1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
|
# mypy: ignore-errors
import datetime
import difflib
import functools
import inspect
import json
import os
import re
import tempfile
import threading
import unittest
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
import torch
import torch._dynamo
import torch.utils._pytree as pytree
from torch._dynamo.utils import clone_input
from torch._library.custom_ops import CustomOpDef
from torch._subclasses.schema_check_mode import SchemaCheckMode
from torch._utils_internal import get_file_path_2
from torch.overrides import TorchFunctionMode
from torch.testing._internal.optests import (
aot_autograd_check,
autograd_registration_check,
fake_check,
)
def dontGenerateOpCheckTests(reason: str):
def inner(fun):
fun._torch_dont_generate_opcheck_tests = True
return fun
return inner
def is_abstract(tensor: torch.Tensor) -> bool:
if tensor.is_meta:
return True
if torch._subclasses.fake_tensor.is_fake(tensor):
return True
return False
def safe_schema_check(
op: torch._ops.OpOverload,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
*,
copy_inputs: bool = True,
) -> Any:
if copy_inputs:
args, kwargs = deepcopy_tensors((args, kwargs))
if pytree.tree_any_only(torch.Tensor, is_abstract, (args, kwargs)):
return None
with SchemaCheckMode():
result = op(*args, **kwargs)
return result
def safe_autograd_registration_check(
op: torch._ops.OpOverload,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
*,
copy_inputs: bool = True,
) -> None:
if pytree.tree_any_only(torch.Tensor, is_abstract, (args, kwargs)):
return
if copy_inputs:
args, kwargs = deepcopy_tensors((args, kwargs))
# Don't perform autograd_registration_check if none of the inputs require grad.
if not pytree.tree_any_only(
torch.Tensor, lambda x: x.requires_grad, (args, kwargs)
):
return
return autograd_registration_check(op, args, kwargs)
def safe_fake_check(
op: torch._ops.OpOverload,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
*,
copy_inputs: bool = True,
) -> None:
if pytree.tree_any_only(torch.Tensor, is_abstract, (args, kwargs)):
return None
if copy_inputs:
args, kwargs = deepcopy_tensors((args, kwargs))
return fake_check(op, args, kwargs)
def safe_aot_autograd_check(
op: torch._ops.OpOverload,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
dynamic: bool,
*,
copy_inputs: bool = True,
) -> Any:
# NB: copy_inputs does nothing for aot_autograd_check: it always needs to copy
# inputs.
if pytree.tree_any_only(torch.Tensor, is_abstract, (args, kwargs)):
return None
def func(*args, **kwargs):
args, kwargs = pytree.tree_map_only(torch.Tensor, torch.clone, (args, kwargs))
return op(*args, **kwargs)
# aot_autograd_check runs func(*args, **kwargs) multiple times
# and assumes `func` does not modify its inputs.
return aot_autograd_check(func, args, kwargs, dynamic, check_gradients="auto")
def deepcopy_tensors(inputs: Any) -> Any:
return pytree.tree_map_only(torch.Tensor, clone_input, inputs)
# Test util requirements
# - The test util must have signature (op: OpOverload, args, kwargs)
# - The test util must NOT mutate args, kwargs.
# - The test utils in this list must not be prefixes of each other. For example,
# having both "test_schema" and "test_schema_is_functional" is NOT OK.
# - The order of items in this dict matters (for opcheck), we'll run them
# in order.
ALL_TEST_UTILS = {
"test_schema": safe_schema_check,
"test_autograd_registration": safe_autograd_registration_check,
"test_faketensor": safe_fake_check,
"test_aot_dispatch_static": functools.partial(
safe_aot_autograd_check,
dynamic=False,
),
"test_aot_dispatch_dynamic": functools.partial(
safe_aot_autograd_check,
dynamic=True,
),
}
GDOC = "https://docs.google.com/document/d/1Pj5HRZvdOq3xpFpbEjUZp2hBovhy7Wnxw14m6lF2154/edit"
DEFAULT_TEST_UTILS = [
"test_schema",
"test_autograd_registration",
"test_faketensor",
"test_aot_dispatch_dynamic",
]
DEPRECATED_DEFAULT_TEST_UTILS = DEFAULT_TEST_UTILS + [
"test_aot_dispatch_static",
]
def generate_opcheck_tests(
testcase: Any,
namespaces: List[str],
failures_dict_path: Optional[str] = None,
additional_decorators: Optional[Dict[str, Callable]] = None,
test_utils: List[str] = DEFAULT_TEST_UTILS,
) -> None:
"""Given an existing TestCase, use the existing tests to generate
additional validation tests for custom operators.
