1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
|
# mypy: ignore-errors
import os
import torch
from torch.testing import make_tensor # noqa: F401
from torch.testing._internal.opinfo.core import ( # noqa: F401
BinaryUfuncInfo,
ErrorInput,
generate_elementwise_binary_tensors,
ReductionOpInfo,
sample_inputs_reduction,
SampleInput,
)
def _check_validate(op_info, sample):
def _check_fail(sample):
try:
op_info(
sample.sample_input.input,
*sample.sample_input.args,
**sample.sample_input.kwargs,
)
except sample.error_type:
pass
except Exception as msg:
raise AssertionError( # noqa: B904
f"{op_info.name} on {sample.sample_input=} expected exception "
f"{sample.error_type}: {sample.error_regex}, got {type(msg).__name__}: {msg}"
)
else:
raise AssertionError(
f"{op_info.name} on {sample.sample_input=} expected exception "
f"{sample.error_type}: {sample.error_regex}, got none."
)
def _check_success(sample):
try:
op_info(sample.input, *sample.args, **sample.kwargs)
except Exception as msg:
raise AssertionError( # noqa: B904
f"{op_info.name} on {sample=} expected to succeed "
f", got {type(msg).__name__}: {msg}"
)
if isinstance(sample, ErrorInput):
_check_fail(sample)
else:
_check_success(sample)
def _sample_inputs_sparse(
sample_inputs,
maybe_failing_sample_inputs,
validate_sample_input,
op_info,
*args,
**kwargs,
):
check_validate = (
os.environ.get("PYTORCH_TEST_CHECK_VALIDATE_SPARSE_SAMPLES", "0") == "1"
)
for sample in sample_inputs(op_info, *args, **kwargs):
sample = validate_sample_input(op_info, sample, check_validate=check_validate)
if isinstance(sample, SampleInput):
yield sample
# Error inputs are handled in error_inputs_sparse
for sample in maybe_failing_sample_inputs(op_info, *args, **kwargs):
sample = validate_sample_input(op_info, sample, check_validate=check_validate)
if isinstance(sample, SampleInput):
yield sample
def _error_inputs_sparse(
maybe_failing_sample_inputs, validate_sample_input, op_info, *args, **kwargs
):
check_validate = (
os.environ.get("PYTORCH_TEST_CHECK_VALIDATE_SPARSE_SAMPLES", "0") == "1"
)
for sample in maybe_failing_sample_inputs(op_info, *args, **kwargs):
sample = validate_sample_input(op_info, sample, check_validate=check_validate)
if isinstance(sample, ErrorInput):
yield sample
# Sample inputs are handled in sample_inputs_sparse
def _apply_requires_grad_to_samples(sample_inputs):
"""Decorator to _maybe_failing_sample_inputs_... generator functions
that clones and sets requires_grad argument to tensors in sample
input arguments. This is needed when the generated samples share
tensor instances.
"""
def wrapper(op_info, device, dtype, requires_grad, layout, **kwargs):
def apply_requires_grad(x):
if (
not isinstance(x, torch.Tensor)
or x.requires_grad
or not requires_grad
or not (x.is_floating_point() or x.is_complex())
):
return x
return x.detach().clone().requires_grad_(requires_grad)
if requires_grad:
for sample_input in sample_inputs(
op_info, device, dtype, requires_grad, layout, **kwargs
):
yield sample_input.transform(apply_requires_grad)
else:
yield from sample_inputs(
op_info, device, dtype, requires_grad, layout, **kwargs
)
return wrapper
def sample_inputs_sparse_reduction(
op_info, device, dtype, requires_grad, layout, blocksize=None, **kwargs
):
"""Sample inputs for reduction operations on sparse tensors."""
layout_name = str(layout).split(".", 1)[-1].rsplit("_coo", 1)[0]
op_supports_layout = getattr(op_info, "supports_" + layout_name)
if not op_supports_layout:
return
for sample_input in sample_inputs_reduction(
op_info, device, dtype, requires_grad, **kwargs
):
if sample_input.input.ndim == 0:
# scalar sparse tensors are not supported
continue
if layout in {
torch.sparse_csr,
torch.sparse_csc,
torch.sparse_bsr,
torch.sparse_bsc,
}:
if sample_input.input.ndim < 2:
# conversion to sparse compressed tensors requires at
# least 2 dimensional tensors
continue
if sample_input.input.ndim > 2 and (sample_input.input == 0).any():
