dim_args=[["dims..."]]),
"rot90": ExtraOpData(dim_args=[["dims..."]]),
"scatter": ExtraOpData(dim_args=[["dim"]]),
"scatter_add": ExtraOpData(dim_args=[["dim"]]),
"scatter_reduce.amax": ExtraOpData(dim_args=[["dim"]]),
"scatter_reduce.amin": ExtraOpData(dim_args=[["dim"]]),
"scatter_reduce.mean": ExtraOpData(dim_args=[["dim"]]),
"scatter_reduce.prod": ExtraOpData(dim_args=[["dim"]]),
"scatter_reduce.sum": ExtraOpData(dim_args=[["dim"]]),
"select": ExtraOpData(is_view=True, dim_args=[["dim"]]),
"select_scatter": ExtraOpData(dim_args=[["dim"]]),
"slice": ExtraOpData(is_view=True, dim_args=[["dim"]]),
"slice_scatter": ExtraOpData(dim_args=[["dim"]]),
"softmax": ExtraOpData(dim_args=[["dim"]]),
"sort": ExtraOpData(dim_args=[["dim"]]),
"split": ExtraOpData(is_view=True, dim_args=[["dim"]]),
"split_with_sizes": ExtraOpData(is_view=True, dim_args=[["dim"]]),
"split_with_sizes_copy": ExtraOpData(dim_args=[["dim"]]),
"squeeze": ExtraOpData(is_view=True, dim_args=[["dim"], ["dim..."]]),
"squeeze_copy": ExtraOpData(dim_args=[["dim"], ["dim..."]]),
"stack": ExtraOpData(dim_args=[["dim"]]),
"std": ExtraOpData(dim_args=[["dim..."]]),
"std.unbiased": ExtraOpData(dim_args=[["dim..."]]),
"sum": ExtraOpData(dim_args=[["dim..."]]),
"t": ExtraOpData(is_view=True),
"tensor_split": ExtraOpData(is_view=True, dim_args=[["dim"]]),
"tensordot": ExtraOpData(dim_args=[["dims..."]]),
"tile": ExtraOpData(dim_args=[["dims..."]]),
"topk": ExtraOpData(dim_args=[["dim"]]),
"transpose": ExtraOpData(is_view=True, dim_args=[["dim0", "dim1"]]),
"transpose_copy": ExtraOpData(dim_args=[["dim0", "dim1"]]),
"trapezoid": ExtraOpData(dim_args=[["dim"]]),
"trapz": ExtraOpData(dim_args=[["dim"]]),
"unbind": ExtraOpData(is_view=True, dim_args=[["dim"]]),
"unflatten": ExtraOpData(is_view=True, dim_args=[["dim"]]),
"unfold": ExtraOpData(is_view=True, dim_args=[["dimension"]]),
"unfold_copy": ExtraOpData(dim_args=[["dimension"]]),
"unsafe_chunk": ExtraOpData(dim_args=[["dim"]]),
"unsafe_split": ExtraOpData(dim_args=[["dim"]]),
"unsqueeze": ExtraOpData(is_view=True, dim_args=[["dim"]]),
"unsqueeze_copy": ExtraOpData(dim_args=[["dim"]]),
"var": ExtraOpData(dim_args=[["dim..."]]),
"var.unbiased": ExtraOpData(dim_args=[["dim..."]]),
"view": ExtraOpData(is_view=True),
"view_as": ExtraOpData(is_view=True),
"view_as_complex": ExtraOpData(is_view=True),
"view_as_real": ExtraOpData(is_view=True),
}
# random integer used for sizes
def _rnd():
return torch.randint(3, 8, ()).item()
def _raggedness_matches(nt1, nt2):
return (
nt1.is_nested
and nt2.is_nested
and nt1._ragged_idx == nt2._ragged_idx
and nt1.shape[nt1._ragged_idx] == nt2.shape[nt2._ragged_idx]
)
# Helper function to update a sample with new kwargs / name
def _update_sample(sample, new_kwargs):
all_kwargs = dict(sample.kwargs)
all_kwargs.update(new_kwargs)
full_name = ", ".join([sample.name, *(f"{k}={v}" for (k, v) in new_kwargs.items())])
return SampleInput(
sample.input.clone().detach(),
args=sample.args,
kwargs=all_kwargs,
name=full_name,
)
# Generates a random NT.
# dims should be something like [5, None, 10], with None indicating that a
# random ragged structure should be used
def random_nt_from_dims(
dims, device=None, dtype=None, layout=torch.strided, requires_grad=False
):
sizes = [[d if d is not None else _rnd() for d in dims[1:]] for d in range(dims[0])]
return torch.nested.nested_tensor(
[torch.randn(*size) for size in sizes],
device=device,
dtype=dtype,
layout=layout,
requires_grad=requires_grad,
)
# Helper function to get a reasonable string representation of an NJT for use in
# SampleInput names.
def _describe_njt(njt) -> str:
contig_type = "_contig" if njt.is_contiguous() else "_noncontig"
if njt._lengths is not None and njt._offsets is not None:
contig_type += "_holes"
elif njt._ragged_idx != 1:
contig_type += "_transposed"
cached_data = "_without_seqlen_cache"
if njt._max_seqlen_tensor is not None:
cached_data = "_with_seqlen_cache"
return f"{njt.dim()}D{contig_type}{cached_data}"
# Helper function to get a reasonable string representation of a given dim wrt an NJT.
def _describe_dim(njt, dim):
if dim == 0:
return "batch_dim"
elif dim == njt._ragged_idx:
return "ragged_dim"
return "normal_dim"