For {all existing tests in the TestCase} x {all test utils},
we will generate one new test. The new test runs a TorchFunctionMode
that intercepts ``op(*args, **kwargs)`` calls and invokes
``test_util(op, *args, **kwargs)``, where ``op`` is an operator.
The test_util that we support are in ALL_TEST_UTILS. They are:
- test_schema: This runs SchemaCheckMode.
- test_autograd_registration: This runs autograd_registration_check.
- test_faketensor: This runs CrossRefFakeMode.
- test_aot_dispatch_static: This runs aot_autograd_check, which:
checks that the outputs (and gradients, if they are computable)
are the same under eager-mode PyTorch and using AOTAutograd.
- test_aot_dispatch_dynamic: Same as aot_dispatch_static, but
runs AOTAutograd using dynamic shapes instead of static shapes.
The generated test will have name ``{test_util}__{original_name}``.
For example, if there is a method named ``test_cumsum``, then
we will generate a ``test_schema__test_cumsum``,
``test_faketensor__test_cumsum``, etc.
For more details, see https://docs.google.com/document/d/1Pj5HRZvdOq3xpFpbEjUZp2hBovhy7Wnxw14m6lF2154/edit
Args:
testcase: The testcase we will modify and generate additional tests for.
namespaces: We will only intercept calls to custom operators with these
namespaces.
failures_dict_path: See ``validate_failures_dict_structure`` for more details
test_utils: a list of test_utils to generate. Example: ["test_schema", "test_faketensor"]
"""
if additional_decorators is None:
additional_decorators = {}
test_methods = [
m
for m in dir(testcase)
if m.startswith("test_") and callable(getattr(testcase, m))
]
if failures_dict_path is None:
# The default failures_dict_path is failures_dict.json in
# the same directory as the test file.
prev_frame = inspect.currentframe().f_back
filename = inspect.getframeinfo(prev_frame)[0]
failures_dict_path = get_file_path_2(
os.path.dirname(filename), "failures_dict.json"
)
failures_dict = FailuresDict.load(
failures_dict_path, create_file=should_update_failures_dict()
)
validate_failures_dict_structure(failures_dict, test_utils, testcase)
validate_failures_dict_formatting(failures_dict_path)
def construct_method(attr, prefix, tester):
method = getattr(testcase, attr)
if getattr(method, "_torch_dont_generate_opcheck_tests", False):
return
new_method_name = prefix + "__" + attr
@functools.wraps(method)
def new_method(*args, **kwargs):
with OpCheckMode(
namespaces,
prefix,
tester,
failures_dict,
f"{testcase.__name__}.{new_method_name}",
failures_dict_path,
):
result = method(*args, **kwargs)
return result
if pytestmark := new_method.__dict__.get("pytestmark"):
import pytest
# check if we need to simplify the parametrize marks
# NB: you need to add this mark to your pytest.ini
opcheck_only_one = False
for mark in pytestmark:
if isinstance(mark, pytest.Mark) and mark.name == "opcheck_only_one":
opcheck_only_one = True
if opcheck_only_one:
new_pytestmark = []
for mark in pytestmark:
if isinstance(mark, pytest.Mark) and mark.name == "parametrize":
argnames, argvalues = mark.args
assert not mark.kwargs, "NYI"
# Special case for device, we want to run on all
# devices
if argnames != "device":
new_pytestmark.append(
pytest.mark.parametrize(
argnames, (next(iter(argvalues)),)
)
)
continue
new_pytestmark.append(mark)
new_method.__dict__["pytestmark"] = new_pytestmark
if new_method_name in additional_decorators:
for dec in additional_decorators[new_method_name]:
new_method = dec(new_method)
if hasattr(testcase, new_method_name):
raise RuntimeError(
f"Tried to autogenerate {new_method_name} but {testcase} already "
f"has method named {new_method_name}. Please rename the original "
f"method on the TestCase."