# Skip batched sparse compressed samples that contain
# explicit zeros because to_sparse(layout=..) will
# fail, see gh-98495.
# TODO: remove this if-block after gh-98495 is fixed.
continue
if layout in {torch.sparse_bsr, torch.sparse_bsc} and blocksize is None:
blocksize = (1, 1)
yield SampleInput(
sample_input.input.detach()
.to_sparse(layout=layout, blocksize=blocksize)
.requires_grad_(requires_grad),
args=sample_input.args,
kwargs=sample_input.kwargs,
)
if layout is torch.sparse_coo and (dtype.is_floating_point or dtype.is_complex):
# uncoalesced samples
inp = sample_input.input.detach().to_sparse(layout=layout)
inp = torch.sparse_coo_tensor(
inp.indices().repeat(1, 2),
inp.values().repeat(2),
inp.shape,
dtype=inp.dtype,
device=inp.device,
)
assert not inp.is_coalesced()
yield SampleInput(
inp.requires_grad_(requires_grad),
args=sample_input.args,
kwargs=sample_input.kwargs,
)
if sample_input.input.ndim > 2:
# hybrid samples
yield SampleInput(
sample_input.input.detach()
.to_sparse(
layout=layout,
blocksize=blocksize,
dense_dim=sample_input.input.ndim - 2,
)
.requires_grad_(requires_grad),
args=sample_input.args,
kwargs=sample_input.kwargs,
)
def _validate_sample_input_sparse_reduction(op_info, sample, check_validate=False):
"""Return the specified sample when it is valid and supported by the
operation. Otherwise, return the sample as ErrorInput instance.
When check_validate is True, the result is validated against
calling the op on the sample.
"""
UNSPECIFIED = object()
if op_info.name == "sum":
sample = _validate_sample_input_sparse_reduction_sum(sample)
if op_info.name in {"masked.sum"}:
mask = sample.kwargs.get("mask", UNSPECIFIED)
if (
mask not in {None, UNSPECIFIED}
and mask.ndim > 2
and mask.layout is torch.strided
and (mask == 0).any()
):
# TODO: remove this if-block after gh-98495 is fixed.
sample = ErrorInput(
sample,
error_regex="Expect the same number of specified elements per batch.",
)
elif not sample.kwargs.get("keepdim"):
sample = ErrorInput(
sample,
error_type=(AssertionError, RuntimeError),
error_regex="reduction operations on (CSR|CSC) tensors with keepdim=False is unsupported",
)
elif mask is UNSPECIFIED:
sample = ErrorInput(
sample,
error_type=ValueError,
error_regex="masked (.*) expects explicit mask for sparse_csr tensor input",
)
elif sample.input.ndim > 2:
sample = ErrorInput(
sample,
error_regex="crow_indices is supposed to be a vector, but got 3 dimensional tensor.",
)
if op_info.name in {"masked.amax", "masked.amin", "masked.mean", "masked.prod"}:
t_inp = sample.input
mask = sample.kwargs.get("mask")
if (
mask is not None
and mask.ndim > 2
and mask.layout is torch.strided
and (mask == 0).any()
):