# Helper function for generating a comprehensive set of NJT sample inputs.
def _sample_njts(device, dtype, requires_grad=False, dims=None):
if dims is None:
dims = [2, 3, 4]
if not isinstance(dims, (list, tuple)):
dims = [dims]
# contiguous NJTs
for dim in dims:
# with min / max seqlen cached
shape = (_rnd(), None, *[_rnd() for _ in range(dim - 2)])
nt = random_nt_from_dims(
shape,
device=device,
dtype=dtype,
requires_grad=requires_grad,
layout=torch.jagged,
)
yield nt
# without min / max seqlen cached
values = nt.values().detach().clone()
offsets = nt.offsets().detach().clone()
yield torch.nested.nested_tensor_from_jagged(values, offsets)
# non-contiguous transposed NJT (not possible for 2D)
if dim > 2:
yield nt.transpose(-1, nt._ragged_idx)
# non-contiguous with holes NJT
values = nt.values().clone().detach()
offsets = nt.offsets().clone().detach()
# subtract 1 to cause holes
lengths = (offsets.diff() - 1).clone().detach()
yield torch.nested.nested_tensor_from_jagged(
values=values,
offsets=offsets,
lengths=lengths,
)
# Computes an unbind-based reference for a given OpInfo on a given SampleInput.
# This reference unbinds the input NJT and invokes the op on each of the components,
# optionally wrapping the result in an NJT.
def unbind_reference(op, sample, wrap_output_as_njt=True):
# first NJT in the arglist determines expected ragged structure
nt_inp = (
sample.input
if sample.input.is_nested
# TODO: look in kwargs too?
else next(a for a in sample.args if a.is_nested)
)
out_ref_components = []
for i in range(nt_inp.shape[0]):
def _slice_input(t, i=i, inp=nt_inp):
# any NJT with the same ragged structure as the input should
# be sliced to pass to the reference
if isinstance(t, torch.Tensor) and _raggedness_matches(t, inp):
return t[i]
# allow the SampleInput to tell us how to slice it for ref calculation
elif isinstance(t, torch.Tensor) and hasattr(t, "_batch_dim"):
bdim = t._batch_dim # type: ignore[attr]
if t.shape[bdim] == 1:
return t[0]
else:
return t.select(bdim, i)
else:
return t
inp = _slice_input(sample.input)
args = tree_map(_slice_input, sample.args)
kwargs = tree_map(_slice_input, sample.kwargs)
# Handle indices in index_put
if "index_put" in op.full_name and "indices" in kwargs:
if len(kwargs["indices"]) > 1:
# If after unrolling we still have indices left, use them
kwargs["indices"] = [t[i] for t in kwargs["indices"][1:]]
else:
# If no indices are left, create them so they match the NJT implementation
sequence_put = kwargs["indices"][0].tolist()
if i in sequence_put:
kwargs["indices"] = [
torch.tensor(
list(range(inp.shape[0])),
dtype=torch.int32,
device=kwargs["indices"][0].device,
)
]
else:
kwargs["indices"] = [
torch.tensor(
[], dtype=torch.int32, device=kwargs["indices"][0].device
)
]
from torch.nested._internal.ops import _outer_to_inner_dim
# Need to adjust dims to apply on NJT component
if op._extra_op_data.dim_args is not None:
# get all possible dim-related argnames that could be encountered for this op
argnames = tree_map(
lambda a: a.replace("...", ""),
tree_flatten(op._extra_op_data.dim_args)[0],
)
# for all dim-related args present, convert from outer -> inner dim space
for argname in {a for a in argnames if a in kwargs}:
# allow the SampleInput to tell us how to canonicalize the dim kwargs
ndim = nt_inp._ndim if hasattr(nt_inp, "_ndim") else nt_inp.dim()
kwargs[argname] = _outer_to_inner_dim(
ndim, kwargs[argname], nt_inp._ragged_idx, canonicalize=True
)
out_ref_component = op.op(inp, *args, **kwargs)
out_ref_components.append(out_ref_component)
if wrap_output_as_njt:
# handle list / tuple of outputs
if len(out_ref_components) > 0 and isinstance(
out_ref_components[0], (list, tuple)
):
num_returns = len(out_ref_components[0])
# ensure we get the same number of returns for each invocation
assert all(len(o) == num_returns for o in out_ref_components)
# construct NJTs from same index returns from each invocation
njt_returns = [
torch.nested.as_nested_tensor(
[o[r] for o in out_ref_components], layout=torch.jagged
)
for r in range(num_returns)
]
return type(out_ref_components[0])(njt_returns)
return torch.nested.as_nested_tensor(out_ref_components, layout=torch.jagged)
return out_ref_components
# Computes the reference value for a non-reduction unary op with dim-wise application.
def unary_dimwise_reference(op, sample, batchwise_reference=None):
# extract info about the dim args this op supports
assert op._extra_op_data.dim_args is not None
single_dim_argname, dimlist_argname = op._extra_op_data.get_dim_argnames()
# only support a single non-list dim arg for now
assert dimlist_argname is None
assert single_dim_argname is not None
if sample.kwargs[single_dim_argname] == 0:
# unbind reference won't work for batch-wise operation; handle this case here
assert batchwise_reference is not None
return batchwise_reference(op, sample)
return unbind_reference(op, sample)