)
setattr(testcase, new_method_name, new_method)
test_utils = {name: ALL_TEST_UTILS[name] for name in test_utils}
for attr in test_methods:
for prefix, tester in test_utils.items():
construct_method(attr, prefix, tester)
generate_tag_tests(testcase, failures_dict, additional_decorators)
def generate_tag_tests(testcase, failures_dict, additional_decorators):
def generate_test(qualname, definitely_not_pt2_compliant, xfailed_tests):
def inner(self):
try:
op = torch._library.utils.lookup_op(qualname)
except AttributeError as e:
# Operator not importable in this test file
raise unittest.SkipTest(f"Can't import operator {qualname}") from e
op_marked_as_compliant = torch.Tag.pt2_compliant_tag in op.tags
if not op_marked_as_compliant:
return
if not definitely_not_pt2_compliant:
return
raise AssertionError(
f"op '{qualname}' was tagged with torch.Tag.pt2_compliant_tag "
f"but it failed some of the generated opcheck tests "
f"({xfailed_tests}). This may lead to silent correctness issues, "
f"please fix this."
)
return inner
for qualname, test_dict in failures_dict.data.items():
xfailed_tests = [
test
for test, status_dict in test_dict.items()
# We're about to delete the following test after Ed's PR
# to specialize on C++ .size() calls
if "test_aot_dispatch_static" not in test
and status_dict["status"] == "xfail"
]
definitely_not_pt2_compliant = len(xfailed_tests) > 0
generated = generate_test(qualname, definitely_not_pt2_compliant, xfailed_tests)
# Could result in collisions, but unlikely. We'll raise if we see one below.
mangled_qualname = qualname.replace("::", "_").replace(".", "_")
test_name = "test_pt2_compliant_tag_" + mangled_qualname
# You can skip this test via the additional_decorators argument
# in generate_opcheck_tests
if test_name in additional_decorators:
for decorator in additional_decorators[test_name]:
generated = decorator(generated)
if hasattr(testcase, test_name):
raise RuntimeError(
f"Tried to generate a test named {test_name}, but it exists "
f"already. This could be because of a name collision (where "
f"we generated two tests with the same name), or where we "
f"generated a test with the same name as an existing test."
)
setattr(testcase, test_name, generated)
TEST_OPTIONS = ("xfail", "skip", "xsuccess")
def validate_failures_dict_formatting(failures_dict_path: str) -> None:
with open(failures_dict_path) as fp:
actual = fp.read()
failures_dict = FailuresDict.load(failures_dict_path)
expected = failures_dict._save(to_str=True)
if actual == expected:
return
if should_update_failures_dict():
failures_dict = FailuresDict.load(failures_dict_path)
failures_dict.save()
return
expected = expected.splitlines(1)
actual = actual.splitlines(1)
diff = difflib.unified_diff(actual, expected)
diff = "".join(diff)
raise RuntimeError(
f"\n{diff}\n\nExpected the failures dict to be formatted "
f"a certain way. Please see the above diff; you can correct "
f"this either manually or by re-running the test with "
f"PYTORCH_OPCHECK_ACCEPT=1"
)
def validate_failures_dict_structure(
failure_dict: "FailuresDict", test_utils: List[str], testcase: Any
) -> None:
"""Validates the failures dict.
The failure dict looks something like the following.
It maps operator name (qualname) to a list of autogenerated tests.
Each autogenerated test may have a check for the operator (if the operator is
called by the test); the dictionary specifies if we should skip the check,
or if we expect some check to fail.
{
"fbgemm::split_lengths": {
"test_schema__test_split_lengths": {
"comment": "you can put whatever you want into the comment section",
"status": "xfail",
}
"test_schema__test_split_lengths_empty": {
"comment": "",
"status": "skip",
},
},
"fbgemm::gather_lengths": {
"test_schema__test_gather_lengths": {
"comment": "",
"status": "skip",
},
},
}
"""
failure_dict = failure_dict.data
for test_to_option in failure_dict.values():
for test_name, test_dict in test_to_option.items():
if set(test_dict.keys()) != set({"comment", "status"}):
raise RuntimeError(
"in failures_dict, expected sub-dict to have keys 'comment' and 'status'"
)
test_option = test_dict["status"]
if test_option not in TEST_OPTIONS:
raise RuntimeError(
f"In failures_dict, got status={test_option} but it needs to be in {TEST_OPTIONS}"
)
test_class, actual_test_name = test_name.split(".")
if not any(actual_test_name.startswith(test) for test in test_utils):
raise RuntimeError(
f"In failures_dict, test name '{test_name}' should begin with one of {test_utils}"
)
for test in test_utils:
if not actual_test_name.startswith(test):
continue
base_test_name = actual_test_name[len(test) + 2 :]
# remove potential pytest parametrization suffix
base_test_name = re.sub(r"\[.*\]", "", base_test_name)
if testcase.__name__ != test_class:
continue
if hasattr(testcase, base_test_name):
continue
raise RuntimeError(
f"In failures dict, got test name '{test_name}'. We parsed this as "
f"running test '{test}' on '{base_test_name}', but "
f"{base_test_name} does not exist on the TestCase '{testcase.__name__}]. "
f"Maybe you need to change the test name?"
