1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
# mypy: ignore-errors
import unittest
from functools import partial
from itertools import product
from typing import Callable, List, Tuple
import numpy
import torch
from torch.testing._internal.common_dtype import floating_types
from torch.testing._internal.common_utils import TEST_SCIPY
from torch.testing._internal.opinfo.core import (
DecorateInfo,
ErrorInput,
OpInfo,
SampleInput,
)
if TEST_SCIPY:
import scipy.signal
def sample_inputs_window(op_info, device, dtype, requires_grad, *args, **kwargs):
r"""Base function used to create sample inputs for windows.
For additional required args you should use *args, as well as **kwargs for
additional keyword arguments.
"""
# Tests window sizes up to 5 samples.
for size, sym in product(range(6), (True, False)):
yield SampleInput(
size,
*args,
sym=sym,
device=device,
dtype=dtype,
requires_grad=requires_grad,
**kwargs,
)
def reference_inputs_window(op_info, device, dtype, requires_grad, *args, **kwargs):
r"""Reference inputs function to use for windows which have a common signature, i.e.,
window size and sym only.
Implement other special functions for windows that have a specific signature.
See exponential and gaussian windows for instance.
"""
yield from sample_inputs_window(
op_info, device, dtype, requires_grad, *args, **kwargs
)
cases = (8, 16, 32, 64, 128, 256)
for size in cases:
yield SampleInput(size, sym=False)
yield SampleInput(size, sym=True)
def reference_inputs_exponential_window(
op_info, device, dtype, requires_grad, **kwargs
):
yield from sample_inputs_window(op_info, device, dtype, requires_grad, **kwargs)
cases = (
(8, {"center": 4, "tau": 0.5}),
(16, {"center": 8, "tau": 2.5}),
(32, {"center": 16, "tau": 43.5}),
(64, {"center": 20, "tau": 3.7}),
(128, {"center": 62, "tau": 99}),
(256, {"tau": 10}),
)
for size, kw in cases:
yield SampleInput(size, sym=False, **kw)
kw["center"] = None
yield SampleInput(size, sym=True, **kw)
def reference_inputs_gaussian_window(op_info, device, dtype, requires_grad, **kwargs):
yield from sample_inputs_window(op_info, device, dtype, requires_grad, **kwargs)
cases = (
(8, {"std": 0.1}),
(16, {"std": 1.2}),
(32, {"std": 2.1}),
(64, {"std": 3.9}),
(128, {"std": 4.5}),
(256, {"std": 10}),
)
for size, kw in cases:
yield SampleInput(size, sym=False, **kw)
yield SampleInput(size, sym=True, **kw)
def reference_inputs_kaiser_window(op_info, device, dtype, requires_grad, **kwargs):
yield from sample_inputs_window(op_info, device, dtype, requires_grad, **kwargs)
cases = (
(8, {"beta": 2}),
(16, {"beta": 12}),
(32, {"beta": 30}),
(64, {"beta": 35}),
(128, {"beta": 41.2}),
(256, {"beta": 100}),
)
for size, kw in cases:
yield SampleInput(size, sym=False, **kw)
yield SampleInput(size, sym=True, **kw)
def reference_inputs_general_cosine_window(
op_info, device, dtype, requires_grad, **kwargs
):
yield from sample_inputs_window(op_info, device, dtype, requires_grad, **kwargs)
cases = (
(8, {"a": [0.5, 0.5]}),
(16, {"a": [0.46, 0.54]}),
(32, {"a": [0.46, 0.23, 0.31]}),
(64, {"a": [0.5]}),
(128, {"a": [0.1, 0.8, 0.05, 0.05]}),
(256, {"a": [0.2, 0.2, 0.2, 0.2, 0.2]}),
)
for size, kw in cases:
yield SampleInput(size, sym=False, **kw)
yield SampleInput(size, sym=True, **kw)
def reference_inputs_general_hamming_window(
op_info, device, dtype, requires_grad, **kwargs
):
yield from sample_inputs_window(op_info, device, dtype, requires_grad, **kwargs)
cases = (
(8, {"alpha": 0.54}),
(16, {"alpha": 0.5}),
(32, {"alpha": 0.23}),
(64, {"alpha": 0.8}),
(128, {"alpha": 0.9}),
(256, {"alpha": 0.05}),
)
for size, kw in cases:
yield SampleInput(size, sym=False, **kw)
yield SampleInput(size, sym=True, **kw)
def error_inputs_window(op_info, device, *args, **kwargs):
# Tests for windows that have a negative size
yield ErrorInput(
SampleInput(-1, *args, dtype=torch.float32, device=device, **kwargs),
error_type=ValueError,
error_regex="requires non-negative window length, got M=-1",
)