# Computes the reference value for a reduction op.
def reduction_reference(op, sample):
assert sample.input.is_nested
# extract info about the dim args this op supports
assert op._extra_op_data.dim_args is not None
single_dim_argname, dimlist_argname = op._extra_op_data.get_dim_argnames()
assert single_dim_argname is not None
supports_dimlist = dimlist_argname is not None
dim = sample.kwargs.get(
dimlist_argname, sample.kwargs.get(single_dim_argname, None)
)
keepdim = sample.kwargs.get("keepdim", False)
assert dim != 0, "reductions over just the batch dim are not supported"
if isinstance(dim, (tuple, list)):
reduce_on_ragged = sample.input._ragged_idx in dim
reduce_on_batch = 0 in dim
else:
reduce_on_ragged = sample.input._ragged_idx == dim
reduce_on_batch = dim == 0
if dim is None:
# calculate reference value by running reduction on values buffer
return op.op(sample.input.values(), *sample.args, **sample.kwargs)
if reduce_on_ragged and reduce_on_batch:
# run reference directly on buffer with dims converted to inner space
from torch.nested._internal.ops import _outer_to_inner_dim
ref_kwargs = dict(sample.kwargs)
assert dimlist_argname is not None
ref_kwargs[dimlist_argname] = _outer_to_inner_dim(
sample.input.dim(), dim, sample.input._ragged_idx, canonicalize=True
)
out = op.op(sample.input.values(), *sample.args, **ref_kwargs)
if keepdim:
if isinstance(out, (tuple, list)):
# some ops return multiple things; unsqueeze all of them
out = type(out)(o.unsqueeze(0) for o in out)
else:
out = out.unsqueeze(0)
return out
if reduce_on_ragged and not reduce_on_batch:
# calculate reference value by running an unbind reference and stacking
out_ref_components = unbind_reference(op, sample, wrap_output_as_njt=False)
if len(out_ref_components) > 0 and isinstance(
out_ref_components[0], (tuple, list)
):
# some ops return multiple things; stack all of them
num_returns = len(out_ref_components[0])
# ensure we get the same number of returns for each invocation
assert all(len(o) == num_returns for o in out_ref_components)
# stack same index returns from each invocation
stacked_returns = [
torch.stack([o[r] for o in out_ref_components], dim=0)
for r in range(num_returns)
]
return type(out_ref_components[0])(stacked_returns)
return torch.stack(out_ref_components, dim=0)
# unbind reference works for other reductions
return unbind_reference(op, sample)
def sample_inputs_elementwise_njt_unary(
op_info, device, dtype, requires_grad, op_kwargs=None, **kwargs
):
if not op_kwargs:
op_kwargs = {}
for njt in _sample_njts(
device=device, dtype=dtype, requires_grad=requires_grad, dims=[2, 3, 4]
):
yield SampleInput(njt, kwargs=dict(op_kwargs), name=_describe_njt(njt))
def sample_inputs_elementwise_njt_binary(
op_info, device, dtype, requires_grad, op_kwargs=None, **kwargs
):
if not op_kwargs:
op_kwargs = {}
for njt1 in _sample_njts(
device=device, dtype=dtype, requires_grad=requires_grad, dims=[2, 3, 4]
):
njt_desc = _describe_njt(njt1)
njt2 = torch.randn_like(njt1)
yield SampleInput(
njt1.clone().detach(),
args=(njt2,),
kwargs=dict(op_kwargs),
name=f"{njt_desc}: (NT, NT)",
)
# broadcasting case: (B, j0, ...) with (B, 1, ...)
dense_shape = list(njt1.shape)
dense_shape[njt1._ragged_idx] = 1
t = torch.randn(
dense_shape,
device=device,
dtype=dtype,
requires_grad=requires_grad,
)
t2 = t.clone().detach()
# used for slicing in unbind_reference()
t._batch_dim = 0
t2._batch_dim = 0
# (NT, T)
yield SampleInput(
njt1.clone().detach(),
args=(t,),
kwargs=dict(op_kwargs),
name=f"{njt_desc}: (NT, T) broadcasting 1 over ragged",
)
# (T, NT)
yield SampleInput(
t2,
args=(njt1.clone().detach(),),
kwargs=dict(op_kwargs),
name=f"{njt_desc}: (T, NT) broadcasting 1 over ragged",
)
# broadcasting case: (B, j0, ...) with (1, 1...)
t = torch.randn(
[1 for _ in range(njt1.dim())],
device=device,
dtype=dtype,
requires_grad=requires_grad,
)
t2 = t.clone().detach()
# used for slicing in unbind_reference()
t._batch_dim = 0
t2._batch_dim = 0
# (NT, T)
yield SampleInput(
njt1.clone().detach(),
args=(t,),
kwargs=dict(op_kwargs),
name=f"{njt_desc}: (NT, T) broadcasting all 1s",
)
# (T, NT)
yield SampleInput(
t2,
args=(njt1.clone().detach(),),
kwargs=dict(op_kwargs),
name=f"{njt_desc}: (T, NT) broadcasting all 1s",
)
# broadcasting case: (B, j0, ...) with (...)
if njt1.dim() > njt1._ragged_idx + 1:
t = torch.randn(
njt1.shape[njt1._ragged_idx + 1 :],
device=device,
dtype=dtype,
requires_grad=requires_grad,
)
# (NT, T)
yield SampleInput(
njt1.clone().detach(),
args=(t.clone().detach(),),
kwargs=dict(op_kwargs),
name=f"{njt_desc}: (NT, T) broadcasting normal dims",
)
# (T, NT)
yield SampleInput(
t.clone().detach(),
args=(njt1.clone().detach(),),
kwargs=dict(op_kwargs),
name=f"{njt_desc}: (T, NT) broadcasting normal dims",
)
# broadcasting case: (B, j0, ...) with scalar
t = torch.randn((), device=device, dtype=dtype, requires_grad=requires_grad)
# (NT, T)
yield SampleInput(
njt1.clone().detach(),
args=(t.clone().detach(),),
kwargs=dict(op_kwargs),
name=f"{njt_desc}: (NT, T) broadcasting with scalar",
)
# (T, NT)
yield SampleInput(
t.clone().detach(),
args=(njt1.clone().detach(),),
kwargs=dict(op_kwargs),
name=f"{njt_desc}: (T, NT) broadcasting with scalar",
)
# mixed broadcasting case: (B, j0, 1) with (B, 1, D)
B = 4
D = 16
njt = random_nt_from_dims(
(B, None, 1),
device=device,
dtype=dtype,
requires_grad=requires_grad,
layout=torch.jagged,
)
njt_desc = _describe_njt(njt)
t = torch.randn(B, 1, D, device=device, dtype=dtype, requires_grad=requires_grad)
t2 = t.clone().detach()
# used for slicing in unbind_reference()
t._batch_dim = 0
t2._batch_dim = 0
# (NT, T)
yield SampleInput(
njt.clone().detach(),
args=(t,),
kwargs=dict(op_kwargs),
name=f"{njt_desc}: (NT, T) mixed broadcasting",
)
# (T, NT)
yield SampleInput(
t2,
args=(njt.clone().detach(),),
kwargs=dict(op_kwargs),
name=f"{njt_desc}: (T, NT) mixed broadcasting",
)
def sample_inputs_njt_reduction(
op_info,
device,
dtype,
requires_grad,
supports_keepdim=True,
op_kwargs=None,
**kwargs,
):
if not op_kwargs:
op_kwargs = {}
# extract info about the dim args this op supports
assert op_info._extra_op_data.dim_args is not None
(
single_dim_argname,
dimlist_argname,
) = op_info._extra_op_data.get_dim_argnames()
assert single_dim_argname is not None
supports_dimlist = dimlist_argname is not None
for njt in _sample_njts(
device=device, dtype=dtype, requires_grad=requires_grad, dims=[2, 3, 4]
):
njt_desc = _describe_njt(njt)
keepdim_values = [False, True] if supports_keepdim else [None]
for keepdim in keepdim_values:
keepdim_suffix = f" with keepdim={keepdim}" if supports_keepdim else ""