)
def should_update_failures_dict() -> bool:
key = "PYTORCH_OPCHECK_ACCEPT"
return key in os.environ and os.environ[key] == "1"
_is_inside_opcheck_mode = threading.local()
_is_inside_opcheck_mode.value = False
def is_inside_opcheck_mode():
return _is_inside_opcheck_mode.value
class OpCheckMode(TorchFunctionMode):
"""
For a given test, OpCheckMode intercepts calls to operators and runs
test_util(op, args, kwargs) for each intercepted (op, args, kwargs).
"""
def __init__(
self,
namespaces: List[str],
test_util_name: str,
test_util: Callable,
failures_dict: "FailuresDict",
test_name: str,
failures_dict_path: str,
):
# We will intercept calls to ops with these namespaces
self.namespaces = namespaces
# The test utility function. Its signature should be (op, args, kwargs) -> None.
# Examples of test utilities are: schema_check, make_fx_check
self.test_util = test_util
self.test_util_name = test_util_name
# The name of the test that is running this OpCheckMode.
self.test_name = test_name
# Maps qualname -> test_name -> skip/xfail
# Tells us if we should skip a test or assert that there is a failure.
self.failures_dict = failures_dict
# Location of the failures dict. Makes it so that the error message is better.
self.failures_dict_path = failures_dict_path
# OpCheckMode surpresses errors, collects them here, and then raises them on exit.
# Maps qualname -> List[(Exception, func, maybe args, maybe kwargs)]
self.seen_ops_to_errors = {}
def maybe_raise_errors_on_exit(self) -> None:
# Check expected failures first
for qualname in self.seen_ops_to_errors.keys():
option = self.failures_dict.get_status(qualname, self.test_name)
if len(self.seen_ops_to_errors[qualname]) == 0:
if should_update_failures_dict():
self.failures_dict.set_status(
qualname, self.test_name, "xsuccess", comment=""
)
else:
if option == "xfail":
raise OpCheckError(
f"generate_opcheck_tests: Unexpected success for operator "
f"{qualname} on test {self.test_name}. This may mean that "
f"you have fixed this test failure. Please rerun the test with "
f"PYTORCH_OPCHECK_ACCEPT=1 to automatically update the test runner "
f"or manually remove the "
f"expected failure in the failure dict at "
f"{self.failures_dict_path}"
f"For more details, see "
f"{GDOC}"
)
continue
failed_ops = []
for qualname in self.seen_ops_to_errors.keys():
option = self.failures_dict.get_status(qualname, self.test_name)
if option != "xsuccess":
continue
if len(self.seen_ops_to_errors[qualname]) == 0:
continue
failed_ops.append(qualname)
if not failed_ops:
return
if should_update_failures_dict():
for op in failed_ops:
self.failures_dict.set_status(op, self.test_name, "xfail")
return
# Raise from the first error but also report about all of them to make
# recording xfails easier.
ex, op, args, kwargs = self.seen_ops_to_errors[failed_ops[0]][0]
repro_command = generate_repro(
self.test_util_name, op, args, kwargs, save_data=should_print_better_repro()
)
raise OpCheckError(
f"Test generated by `generate_opcheck_tests`, {self.test_name}, "
f"failed on operators {failed_ops}. This usually means that the "
f"operators are not implemented correctly and may lead to silently "
f"incorrect behavior. Set PYTORCH_OPCHECK_PRINT_BETTER_REPRO=1 for a standalone repro, "
f"or please see "
f"{GDOC} "
f"for more recommendations. "
f"To reproduce this problem locally, try to run the following:\n{repro_command}"
) from ex
def __enter__(self, *args, **kwargs):
self.prev_is_opcheck_mode = _is_inside_opcheck_mode.value
self.prev_dynamo_disable = os.environ.get("TORCHDYNAMO_DISABLE", "")
_is_inside_opcheck_mode.value = True
os.environ["TORCHDYNAMO_DISABLE"] = "1"
return super().__enter__(*args, **kwargs)
def __exit__(self, *args, **kwargs):
_is_inside_opcheck_mode.value = self.prev_is_opcheck_mode
os.environ["TORCHDYNAMO_DISABLE"] = self.prev_dynamo_disable
try:
self.maybe_raise_errors_on_exit()
if should_update_failures_dict():
self.failures_dict.save()
finally:
result = super().__exit__(*args, **kwargs)
return result
def run_test_util(self, op, args, kwargs):
try:
self.test_util(op, args, kwargs, copy_inputs=False)
except torch._subclasses.fake_tensor.UnsupportedFakeTensorException:
# We might get here if the input is already a FakeTensor
# or if we're in a torch.compile block. Just ignore these
# since we can't handle them and reporting them as failures
# is too noisy.
pass
def __torch_function__(self, func, types, args=(), kwargs=None):
kwargs = kwargs if kwargs else {}
# Only intercept calls to operators
if not isinstance(func, (torch._ops.OpOverloadPacket, torch._ops.OpOverload)):
return func(*args, **kwargs)
if (
torch.jit.is_tracing()
or torch.jit.is_scripting()
or torch._dynamo.is_compiling()
):
return func(*args, **kwargs)
# Pre-existing code may not use the .default overload. If we see an
# OpOverloadPacket and we cannot resolve the overload, then we just throw
# and ask the user to clarify. Otherwise, we attempt to resolve the overload.
if isinstance(func, torch._ops.OpOverloadPacket):
func = resolve_unique_overload_or_throw(func)
qualname = func.name()
ns = qualname.split("::")[0]
if ns not in self.namespaces:
return func(*args, **kwargs)
args_c, kwargs_c = deepcopy_tensors((args, kwargs))
result = func(*args, **kwargs)
option = self.failures_dict.get_status(qualname, self.test_name)
if option == "xsuccess" or option == "xfail":
# Surpress all errors during execution. Raise them during __exit__.
try:
if qualname not in self.seen_ops_to_errors:
self.seen_ops_to_errors[qualname] = []
self.run_test_util(func, args_c, kwargs_c)
except Exception as ex:
if should_print_better_repro():
self.seen_ops_to_errors[qualname].append((ex, func, args, kwargs))
else:
self.seen_ops_to_errors[qualname].append((ex, func, None, None))
elif option == "skip":
pass
return result
def should_print_better_repro() -> None:
"""If set, the tests generated by `generate_opcheck_tests` will print a
repro command on failure.
In order to print the repro command, we need to save some tensors to disk.
These will be saved under the following directory:
{tempfile.gettempdir()}/pytorch_opcheck_safe_to_delete/.
Although this is a temp folder, it will usually not automatically get cleaned
up, so you'll need to manually delete it.
"""
key = "PYTORCH_OPCHECK_PRINT_BETTER_REPRO"
if key not in os.environ:
return False
value = os.environ[key]
return value == "1" or value == 1
def opcheck(
op: Union[torch._ops.OpOverload, torch._ops.OpOverloadPacket, CustomOpDef],
args: Tuple[Any, ...],
kwargs: Optional[Dict[str, Any]] = None,
*,
test_utils: Union[str, Sequence[str]] = DEFAULT_TEST_UTILS,
raise_exception: bool = True,
) -> Dict[str, str]:
"""See torch.library.opcheck for docstring"""
if kwargs is None:
kwargs = {}
if isinstance(op, CustomOpDef):
op = op._opoverload
if isinstance(op, torch._ops.OpOverloadPacket):
op = resolve_unique_overload_or_throw(op)
if not isinstance(op, torch._ops.OpOverload):
raise ValueError(
f"opcheck(op, ...): op must be instance of torch._ops.OpOverload, "
f"e.g. torch.ops.aten.sin.default, got {type(op)}"
)
if test_utils == "ALL":
test_utils = tuple(ALL_TEST_UTILS.keys())
if isinstance(test_utils, str):
test_utils = (test_utils,)
if not isinstance(test_utils, (tuple, list)) or not set(test_utils).issubset(
ALL_TEST_UTILS.keys()
):
raise ValueError(
f"opcheck(op, ..., test_utils={test_utils}), expected test_utils "
f"to be subset of {tuple(ALL_TEST_UTILS.keys())} but it was not"
)
results_dict = {}
for test_util in test_utils:
tester = ALL_TEST_UTILS[test_util]
try:
tester(op, args, kwargs)
results_dict[test_util] = "SUCCESS"
except Exception as ex:
if raise_exception:
raise OpCheckError(
f"opcheck(op, ...): {test_util} failed with {ex} "
f"(scroll up for stack trace)"
) from ex
results_dict[test_util] = ex
return results_dict
class OpCheckError(Exception):
pass
def generate_repro(
test: str,
op: torch._ops.OpOverload,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
*,
save_data: bool,
dry_run: bool = False,