# Tests for window tensors that are not torch.strided, for instance, torch.sparse_coo.
yield ErrorInput(
SampleInput(
3,
*args,
layout=torch.sparse_coo,
device=device,
dtype=torch.float32,
**kwargs,
),
error_type=ValueError,
error_regex="is implemented for strided tensors only, got: torch.sparse_coo",
)
# Tests for window tensors that are not floating point dtypes, for instance, torch.long.
yield ErrorInput(
SampleInput(3, *args, dtype=torch.long, device=device, **kwargs),
error_type=ValueError,
error_regex="expects float32 or float64 dtypes, got: torch.int64",
)
# Tests for window tensors that are bfloat16
yield ErrorInput(
SampleInput(3, *args, dtype=torch.bfloat16, device=device, **kwargs),
error_type=ValueError,
error_regex="expects float32 or float64 dtypes, got: torch.bfloat16",
)
# Tests for window tensors that are float16
yield ErrorInput(
SampleInput(3, *args, dtype=torch.float16, device=device, **kwargs),
error_type=ValueError,
error_regex="expects float32 or float64 dtypes, got: torch.float16",
)
def error_inputs_exponential_window(op_info, device, **kwargs):
# Yield common error inputs
yield from error_inputs_window(op_info, device, **kwargs)
# Tests for negative decay values.
yield ErrorInput(
SampleInput(3, tau=-1, dtype=torch.float32, device=device, **kwargs),
error_type=ValueError,
error_regex="Tau must be positive, got: -1 instead.",
)
# Tests for symmetric windows and a given center value.
yield ErrorInput(
SampleInput(3, center=1, sym=True, dtype=torch.float32, device=device),
error_type=ValueError,
error_regex="Center must be None for symmetric windows",
)
def error_inputs_gaussian_window(op_info, device, **kwargs):
# Yield common error inputs
yield from error_inputs_window(op_info, device, std=0.5, **kwargs)
# Tests for negative standard deviations
yield ErrorInput(
SampleInput(3, std=-1, dtype=torch.float32, device=device, **kwargs),
error_type=ValueError,
error_regex="Standard deviation must be positive, got: -1 instead.",
)
def error_inputs_kaiser_window(op_info, device, **kwargs):
# Yield common error inputs
yield from error_inputs_window(op_info, device, beta=12, **kwargs)
# Tests for negative beta
yield ErrorInput(
SampleInput(3, beta=-1, dtype=torch.float32, device=device, **kwargs),
error_type=ValueError,
error_regex="beta must be non-negative, got: -1 instead.",
)
def error_inputs_general_cosine_window(op_info, device, **kwargs):
# Yield common error inputs
yield from error_inputs_window(op_info, device, a=[0.54, 0.46], **kwargs)
# Tests for negative beta
yield ErrorInput(
SampleInput(3, a=None, dtype=torch.float32, device=device, **kwargs),
error_type=TypeError,
error_regex="Coefficients must be a list/tuple",
)
yield ErrorInput(
SampleInput(3, a=[], dtype=torch.float32, device=device, **kwargs),
error_type=ValueError,
error_regex="Coefficients cannot be empty",
)
def reference_signal_window(fn: Callable):
r"""Wrapper for scipy signal window references.
Discards keyword arguments for window reference functions that don't have a matching signature with
torch, e.g., gaussian window.
"""
def _fn(
*args,
dtype=numpy.float64,
device=None,
layout=torch.strided,
requires_grad=False,
**kwargs,
):
r"""The unused arguments are defined to disregard those values"""
return fn(*args, **kwargs).astype(dtype)
return _fn
def make_signal_windows_opinfo(
name: str,
ref: Callable,
sample_inputs_func: Callable,
reference_inputs_func: Callable,
error_inputs_func: Callable,
*,
skips: Tuple[DecorateInfo, ...] = (),
):
r"""Helper function to create OpInfo objects related to different windows."""