# single dim-wise reduction; includes reduction over the ragged dim
# NB: reduction over the batch dim is not supported!
# TODO: Cover this in the set of error inputs
for dim in range(1, njt.dim()):
dim_desc = "normal" if dim != njt._ragged_idx else "ragged"
yield SampleInput(
njt.detach().clone(),
kwargs={
**op_kwargs,
single_dim_argname: dim,
**({"keepdim": keepdim} if supports_keepdim else {}),
},
name=f"{njt_desc}: {dim_desc} dim reduction{keepdim_suffix}",
)
if supports_dimlist:
# reduce on both batch and ragged dims
yield SampleInput(
njt.detach().clone(),
kwargs={
**op_kwargs,
dimlist_argname: [0, njt._ragged_idx],
**({"keepdim": keepdim} if supports_keepdim else {}),
},
name=f"{njt_desc}: batch+ragged reduction{keepdim_suffix}",
)
# reduce on batch, ragged, and other dims
for other_dim in range(njt._ragged_idx + 1, njt.dim()):
yield SampleInput(
njt.detach().clone(),
kwargs={
**op_kwargs,
dimlist_argname: [0, njt._ragged_idx, other_dim],
**({"keepdim": keepdim} if supports_keepdim else {}),
},
name=(
f"{njt_desc}: batch+ragged+dim={other_dim} "
f"reduction{keepdim_suffix}"
),
)
# reduce on two non-ragged, non-batch dims
if njt.dim() > 3 and njt._ragged_idx == 1:
yield SampleInput(
njt.detach().clone(),
kwargs={
**op_kwargs,
dimlist_argname: [njt.dim() - 2, njt.dim() - 1],
**({"keepdim": keepdim} if supports_keepdim else {}),
},
name=f"{njt_desc}: two normal dim reduction{keepdim_suffix}",
)
# full reduction by specifying all dims
yield SampleInput(
njt.detach().clone(),
kwargs={
**op_kwargs,
dimlist_argname: list(range(njt.dim())),
**({"keepdim": keepdim} if supports_keepdim else {}),
},
name=f"{njt_desc}: all dim reduction{keepdim_suffix}",
)
# TODO: Reducing on ragged dim and non-batch dim is not supported;
# cover this in the set of error inputs.
# full reduction
yield SampleInput(
njt.detach().clone(),
kwargs=dict(op_kwargs),
name=f"{njt_desc}: full reduction with keepdim={keepdim}",
)
def unsupported_sample_inputs_func(op_name):
def _f(op_info, device, dtype, requires_grad, op_name=op_name, **kwargs):
raise RuntimeError(
f"OpInfo for {op_name} does not support NJT. Support can be added by modifying "
"torch/testing/_internal/opinfo/definitions/nested.py."
)
return _f
def unsupported_reference(op_name):
def _f(op, sample):
raise RuntimeError(
f"OpInfo for {op_name} does not define a ref() function. Support can be added by "
"modifying torch/testing/_internal/opinfo/definitions/nested.py."
)
return _f
# === BEGIN OP-SPECIFIC SAMPLE INPUTS FUNCS / REFERENCES ===
def sample_inputs_unary_dimwise(
op_info, device, dtype, requires_grad, op_kwargs=None, **kwargs
):
if op_kwargs is None:
op_kwargs = {}
# only support a single non-list dim arg for now
assert op_info._extra_op_data is not None
single_dim_argname, dimlist_argname = op_info._extra_op_data.get_dim_argnames()
assert single_dim_argname is not None
assert dimlist_argname is None
for njt in _sample_njts(
device=device, dtype=dtype, requires_grad=requires_grad, dims=[2, 3, 4]
):
for dim in range(njt.dim()):
kwargs = {single_dim_argname: dim}
kwargs.update(op_kwargs)
yield SampleInput(
njt.clone().detach(),
kwargs=kwargs,
name=f"{_describe_njt(njt)}: {_describe_dim(njt, dim)}",
)
def batchwise_reference_chunk(op, sample):
# reference for chunk() over dim=0
kwargs = sample.kwargs
B = sample.input.size(0)
num_chunks = sample.kwargs["chunks"]
chunk_size = math.ceil(B / num_chunks)
num_full_chunks = B // chunk_size
chunk_sizes = [chunk_size for _ in range(num_full_chunks)]
if B % chunk_size != 0:
# final chunk contains the leftovers
chunk_sizes.append(B % chunk_size)
# split unbound components into chunks according to calculated sizes
components = list(sample.input.unbind())
start = 0
chunks = []
for chunk_size in chunk_sizes:
chunks.append(components[start : start + chunk_size])
start += chunk_size
# rejoin into NJT outputs
return [torch.nested.nested_tensor(lst, layout=torch.jagged) for lst in chunks]
def batchwise_reference_narrow(op, sample):