# TODO: remove this if-block after gh-98495 is fixed.
sample = ErrorInput(
sample,
error_regex="Expect the same number of specified elements per batch.",
)
elif mask is None:
sample = ErrorInput(
sample,
error_type=ValueError,
error_regex="masked (.*) expects explicit mask for sparse_csr tensor input",
)
elif (
mask.layout is sample.input.layout
and mask.ndim > 2
and op_info.name == "masked.mean"
):
sample = ErrorInput(
sample,
error_type=TypeError,
error_regex=(
"where[(][)] received an invalid combination of arguments"
" - got [(]Tensor, Tensor, NoneType[)]"
),
)
elif not sample.kwargs.get("keepdim"):
sample = ErrorInput(
sample,
error_type=(AssertionError, RuntimeError),
error_regex="reduction operations on (CSR|CSC) tensors with keepdim=False is unsupported",
)
elif (
sample.input.ndim > 2
and (sample.kwargs.get("dim") not in {0, 1})
and mask.ndim > 2
and mask.layout is not torch.strided
):
if sample.kwargs.get("dim") == (0, -1):
sample = ErrorInput(
sample,
error_regex="tensor dimensionality must be sum of batch, base, and dense dimensionalities",
)
elif op_info.name == "masked.prod":
sample = ErrorInput(
sample,
error_regex="input_dim == 2 INTERNAL ASSERT FAILED at",
)
else:
sample = ErrorInput(
sample,
error_type=AssertionError,
error_regex="Sparse CSR tensors are 2D and only support reduction along dim 0 or 1.",
)
elif sample.input.ndim > 2:
sample = ErrorInput(
sample,
error_regex="crow_indices is supposed to be a vector, but got 3 dimensional tensor.",
)
elif (
mask.layout is t_inp.layout
and mask._nnz() != t_inp._nnz()
and t_inp.dense_dim() > 0
):
sample = ErrorInput(
sample,
error_regex="Index tensor must have the same number of dimensions as src tensor",
)
if check_validate:
_check_validate(op_info, sample)
return sample
def _validate_sample_input_sparse_reduction_sum(sample, check_validate=False):
# NOTE: When fixing a failing sample case, remove the
# corresponding if-block
t_inp, t_kwargs = sample.input, sample.kwargs
dim = t_kwargs.get("dim")
keepdim = t_kwargs.get("keepdim")
layout = t_inp.layout
if isinstance(dim, (int, list, tuple)):
if layout in {
torch.sparse_csr,
torch.sparse_csc,
torch.sparse_bsr,
torch.sparse_bsc,
}:
if layout in {torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}:
return ErrorInput(
sample,
error_regex=(
"Currently the only compressed sparse format supported for sum.dim_IntList is CSR, but got layout"
),
)
if layout in {torch.sparse_csr, torch.sparse_csc} and not keepdim:
return ErrorInput(
sample,
error_regex=(
"reduction operations on CSR tensors with keepdim=False is unsupported"
),
)
if t_inp.dim() != 2:
return ErrorInput(
sample,
error_regex=("input_dim == 2 INTERNAL ASSERT"),
)
if layout == torch.sparse_csr:
if t_inp.dtype == torch.bool:
return ErrorInput(
sample,
error_regex=("_sparse_csr_sum_cpu not implemented for 'Bool'"),
)
if t_inp.dtype == torch.complex32:
return ErrorInput(
sample,
error_regex=(
"_sparse_csr_sum_cuda not implemented for 'ComplexHalf'"
),
)
return sample
def _maybe_failing_sample_inputs_sparse_reduction_sum(
op_info, device, dtype, requires_grad, layout, **kwargs
):
"""Generator of samples that are known to fail or that were failing in past."""
# NOTE: When fixing a failing case, remove the Exception comment
# but keep the `yield sample` statement.
if layout in [
torch.sparse_csr,
torch.sparse_csc,
]:
# NotImplementedError: Could not run 'aten::sum.IntList_out' with arguments from the 'SparseCsrCPU' backend.
yield SampleInput(
torch.tensor([[0, 1], [2, 3]], dtype=dtype)
.to_sparse(layout=layout)
.requires_grad_(requires_grad),
kwargs=dict(dim=0, keepdim=True),
)
yield SampleInput(
torch.tensor([[[0, 1]], [[2, 3]]], dtype=dtype)
.to_sparse(layout=layout, dense_dim=1)
.requires_grad_(requires_grad),
kwargs=dict(dim=0),
)
yield SampleInput(
torch.tensor([[0, 1], [2, 3]], dtype=dtype)
.to_sparse(layout=layout)