) -> str:
if save_data:
now = datetime.datetime.now()
path = os.path.join(tempfile.gettempdir(), "pytorch_opcheck_safe_to_delete")
unix_timestamp = datetime.datetime.timestamp(now) * 100000
filepath = os.path.join(path, f"repro_{unix_timestamp}.pt")
if not dry_run:
os.makedirs(path, exist_ok=True)
torch.save((args, kwargs), filepath)
args_kwargs = f'args, kwargs = torch.load("{filepath}")'
else:
args_kwargs = (
"# If you rerun your test with PYTORCH_OPCHECK_PRINT_BETTER_REPRO=1\n"
"# we will fill them in same (args, kwargs) as in your test\n"
"args = () # args to the operator\n"
"kwargs = {} # kwargs to the operator"
)
ns, name = op._schema.name.split("::")
overload = op._overloadname
repro_command = (
f"# =========================================================\n"
f"# BEGIN REPRO SCRIPT\n"
f"# =========================================================\n"
f"import torch\n"
f"from torch.testing._internal.optests import opcheck\n"
f"\n"
f"# Make sure you have loaded the library that contains the op\n"
f"# via an import or torch.ops.load_library(...)\n"
f"op = torch.ops.{ns}.{name}.{overload}\n"
f"\n"
f"{args_kwargs}\n"
f'opcheck(op, args, kwargs, test_utils="{test}")\n'
f"# =========================================================\n"
f"# END REPRO SCRIPT\n"
f"# =========================================================\n"
)
return repro_command
def resolve_unique_overload_or_throw(
op: torch._ops.OpOverloadPacket,
) -> torch._ops.OpOverload:
all_schemas = torch._C._jit_get_schemas_for_operator(op._qualified_op_name)
if len(all_schemas) != 1:
raise RuntimeError(
f"opcheck can only test operators without overloads. "
f"Got the following overloads for {op._qualified_op_name}: "
f"{[schema.overload_name for schema in all_schemas]}"
)
overload_name = all_schemas[0].overload_name
if overload_name == "":
return op.default
return getattr(op, overload_name)
DUMP_OPTIONS = {"indent": 2, "sort_keys": True}
FailuresDictData = Dict[str, Dict[str, Dict[str, str]]]
VERSION = 1
DESCRIPTION = (
f"This is a dict containing failures for tests autogenerated by "
f"generate_opcheck_tests. "
f"For more details, please see {GDOC}"
)
class FailuresDict:
def __init__(self, path: str, data: FailuresDictData):
self.path = path
self.data = data
@staticmethod
def load(path, *, create_file=False) -> "FailuresDict":
if create_file and not os.path.exists(path):
result = FailuresDict(path, {})
FailuresDict.save()
return result
with open(path) as fp:
contents = fp.read()
if contents.strip() == "":
dct = {
"_description": DESCRIPTION,
"data": {},
"_version": VERSION,
}
else:
dct = json.loads(contents)
assert "data" in dct
assert "_version" in dct and dct["_version"] == VERSION
return FailuresDict(path, dct["data"])
def _save(self, to_str=False) -> Optional[str]:
to_dump = {
"_description": DESCRIPTION,
"data": self.data,
"_version": VERSION,
}
# json.dumps doesn't end with a newline. Let's add one because files
# should end in newlines.
serialized = json.dumps(to_dump, **DUMP_OPTIONS) + "\n"
if to_str:
return serialized
with open(self.path, "w") as fp:
fp.write(serialized)
return None
def save(self) -> None:
return self._save()
def get_status(self, qualname: str, test_name: str) -> str:
if qualname not in self.data:
return "xsuccess"
dct = self.data[qualname]
if test_name not in dct:
return "xsuccess"
return dct[test_name]["status"]
def set_status(
self,
qualname: str,
test_name: str,
status: str,
*,
comment: Optional[str] = None,
):
if qualname not in self.data:
self.data[qualname] = {}
dct = self.data[qualname]
if test_name not in dct:
dct[test_name] = {"status": None, "comment": ""}
if status == "xsuccess":
# The default status is "xsuccess".
del dct[test_name]
else:
dct[test_name]["status"] = status
if comment is not None:
dct[test_name]["comment"] = comment
|