# TODO: write this!
raise NotImplementedError
def batchwise_reference_select(op, sample):
# reference for select() over dim=0
return sample.input.unbind()[sample.kwargs["index"]]
def batchwise_reference_split(op, sample):
# TODO: write this!
raise NotImplementedError
def batchwise_reference_split_with_sizes(op, sample):
# TODO: write this!
raise NotImplementedError
def batchwise_reference_unflatten(op, sample):
# TODO: write this!
raise NotImplementedError
def batchwise_reference_unsqueeze(op, sample):
raise ValueError("unsqueeze() is not intended to operate on the batch dim")
def sample_inputs_clone(op_info, device, dtype, requires_grad, **kwargs):
# non-contiguous NJTs
for njt in _sample_njts(
device=device, dtype=dtype, requires_grad=requires_grad, dims=[2, 3, 4]
):
yield SampleInput(njt, name=_describe_njt(njt))
for memory_format in (torch.contiguous_format, torch.preserve_format):
# construct a "non-contiguous with holes" NJT
values = torch.randn(
10, 5, device=device, dtype=dtype, requires_grad=requires_grad
)
offsets = torch.tensor([0, 2, 4, 10], device=device, dtype=torch.int64)
lengths = torch.tensor([2, 1, 3], device=device, dtype=torch.int64)
njt = torch.nested.nested_tensor_from_jagged(
values, offsets=offsets, lengths=lengths
)
njt_desc = _describe_njt(njt)
yield SampleInput(
njt,
kwargs={"memory_format": memory_format},
name=f"{njt_desc}: {memory_format})",
)
def sample_inputs_mvl_gamma(p):
return partial(sample_inputs_elementwise_njt_unary, op_kwargs={"p": p})
def sample_inputs_polygamma_n(n):
return partial(sample_inputs_elementwise_njt_unary, op_kwargs={"n": n})
def sample_inputs_special_polygamma_n(n):
return partial(sample_inputs_elementwise_njt_unary, op_kwargs={"n": n})
def sample_inputs_to(op_info, device, dtype, requires_grad, op_kwargs=None, **kwargs):
for njt in _sample_njts(
device=device,
dtype=dtype,
requires_grad=requires_grad,
dims=[2, 3, 4],
):
other_dtypes = (
d for d in (torch.float32, torch.half, torch.double) if d is not dtype
)
for other_dtype in other_dtypes:
sample_name = f"{njt.dim()}D: {dtype} -> {other_dtype}"
yield SampleInput(
njt.detach().clone(), kwargs={"dtype": dtype}, name=sample_name
)
# only include device transfer for CUDA inputs
if "cuda" in device:
other_device = "cpu"
sample_name = f"{njt.dim()}D: {device} -> {other_device}"
yield SampleInput(
njt.detach().clone(), kwargs={"device": other_device}, name=sample_name
)
def sample_inputs_bmm(op_info, device, dtype, requires_grad, op_kwargs=None, **kwargs):
for njt_3d in _sample_njts(
device=device, dtype=dtype, requires_grad=requires_grad, dims=[3]
):
# (B, j1, D) x (B, D, E) => (B, j1, E)
if njt_3d._ragged_idx == 1:
B, D = njt_3d.shape[0], njt_3d.shape[-1]
E = D + 2
other = torch.randn(B, D, E, device=device, dtype=dtype)
# used for slicing in unbind_reference()
other._batch_dim = 0
njt_desc = _describe_njt(njt_3d)
yield SampleInput(
njt_3d.detach().clone(),
kwargs={"mat2": other},
name=f"{njt_desc}: (B, j, D) x (B, D, E)",
)
# TODO (need factory functions):
# (B, D, j1) x (B, j1, E) => (B, D, E)
def reference_bmm(op, sample):
# unbind reduces a dim and bmm requires 3D, so use matmul as the reference
matmul_op = copy(op)
matmul_op.op = torch.matmul
# change arg name from mat2 -> other
modified_sample = copy(sample)
other = modified_sample.kwargs["mat2"]
del modified_sample.kwargs["mat2"]
modified_sample.kwargs["other"] = other
return unbind_reference(matmul_op, modified_sample)
def sample_inputs_chunk(op_info, device, dtype, requires_grad, **kwargs):
for sample_input in sample_inputs_unary_dimwise(
op_info, device, dtype, requires_grad, **kwargs
):
# ragged dim chunking: test a single chunks value
if sample_input.kwargs["dim"] == sample_input.input._ragged_idx:
yield _update_sample(sample_input, {"chunks": 3})
# other dim chunking: test different chunks values
else:
D = sample_input.input.size(sample_input.kwargs["dim"])
for chunks in [1, D // 2, D - 1, D]:
yield _update_sample(sample_input, {"chunks": chunks})
def sample_inputs_matmul(
op_info, device, dtype, requires_grad, op_kwargs=None, **kwargs
):
# also run bmm samples through
for sample_input in sample_inputs_bmm(op_info, device, dtype, requires_grad):
# change arg name from mat2 -> other
other = sample_input.kwargs["mat2"]
del sample_input.kwargs["mat2"]
sample_input.kwargs["other"] = other
yield sample_input
# 3D cases not covered by bmm
for njt_3d in _sample_njts(
device=device, dtype=dtype, requires_grad=requires_grad, dims=[3]
):
# (B, j1, D) x (D, E) => (B, j1, E)
if njt_3d._ragged_idx == 1:
D = njt_3d.shape[-1]
E = D + 2
njt_desc = _describe_njt(njt_3d)
yield SampleInput(
njt_3d.detach().clone(),