.requires_grad_(requires_grad),
kwargs=dict(dim=(0,)),
)
yield SampleInput(
torch.tensor([[0, 1], [2, 3]], dtype=dtype)
.to_sparse(layout=layout)
.requires_grad_(requires_grad),
kwargs=dict(dim=(0,), keepdim=True),
)
yield SampleInput(
torch.tensor([[[0, 1]], [[2, 3]]], dtype=dtype)
.to_sparse(layout=layout, dense_dim=1)
.requires_grad_(requires_grad),
kwargs=dict(dim=(0,)),
)
# RuntimeError: torch.empty: Only batched sparse compressed (non-block) tensors are supported, but got size [2]
yield SampleInput(
torch.tensor([[0, 1], [2, 3]], dtype=dtype)
.to_sparse(layout=layout)
.requires_grad_(requires_grad),
kwargs=dict(dim=0),
)
if layout in [
torch.sparse_bsr,
torch.sparse_bsc,
]:
# RuntimeError: empty_sparse_compressed expected sparse compressed (non-block) tensor layout but got SparseBsr
yield SampleInput(
torch.tensor([[0, 1], [2, 3]], dtype=dtype)
.to_sparse(layout=layout, blocksize=(2, 2))
.requires_grad_(requires_grad),
kwargs=dict(dim=0, keepdim=True),
)
yield SampleInput(
torch.tensor([[[0, 1]], [[2, 3]]], dtype=dtype)
.to_sparse(layout=layout, dense_dim=1, blocksize=(1, 1))
.requires_grad_(requires_grad),
kwargs=dict(dim=0),
)
yield SampleInput(
torch.tensor([[0, 1], [2, 3]], dtype=dtype)
.to_sparse(layout=layout, blocksize=(1, 1))
.requires_grad_(requires_grad),
kwargs=dict(dim=(0,)),
)
yield SampleInput(
torch.tensor([[0, 1], [2, 3]], dtype=dtype)
.to_sparse(layout=layout, blocksize=(1, 1))
.requires_grad_(requires_grad),
kwargs=dict(dim=(0,), keepdim=True),
)
yield SampleInput(
torch.tensor([[[0, 1]], [[2, 3]]], dtype=dtype)
.to_sparse(layout=layout, blocksize=(1, 1), dense_dim=1)
.requires_grad_(requires_grad),
kwargs=dict(dim=(0,)),
)
# RuntimeError: torch.empty: Only batched sparse compressed (non-block) tensors are supported, but got size [2]
yield SampleInput(
torch.tensor([[0, 1], [2, 3]], dtype=dtype)
.to_sparse(layout=layout, blocksize=(1, 1))
.requires_grad_(requires_grad),
kwargs=dict(dim=0),
)
def sample_inputs_sparse_reduction_sum(
op_info, device, dtype, requires_grad, layout, **kwargs
):
"""Sample inputs for sum on sparse tensors."""
yield from _sample_inputs_sparse(
sample_inputs_sparse_reduction,
_maybe_failing_sample_inputs_sparse_reduction_sum,
_validate_sample_input_sparse_reduction,
op_info,
device,
dtype,
requires_grad,
layout,
**kwargs,
)
def error_inputs_sparse_reduction_sum(op_info, device, layout, **kwargs):
"""Error inputs for sum on sparse tensors."""
dtype = torch.float64
requires_grad = False
yield from _error_inputs_sparse(
_maybe_failing_sample_inputs_sparse_reduction_sum,
_validate_sample_input_sparse_reduction,
op_info,
device,
dtype,
requires_grad,
layout,
**kwargs,
)
def sample_inputs_sparse_elementwise_binary_operation(
op_info, device, dtype, requires_grad, layout, **kwargs
):
"""Sample inputs for elementwise binary operations on sparse tensors.
The samples include regular, zero-sized, batched, and hybrid
sparse tensors as well as rhs scalars. All tensors are full tensors.
"""
def _to_sparse(tensor, **kwargs):
return tensor.detach().to_sparse(**kwargs).requires_grad_(requires_grad)
for sample_input in generate_elementwise_binary_tensors(
op_info,
device=device,
dtype=dtype,
requires_grad=requires_grad,
exclude_zero=True,
**kwargs,
):
lhs, rhs = sample_input.input, sample_input.args[0]
min_dense_dim = 0
max_dense_dim = lhs.ndim - 1
if layout in {
torch.sparse_csr,
torch.sparse_csc,
torch.sparse_bsr,
torch.sparse_bsc,
}:
if lhs.ndim < 2:
# sparse compressed tensors sparse_dim must be 2
continue
max_dense_dim = lhs.ndim - 2
for dense_dim in range(min_dense_dim, max_dense_dim + 1):
if layout in {torch.sparse_bsr, torch.sparse_bsc}:
blocksizes = [(1, 1)]
if lhs.numel() > 0:
blocksizes.append(
(
lhs.shape[lhs.ndim - 2 - dense_dim],
lhs.shape[lhs.ndim - 1 - dense_dim],
)
)
else:
blocksizes = [None]
for blocksize in blocksizes:
to_sparse_kwargs = dict(
layout=layout, dense_dim=dense_dim, blocksize=blocksize
)
lhs_sparse = _to_sparse(lhs, **to_sparse_kwargs)
rhs_sparse = _to_sparse(rhs, **to_sparse_kwargs)
# op(sparse, sparse)
yield SampleInput(
lhs_sparse,
args=(rhs_sparse, *sample_input.args[1:]),
kwargs=sample_input.kwargs,
)
# op(sparse, scalar)
yield SampleInput(
lhs_sparse,
args=(
make_tensor(
(), dtype=dtype, device=device, requires_grad=requires_grad
),
*sample_input.args[1:],
),
kwargs=sample_input.kwargs,
)
def _validate_sample_input_elementwise_binary_sparse_mul(sample):
# NOTE: When fixing a failing sample case, remove the
# corresponding if-block
t_inp, t_args = sample.input, sample.args
batch_dim = t_inp.dim() - t_inp.dense_dim() - t_inp.sparse_dim()
layout = t_inp.layout
dtype = t_inp.dtype
if layout is torch.sparse_csr and batch_dim > 0 and t_args[0].ndim > 0:
return ErrorInput(
sample,
error_regex=(
"coo_to_sparse_csr: conversion from Sparse to SparseCsr for input"
" tensors with sparse_dim[(][)]!=2 is not supported"
),
)
elif layout is torch.sparse_csc and t_args[0].ndim > 0:
return ErrorInput(
sample, error_regex="Expected result Tensor to be of format CSR"
)
elif layout is torch.sparse_bsr and t_args[0].ndim > 0:
return ErrorInput(
sample,
error_regex="empty_sparse_compressed expected sparse compressed [(]non-block[)] tensor layout but got SparseBsr",
)
elif layout is torch.sparse_bsc and t_args[0].ndim > 0:
return ErrorInput(
sample,
error_regex="empty_sparse_compressed expected sparse compressed [(]non-block[)] tensor layout but got SparseBsc",
)
elif (
layout is torch.sparse_coo
and dtype is torch.bool
and t_args[0].ndim > 0
and t_inp.is_cpu
and t_inp.numel() > 0
and t_inp.dense_dim() > 0
):
return ErrorInput(
sample, error_regex="\"addcmul_cpu_out\" not implemented for 'Bool'"
)
elif (
layout in {torch.sparse_coo, torch.sparse_csr}
and dtype is torch.bool
and t_inp._nnz() > 0
and t_args[0].ndim > 0
and t_inp.is_cpu
and t_inp.numel() > 0
):
return ErrorInput(
sample, error_regex="\"mul_out_sparse\" not implemented for 'Bool'"
)
elif (
layout is torch.sparse_csr
and t_args[0].layout is torch.strided
and 0 < t_args[0].ndim
and t_args[0].ndim < t_inp.ndim
):
return ErrorInput(
sample, error_regex="sparse_mask_sparse_csr expects self to be 2D"
)
elif layout is torch.sparse_csr and (
(t_args[0].layout is torch.strided and 0 < t_args[0].ndim)
or (t_args[0].layout is layout and t_inp.shape != t_args[0].shape)
):
return ErrorInput(
sample,
error_regex=(
"expects sparse inputs with equal dimensionality, number of sparse dimensions,"
" and shape of sparse dimensions"
),
)
elif (
layout is torch.sparse_csr
and t_inp.dense_dim() > 0
and t_inp._nnz() > 0
and t_inp.is_cpu
and dtype is torch.float16
and t_args[0].ndim > 0
):
return ErrorInput(
sample, error_regex="\"addcmul_cpu_out\" not implemented for 'Half'"
)
return sample
@_apply_requires_grad_to_samples
def _maybe_failing_sample_inputs_sparse_elementwise_binary_mul(
op_info, device, dtype, requires_grad, layout, **kwargs
):
"""Generator of samples that are known to fail or that were failing in past."""
# NOTE: When fixing a failing case, remove the Exception comment
# but keep the `yield sample` statement.
blocksize = (1, 1) if layout in {torch.sparse_bsr, torch.sparse_bsc} else None
regular = torch.tensor([[1, 2], [3, 4]], device=device, dtype=dtype).to_sparse(
layout=layout, dense_dim=0, blocksize=blocksize
)
batch = torch.tensor(
[[[1, 2], [3, 4]], [[4, 5], [6, 7]]], device=device, dtype=dtype
).to_sparse(layout=layout, dense_dim=0, blocksize=blocksize)
hybrid = torch.tensor(
[[[1], [2]], [[3], [4]]], device=device, dtype=dtype
).to_sparse(layout=layout, dense_dim=1, blocksize=blocksize)
if layout is torch.sparse_csr:
# RuntimeError: crow_indices is supposed to be a vector, but got 2 dimensional tensor
yield SampleInput(batch, args=(batch,))