return OpInfo(
name=name,
ref=ref if TEST_SCIPY else None,
dtypes=floating_types(),
dtypesIfCUDA=floating_types(),
sample_inputs_func=sample_inputs_func,
reference_inputs_func=reference_inputs_func,
error_inputs_func=error_inputs_func,
supports_out=False,
supports_autograd=False,
skips=(
# TODO: same as this?
# https://github.com/pytorch/pytorch/issues/81774
# also see: arange, new_full
# fails to match any schemas despite working in the interpreter
DecorateInfo(
unittest.expectedFailure,
"TestOperatorSignatures",
"test_get_torch_func_signature_exhaustive",
),
# fails to match any schemas despite working in the interpreter
DecorateInfo(
unittest.expectedFailure, "TestJit", "test_variant_consistency_jit"
),
# skip these tests since we have non tensor input
DecorateInfo(
unittest.skip("Skipped!"), "TestCommon", "test_noncontiguous_samples"
),
DecorateInfo(
unittest.skip("Skipped!"),
"TestCommon",
"test_variant_consistency_eager",
),
DecorateInfo(unittest.skip("Skipped!"), "TestMathBits", "test_conj_view"),
DecorateInfo(
unittest.skip("Skipped!"), "TestMathBits", "test_neg_conj_view"
),
DecorateInfo(unittest.skip("Skipped!"), "TestMathBits", "test_neg_view"),
DecorateInfo(
unittest.skip("Skipped!"),
"TestVmapOperatorsOpInfo",
"test_vmap_exhaustive",
),
DecorateInfo(
unittest.skip("Skipped!"),
"TestVmapOperatorsOpInfo",
"test_op_has_batch_rule",
),
DecorateInfo(
unittest.skip("Buggy on MPS for now (mistakenly promotes to float64)"),
"TestCommon",
"test_numpy_ref_mps",
),
*skips,
),
)
op_db: List[OpInfo] = [
make_signal_windows_opinfo(
name="signal.windows.hamming",
ref=reference_signal_window(scipy.signal.windows.hamming)
if TEST_SCIPY
else None,
sample_inputs_func=sample_inputs_window,
reference_inputs_func=reference_inputs_window,
error_inputs_func=error_inputs_window,
),
make_signal_windows_opinfo(
name="signal.windows.hann",
ref=reference_signal_window(scipy.signal.windows.hann) if TEST_SCIPY else None,
sample_inputs_func=sample_inputs_window,
reference_inputs_func=reference_inputs_window,
error_inputs_func=error_inputs_window,
),
make_signal_windows_opinfo(
name="signal.windows.bartlett",
ref=reference_signal_window(scipy.signal.windows.bartlett)
if TEST_SCIPY
else None,
sample_inputs_func=sample_inputs_window,
reference_inputs_func=reference_inputs_window,
error_inputs_func=error_inputs_window,
),
make_signal_windows_opinfo(
name="signal.windows.blackman",
ref=reference_signal_window(scipy.signal.windows.blackman)
if TEST_SCIPY
else None,
sample_inputs_func=sample_inputs_window,
reference_inputs_func=reference_inputs_window,
error_inputs_func=error_inputs_window,
),
make_signal_windows_opinfo(
name="signal.windows.cosine",
ref=reference_signal_window(scipy.signal.windows.cosine)
if TEST_SCIPY
else None,
sample_inputs_func=sample_inputs_window,
reference_inputs_func=reference_inputs_window,
error_inputs_func=error_inputs_window,
),
make_signal_windows_opinfo(
name="signal.windows.exponential",
ref=reference_signal_window(scipy.signal.windows.exponential)
if TEST_SCIPY
else None,
sample_inputs_func=partial(sample_inputs_window, tau=2.78),
reference_inputs_func=partial(reference_inputs_exponential_window, tau=2.78),
error_inputs_func=error_inputs_exponential_window,
),
make_signal_windows_opinfo(
name="signal.windows.gaussian",
ref=reference_signal_window(scipy.signal.windows.gaussian)
if TEST_SCIPY
else None,
sample_inputs_func=partial(sample_inputs_window, std=1.92),
reference_inputs_func=partial(reference_inputs_gaussian_window, std=1.92),
error_inputs_func=error_inputs_gaussian_window,
skips=(
DecorateInfo(
unittest.skip("Buggy on MPS for now (mistakenly promotes to float64)"),
"TestCommon",
"test_numpy_ref_mps",
),
),
),
make_signal_windows_opinfo(
name="signal.windows.kaiser",
ref=reference_signal_window(scipy.signal.windows.kaiser)
if TEST_SCIPY
else None,
sample_inputs_func=partial(sample_inputs_window, beta=12.0),
reference_inputs_func=partial(reference_inputs_kaiser_window, beta=12.0),
error_inputs_func=error_inputs_kaiser_window,
),
make_signal_windows_opinfo(
name="signal.windows.general_cosine",
ref=reference_signal_window(scipy.signal.windows.general_cosine)
if TEST_SCIPY
else None,
sample_inputs_func=partial(sample_inputs_window, a=[0.54, 0.46]),
reference_inputs_func=partial(
reference_inputs_general_cosine_window, a=[0.54, 0.46]
),
error_inputs_func=error_inputs_general_cosine_window,
),
make_signal_windows_opinfo(
name="signal.windows.general_hamming",
ref=reference_signal_window(scipy.signal.windows.general_hamming)
if TEST_SCIPY
else None,
sample_inputs_func=partial(sample_inputs_window, alpha=0.54),
reference_inputs_func=partial(
reference_inputs_general_hamming_window, alpha=0.54
),
error_inputs_func=error_inputs_window,
),
make_signal_windows_opinfo(
name="signal.windows.nuttall",
ref=reference_signal_window(scipy.signal.windows.nuttall)
if TEST_SCIPY
else None,
sample_inputs_func=sample_inputs_window,
reference_inputs_func=reference_inputs_window,
error_inputs_func=error_inputs_window,
),
]
|