kwargs={"other": torch.randn(D, E, device=device, dtype=dtype)},
name=f"{njt_desc}: (B, j, D) x (D, E)",
)
# 4D cases
for njt_4d in _sample_njts(
device=device, dtype=dtype, requires_grad=requires_grad, dims=[4]
):
# (B, j1, D, E) x (E, F) => (B, j1, D, F)
if njt_4d._ragged_idx == 1:
E = njt_4d.shape[-1]
F = E + 2
njt_desc = _describe_njt(njt_4d)
yield SampleInput(
njt_4d.detach().clone(),
kwargs={"other": torch.randn(E, F, device=device, dtype=dtype)},
name=f"{njt_desc}: (B, j, D, E) x (E, F)",
)
# TODO (need factory functions):
# (B, j1, D, E) x (B, j1, E, F) => (B, j1, D, F)
def sample_inputs_masked_select(
op_info, device, dtype, requires_grad, op_kwargs=None, **kwargs
):
for njt in _sample_njts(
device=device, dtype=dtype, requires_grad=requires_grad, dims=[2]
):
yield SampleInput(
njt,
kwargs={"mask": (torch.randn_like(njt, requires_grad=False) < 0.0)},
name=_describe_njt(njt),
)
def sample_inputs_narrow(op_info, device, dtype, requires_grad, **kwargs):
for sample_input in sample_inputs_unary_dimwise(
op_info, device, dtype, requires_grad, **kwargs
):
# ragged dim narrowing: test a single start, length value
if sample_input.kwargs["dim"] == sample_input.input._ragged_idx:
yield _update_sample(sample_input, {"start": 1, "length": 2})
# other dim narrowing: test different start, length values
else:
D = sample_input.input.size(sample_input.kwargs["dim"])
for start, length in [(0, D), (0, D - 1), (1, D - 1), (D - 1, 1)]:
yield _update_sample(sample_input, {"start": start, "length": length})
def sample_inputs_nn_functional_embedding(
op_info, device, dtype, requires_grad, **kwargs
):
indices = torch.nested.nested_tensor(
[
torch.tensor([0, 2, 1, 3]),
torch.tensor([4, 2, 1]),
torch.tensor([6, 7, 5, 2, 4]),
],
layout=torch.jagged,
dtype=torch.int64,
device=device,
)
NUM_EMBEDDINGS = 20
EMBEDDING_DIM = 32
weight = torch.randn(NUM_EMBEDDINGS, EMBEDDING_DIM, device=device, dtype=dtype)
# NB: the OpInfo entry for embedding_bag expects weight first so the gradients
# can be checked
yield SampleInput(
weight.detach().clone().requires_grad_(),
args=(indices,),
)
yield SampleInput(
weight.detach().clone().requires_grad_(),
args=(indices,),
kwargs={"padding_idx": 1},
)
def sample_inputs_index_put(
op_info, device, dtype, requires_grad, op_kwargs=None, **kwargs
):
for njt in _sample_njts(
device=device, dtype=dtype, requires_grad=requires_grad, dims=[2, 3, 4]
):
for dim in range(njt.dim()):
indices = [
torch.tensor(list(range(njt.size(0))), device=njt.device),
*[
torch.tensor([0] * njt.size(0), device=njt.device)
for _ in range(dim - 1)
],
]
njt_desc = _describe_njt(njt)
yield SampleInput(
njt.detach().clone(),
kwargs={
"indices": indices,
"values": torch.tensor(1.0, device=njt.device),
},
name=f"{njt_desc}: up to dim {dim - 1}",
)
# Non-cont NJT for completeness
offsets = torch.tensor([0, 2, 5, 7], device=device)
lengths = torch.tensor([2, 2, 2], device=device)
indices = [
torch.tensor([0, 1, 2], device=device),
torch.tensor([0, 1, 1], device=device),
torch.tensor([0, 0, 0], device=device),
]
a = torch.nested.nested_tensor_from_jagged(
torch.zeros(7, 3, device=device), offsets, lengths
)
njt_desc = _describe_njt(a)
yield SampleInput(
a.detach().clone(),
kwargs={"indices": indices, "values": torch.tensor(1.0, device=a.device)},
name=f"{njt_desc}: all dims",
)
def sample_inputs_nn_functional_embedding_bag(
op_info, device, dtype, requires_grad, **kwargs
):
for generate_per_sample_weight in (True, False):
for mode in ("sum", "mean", "max"):
# per_sample_weights is only supported for mode='sum'
if mode != "sum" and generate_per_sample_weight:
continue
NUM_EMBEDDINGS = 10
EMBEDDING_DIM = 32
weight = torch.randn(
NUM_EMBEDDINGS, EMBEDDING_DIM, dtype=dtype, device=device
)
njt = torch.nested.nested_tensor(
[
torch.randint(0, NUM_EMBEDDINGS, size=(2,)),
torch.randint(0, NUM_EMBEDDINGS, size=(3,)),
torch.randint(0, NUM_EMBEDDINGS, size=(4,)),
],
layout=torch.jagged,
dtype=torch.int64,
device=device,
)
per_sample_weights = None
if generate_per_sample_weight:
per_sample_weights = torch.randn_like(njt, dtype=dtype)
# NB: the OpInfo entry for embedding_bag expects weight first so the gradients
# can be checked
yield SampleInput(
weight,
args=(njt,),
kwargs={
"mode": mode,
"per_sample_weights": per_sample_weights,
},
)
def reference_nn_functional_embedding_bag(op, sample):
# run reference on a single bag at a time
new_kwargs = dict(sample.kwargs)
new_kwargs.update(
{"offsets": torch.tensor([0], dtype=torch.int64, device=sample.input.device)}
)
# flip input / weight back to what unbind_reference() expects
sample = SampleInput(sample.args[0], args=(sample.input,), kwargs=new_kwargs)
old_op = op.op
op.op = torch.nn.functional.embedding_bag