# RuntimeError: Only tensors with two sparse dimensions can be
# converted to the SparseCsr layout, got self with 3 sparse
# dimensions.
yield SampleInput(
torch.zeros_like(hybrid).requires_grad_(requires_grad),
args=(torch.zeros_like(hybrid).requires_grad_(requires_grad),),
)
if dtype is torch.complex32:
# RuntimeError: "mul_out_sparse" not implemented for 'ComplexHalf'
yield SampleInput(regular, args=(regular,))
if dtype is torch.bool and regular.is_cpu:
# RuntimeError: "mul_out_sparse" not implemented for 'Bool'
yield SampleInput(regular, args=(regular,))
if layout is torch.sparse_csc:
# RuntimeError: Expected result Tensor to be of format CSR
yield SampleInput(regular, args=(regular,))
if layout is torch.sparse_bsr:
# RuntimeError: empty_sparse_compressed expected sparse compressed (non-block) tensor layout but got SparseBsr
yield SampleInput(regular, args=(regular,))
if layout is torch.sparse_bsc:
# RuntimeError: empty_sparse_compressed expected sparse compressed (non-block) tensor layout but got SparseBsc
yield SampleInput(regular, args=(regular,))
if layout is torch.sparse_coo:
if dtype is torch.complex32:
# RuntimeError: "mul_out_sparse" not implemented for 'ComplexHalf'
yield SampleInput(regular, args=(regular,))
if dtype is torch.bool and regular.is_cpu:
# RuntimeError: "mul_out_sparse" not implemented for 'Bool'
yield SampleInput(regular, args=(regular,))
if dtype in {torch.bool, torch.float16} and regular.is_cpu:
# RuntimeError: "addcmul_cpu_out" not implemented for '(Bool|Half)'
yield SampleInput(hybrid, args=(hybrid,))
def _validate_sample_input_sparse_elementwise_binary_operation(
op_info, sample, check_validate=False
):
if op_info.name == "mul":
sample = _validate_sample_input_elementwise_binary_sparse_mul(sample)
if check_validate:
_check_validate(op_info, sample)
return sample
def sample_inputs_sparse_mul(op_info, device, dtype, requires_grad, layout, **kwargs):
"""Sample inputs for mul operation on sparse tensors."""
yield from _sample_inputs_sparse(
sample_inputs_sparse_elementwise_binary_operation,
_maybe_failing_sample_inputs_sparse_elementwise_binary_mul,
_validate_sample_input_sparse_elementwise_binary_operation,
op_info,
device,
dtype,
requires_grad,
layout,
**kwargs,
)
def error_inputs_sparse_mul(op_info, device, layout, **kwargs):
"""Error inputs for mul operation on sparse tensors."""
dtype = torch.float64
requires_grad = False
yield from _error_inputs_sparse(
_maybe_failing_sample_inputs_sparse_elementwise_binary_mul,
_validate_sample_input_sparse_elementwise_binary_operation,
op_info,
device,
dtype,
requires_grad,
layout,
**kwargs,
)
def _sample_inputs_sparse_like_fns(
op_info, device, dtype, requires_grad, layout, **kwargs
):
from torch.testing._internal.common_utils import TestCase
for tensor in TestCase().generate_simple_inputs(
layout,
device=device,
dtype=dtype,
enable_batch=True,
enable_hybrid=True,
enable_zero_sized=True,
enable_non_contiguous_indices=False,
enable_non_contiguous_values=False,
):
yield SampleInput(tensor, args=(), kwargs={})
yield SampleInput(
tensor, args=(), kwargs=dict(device=device, dtype=dtype, layout=layout)
)
if dtype is not torch.float64:
yield SampleInput(tensor, args=(), kwargs=dict(dtype=torch.float64))
if torch.cuda.is_available():
other_device = "cuda" if tensor.device.type == "cpu" else "cpu"
yield SampleInput(tensor, args=(), kwargs=dict(device=other_device))
if layout is torch.sparse_csr:
other_layout = torch.sparse_csc
elif layout is torch.sparse_csc:
other_layout = torch.sparse_csr
elif layout is torch.sparse_bsr:
other_layout = torch.sparse_bsc
elif layout is torch.sparse_bsc:
other_layout = torch.sparse_bsr
else:
other_layout = torch.strided
yield SampleInput(tensor, args=(), kwargs=dict(layout=other_layout))
if layout is not torch.sparse_coo:
yield SampleInput(tensor, args=(), kwargs=dict(layout=torch.sparse_coo))
def _validate_sample_input_sparse_like_fns(op_info, sample, check_validate=False):
if sample.input.layout in {
torch.sparse_csr,
torch.sparse_csc,
torch.sparse_bsr,
torch.sparse_bsc,
} and op_info.name not in {"zeros_like"}:
if sample.kwargs.get("layout", sample.input.layout) != sample.input.layout:
return ErrorInput(
sample,
error_regex=(
"empty_like with different sparse layout is not supported"
" \\(self is Sparse(Csc|Csr|Bsc|Bsr) but you requested Sparse(Csr|Csc|Bsr|Bsc)\\)"
),
)
if sample.input.layout is torch.sparse_coo:
return ErrorInput(
sample,
error_regex=(
"Could not run 'aten::normal_' with arguments from the 'Sparse(CPU|CUDA)' backend."