output = unbind_reference(op, sample, wrap_output_as_njt=False)
op.op = old_op
# concat bag outputs to get final output
return torch.cat(output, dim=0)
def sample_inputs_nn_functional_linear(op_info, device, dtype, requires_grad, **kwargs):
for njt in _sample_njts(
device=device, dtype=dtype, requires_grad=requires_grad, dims=[3, 4, 5]
):
# projection over a ragged dim is not currently supported
if is_nested_int(njt.size(-1)):
continue
# with bias
NUM_OUTPUT = 10
weight = torch.randn(
NUM_OUTPUT,
njt.size(-1),
device=device,
dtype=dtype,
requires_grad=requires_grad,
)
bias = torch.randn(
NUM_OUTPUT, device=device, dtype=dtype, requires_grad=requires_grad
)
yield SampleInput(
njt,
kwargs={
"weight": weight,
"bias": bias,
},
)
# without bias
yield SampleInput(
njt,
kwargs={
"weight": weight,
},
)
def sample_inputs_nn_functional_rms_norm(
op_info, device, dtype, requires_grad, **kwargs
):
for njt in _sample_njts(
device=device, dtype=dtype, requires_grad=requires_grad, dims=[3, 4]
):
# normalize over non-ragged dims
for start_dim in range(njt.dim()):
if start_dim <= njt._ragged_idx:
continue
normalized_shape = njt.shape[start_dim:]
weight = torch.randn(
normalized_shape,
device=device,
dtype=dtype,
requires_grad=requires_grad,
)
yield SampleInput(
njt,
kwargs={
"normalized_shape": normalized_shape,
"weight": weight,
},
)
sample_inputs_nn_functional_threshold = partial(
sample_inputs_elementwise_njt_unary,
op_kwargs={"threshold": float.fromhex("0x1.3ap-3"), "value": -9},
)
def sample_inputs_select(op_info, device, dtype, requires_grad, **kwargs):
for sample_input in sample_inputs_unary_dimwise(
op_info, device, dtype, requires_grad, **kwargs
):
# ragged dim chunking: test a single index
if sample_input.kwargs["dim"] == sample_input.input._ragged_idx:
yield _update_sample(sample_input, {"index": 0})
# other dim chunking: test different indices
else:
D = sample_input.input.size(sample_input.kwargs["dim"])
for index in [0, D // 2, D - 1]:
yield _update_sample(sample_input, {"index": index})
def sample_inputs_split(op_info, device, dtype, requires_grad, **kwargs):
for sample_input in sample_inputs_unary_dimwise(
op_info, device, dtype, requires_grad, **kwargs
):
# ragged dim chunking: test a single split size
if sample_input.kwargs["dim"] == sample_input.input._ragged_idx:
yield _update_sample(sample_input, {"split_size_or_sections": 3})
# other dim chunking: test different split sizes
else:
D = sample_input.input.size(sample_input.kwargs["dim"])
for split_size in [1, D // 2, D - 1, D]:
yield _update_sample(
sample_input, {"split_size_or_sections": split_size}
)
def sample_inputs_split_with_sizes(op_info, device, dtype, requires_grad, **kwargs):
for sample_input in sample_inputs_unary_dimwise(
op_info, device, dtype, requires_grad, **kwargs
):
# It will never make sense to operate on the ragged dim.
# TODO: Handle this with error_inputs
if sample_input.kwargs["dim"] == sample_input.input._ragged_idx:
continue
D = sample_input.input.size(sample_input.kwargs["dim"])
# splits should add up to D
split1 = torch.randint(0, D - 1, size=()).item()
split2 = D - split1
yield _update_sample(sample_input, {"split_sizes": [split1, split2]})
def sample_inputs_squeeze(op_info, device, dtype, requires_grad, **kwargs):
# squeeze-specific NJT generator (need to ensure there are some 1s in the shape)
def _get_njts():
njt = random_nt_from_dims(
(4, None, 1, 3, 1),
device=device,
dtype=dtype,
requires_grad=requires_grad,
layout=torch.jagged,
)
yield njt
# without min / max seqlen cached
values = njt.values().detach().clone()
offsets = njt.offsets().detach().clone()
yield torch.nested.nested_tensor_from_jagged(values, offsets)
# non-contiguous transposed
yield njt.transpose(1, 3)
# non-contiguous with holes
values = njt.values().clone().detach()
offsets = njt.offsets().clone().detach()
# subtract 1 to cause holes
lengths = (offsets.diff() - 1).clone().detach()
yield torch.nested.nested_tensor_from_jagged(
values=values,
offsets=offsets,
lengths=lengths,
)
for njt in _get_njts():
# single dim operation
for dim in range(njt.dim()):
# Operation on batch / ragged dim is never expected to work.
# TODO: Handle these via error_inputs.
if dim == 0 or dim == njt._ragged_idx:
continue
yield SampleInput(
njt.clone().detach(),
kwargs={"dim": dim},
name=f"{_describe_njt(njt)}: {_describe_dim(njt, dim)}",
)
# multiple dim operation (pass no args)
yield SampleInput(
njt.clone().detach(),
kwargs={"dim": dim},
name=f"{_describe_njt(njt)}: multiple dims",
)
def sample_inputs_unflatten(op_info, device, dtype, requires_grad, **kwargs):
for sample_input in sample_inputs_unary_dimwise(
op_info, device, dtype, requires_grad, **kwargs
):
# It will never make sense to operate on the ragged dim.
# TODO: Handle this with error_inputs
if sample_input.kwargs["dim"] == sample_input.input._ragged_idx:
continue
D = sample_input.input.size(sample_input.kwargs["dim"])
# sizes should multiply to be D
yield _update_sample(sample_input, {"sizes": [D, 1]})
yield _update_sample(sample_input, {"sizes": [1, D]})
if D % 2 == 0:
yield _update_sample(sample_input, {"sizes": [D // 2, 2]})
yield _update_sample(sample_input, {"sizes": [2, D // 2]})
def sample_inputs_unsqueeze(op_info, device, dtype, requires_grad, **kwargs):
for sample_input in sample_inputs_unary_dimwise(
op_info, device, dtype, requires_grad, **kwargs
):
yield sample_input
last_dim_sample = _update_sample(sample_input, {"dim": -1})
last_dim_sample.name = (
f"{_describe_njt(last_dim_sample.input)}: add dim to the end"
)
# Tell the unbind reference how to canonicalize the dim kwargs
# This is necessary because unsqueeze() allows for a dim after
# the last dim to indicate an unsqueeze at the end.
last_dim_sample.input._ndim = last_dim_sample.input.dim() + 1
yield last_dim_sample
def sample_inputs_where(op_info, device, dtype, requires_grad, **kwargs):
for sample in sample_inputs_elementwise_njt_binary(
op_info, device, dtype, requires_grad, **kwargs
):
other = sample.args[0]
sample.args = ()
sample.kwargs["other"] = other
sample.kwargs["condition"] = sample.input > 0.0
sample.name = sample.name.replace("(", "(NT, ")
yield sample
# === END OP-SPECIFIC SAMPLE INPUTS FUNCS / REFERENCES ===
# Mapping of OpInfo full names -> sample_inputs_funcs, which define the set of sample inputs
# (involving NJTs) to pass to the op. Full name consists of the OpInfo's name and variant name
# separated by a period (e.g. special.polygamma.special_polygamma_n_0). These are necessary
# to specify if they cannot be auto-generated for some reason. Try to keep these sorted
# in alphabetical order!
njt_sample_inputs = {
"bmm": sample_inputs_bmm,
"chunk": sample_inputs_chunk,
"clone": sample_inputs_clone,
"count_nonzero": partial(sample_inputs_njt_reduction, supports_keepdim=False),
**{f"mvlgamma.mvlgamma_p_{p}": sample_inputs_mvl_gamma(p=1) for p in (1, 3, 5)},
"nn.functional.embedding": sample_inputs_nn_functional_embedding,
"nn.functional.embedding_bag": sample_inputs_nn_functional_embedding_bag,
"nn.functional.linear": sample_inputs_nn_functional_linear,
"nn.functional.rms_norm": sample_inputs_nn_functional_rms_norm,
"nn.functional.threshold": sample_inputs_nn_functional_threshold,
**{f"polygamma.polygamma_n_{n}": sample_inputs_polygamma_n(n=n) for n in range(5)},
"special.polygamma.special_polygamma_n_0": sample_inputs_special_polygamma_n(n=0),
"to": sample_inputs_to,
"matmul": sample_inputs_matmul,
"masked_select": sample_inputs_masked_select,
"narrow": sample_inputs_narrow,
"index_put": sample_inputs_index_put,
# these two don't have ReductionOpInfo entries
"max.reduction_with_dim": sample_inputs_njt_reduction,
"min.reduction_with_dim": sample_inputs_njt_reduction,
"select": sample_inputs_select,
"split": sample_inputs_split,
"split_with_sizes": sample_inputs_split_with_sizes,
"squeeze": sample_inputs_squeeze,
"unflatten": sample_inputs_unflatten,
"unsqueeze": sample_inputs_unsqueeze,
"where": sample_inputs_where,
}
njt_references = {
"bmm": reference_bmm,
"chunk": partial(
unary_dimwise_reference, batchwise_reference=batchwise_reference_chunk
),
"count_nonzero": reduction_reference,
# these two don't have ReductionOpInfo entries
"max.reduction_with_dim": reduction_reference,
"min.reduction_with_dim": reduction_reference,
"narrow": partial(
unary_dimwise_reference, batchwise_reference=batchwise_reference_narrow
),
"select": partial(
unary_dimwise_reference, batchwise_reference=batchwise_reference_select
),
"split": partial(
unary_dimwise_reference, batchwise_reference=batchwise_reference_split
),
"split_with_sizes": partial(
unary_dimwise_reference,
batchwise_reference=batchwise_reference_split_with_sizes,
),
"squeeze": unbind_reference,
"nn.functional.embedding_bag": reference_nn_functional_embedding_bag,
"unflatten": partial(
unary_dimwise_reference, batchwise_reference=batchwise_reference_unflatten
),
"unsqueeze": partial(
unary_dimwise_reference, batchwise_reference=batchwise_reference_unsqueeze
),
}
# Translates an OpInfo entry to one that operates on NJTs.
def translate_opinfo(op):
new_op = copy(op)
new_op.supports_njt = True
# add some extra info for use in generating tests on the right subset of ops
new_op._extra_op_data = extra_op_data.get(op.full_name, ExtraOpData())
if op.full_name in njt_sample_inputs:
new_op.sample_inputs_func = njt_sample_inputs[op.full_name]
new_op.ref = njt_references.get(op.full_name, unbind_reference)
elif isinstance(op, UnaryUfuncInfo):
new_op.sample_inputs_func = partial(
sample_inputs_elementwise_njt_unary, op_kwargs=None
)
new_op.ref = unbind_reference
elif isinstance(op, BinaryUfuncInfo):
new_op.sample_inputs_func = partial(
sample_inputs_elementwise_njt_binary, op_kwargs=None
)
new_op.ref = unbind_reference
elif isinstance(op, ReductionOpInfo):
new_op.sample_inputs_func = partial(sample_inputs_njt_reduction, op_kwargs=None)
new_op.ref = reduction_reference
# TODO: Translate the rest of the OpInfos
else:
new_op.sample_inputs_func = unsupported_sample_inputs_func(op.full_name)
new_op.ref = unsupported_reference(op.full_name)
new_op.supports_njt = False
return new_op
njt_op_db = [translate_opinfo(op) for op in op_db]
|