),
)
if check_validate:
_check_validate(op_info, sample)
return sample
def _maybe_failing_sample_inputs_sparse_like_fns(
op_info, device, dtype, requires_grad, layout, **kwargs
):
if torch.cuda.is_available() and layout is not torch.sparse_coo:
other_device = "cuda" if torch.device(device).type == "cpu" else "cpu"
if layout is torch.sparse_csr:
other_layout = torch.sparse_csc
elif layout is torch.sparse_csc:
other_layout = torch.sparse_csr
elif layout is torch.sparse_bsr:
other_layout = torch.sparse_bsc
elif layout is torch.sparse_bsc:
other_layout = torch.sparse_bsr
else:
other_layout = torch.strided
blocksize = (1, 1) if layout in {torch.sparse_bsr, torch.sparse_bsc} else None
yield SampleInput(
torch.tensor([[0, 1], [2, 3]], dtype=dtype, device=device).to_sparse(
layout=layout, blocksize=blocksize
),
kwargs=dict(device=other_device),
)
yield SampleInput(
torch.tensor([[0, 1], [2, 3]], dtype=dtype, device=device).to_sparse(
layout=layout, blocksize=blocksize
),
kwargs=dict(layout=other_layout),
)
def sample_inputs_sparse_like_fns(
op_info, device, dtype, requires_grad, layout, **kwargs
):
"""Sample inputs for like-functions on sparse tensors."""
yield from _sample_inputs_sparse(
_sample_inputs_sparse_like_fns,
_maybe_failing_sample_inputs_sparse_like_fns,
_validate_sample_input_sparse_like_fns,
op_info,
device,
dtype,
requires_grad,
layout,
**kwargs,
)
def error_inputs_sparse_like_fns(op_info, device, layout, **kwargs):
"""Error inputs for like-functions on sparse tensors."""
dtype = torch.float64
requires_grad = False
yield from _error_inputs_sparse(
_maybe_failing_sample_inputs_sparse_like_fns,
_validate_sample_input_sparse_like_fns,
op_info,
device,
dtype,
requires_grad,
layout,
**kwargs,
)
def _validate_sample_input_sparse_default(op_info, sample, check_validate=False):
if op_info.name == "to_sparse":
if (
sample.input.layout
in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}
and len(sample.args) == 1
and isinstance(sample.args[0], int)
and sample.args[0] != 2
):
sample = ErrorInput(
sample,
error_regex="sparse dim argument must be 2 for sparse_compressed_to_sparse",
)
if check_validate:
_check_validate(op_info, sample)
return sample
def validate_sample_input_sparse(op_info, sample, check_validate=False):
"""Return the specified sample when it is valid and supported by the
operation. Otherwise, return the sample as ErrorInput instance.
When check_validate is True, the result is validated against
calling the op on the sample.
"""
if isinstance(op_info, ReductionOpInfo):
return _validate_sample_input_sparse_reduction(
op_info, sample, check_validate=check_validate
)
elif isinstance(op_info, BinaryUfuncInfo):
return _validate_sample_input_sparse_elementwise_binary_operation(
op_info, sample, check_validate=check_validate
)
else:
return _validate_sample_input_sparse_default(
op_info, sample, check_validate=check_validate
)
|